
Acta Univ. Sapientiae, Mathematica, 2, 2 (2010) 206–214

On the positive correlations in Wiener

space via fractional calculus

Toufik Guendouzi
Laboratory of Mathematics,

Djillali Liabes University
PO. Box 89, 22000 Sidi Bel Abbes, Algeria

email: tf.guendouzi@gmail.com

Abstract. In this paper we study the correlation inequality in the
Wiener space using the Malliavin and the fractional calculus. Under
positivity and monotonicity conditions, we give a proof of the positive
correlation between two random functionals F and G which are assumed
smooth enough. The main argument is the Itô-Clark representation for-
mula for the functionals of a fractional Brownian motion.

1 Introduction

It is well-known that the correlations inequalities are one of the most power-
ful tools of the stochastic analysis due to its vast range of applications. So,
The theoretical study of these inequalities has matured tremendously since the
seminal work of Fortuin, Kasteleyn and Ginibre [5]. In general, several au-
thors have been interested in finding applications of these inequalities in some
areas including statistical mechanics (see, for instance, Bakry and Michel [1],
Preston [15]).

Recently, Mayer-Wolf, Üstünel and Zakai obtained general covariance in-
equalities in an abstract Wiener space. They consider such inequalities for
functionals satisfying either monotonicity or convexity properties [13]. Hence
Houdré and Perez-Abreu in [9] used Malliavin calculus techniques to obtain
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covariance identities and inequalities for functionals of the Wiener and the
Poisson processes.

The purpose of this paper is to use the Malliavin calculus techniques to
study the positive correlations between two functionals on the Wiener space
via fractional calculus. Our proofs rely in general on the Itô-Clark represen-
tation formula for the functionals of a fractional Brownian motion and the
monotonicity condition for F and G on the Wiener space. Here, the fractional
Brownian motion of index H ∈ (0, 1) is the centred Gaussian process whose
covariance kernel is given by

RH(s, t) = EH[WH
s WH

t ],

and for f given in [a, b], each of the expressions

(Dα
a+ f)(x) =

( d

dx

)[α]+1

I
1−{α}

a+ f(x), (Dα
b− f)(x) =

(

−
d

dx

)[α]+1

I
1−{α}

b− f(x),

are respectively called right and left fractional derivative where [α] denotes
the integer part of α, {α} = α − [α] and (Iα

a+ f(x))(x), (Iα
b− f(x))(x) are right

and left fractional integral of the order α > 0 (see [3]). Hence for H ∈ (0, 1)

the integral transform KHf is defined as

KHf = I2H
0+ x1/2−HI

1/2−H

0+ xH−1/2f, H ≤ 1/2

KHf = I1
0+ xH−1/2I

H−1/2

0+ x1/2−Hf, H ≥ 1/2,

KH is an isomorphism from L2([0, 1]) onto I
H+1/2

0+ (L2([0, 1])). If H ≥ 1/2,
r → KH(t, r) is continuous on (0, t].

The organization of this paper is as follows: in Section 2, we shall give some
preparation and state main results. We begin by recalling the basic notions
of Malliavin calculus, the gradient operator and Sobolev-type space D2,1, the
Ornstein-Uhlenbeck semigroup, the Itô-Clark representation formula for func-
tional of Brownian motion. In Section 3, we shall study the positive correlation
between two functionals of the Wiener space satisfying monotonicity property.

2 Preliminaries

This section gives some basic notions of analysis on the Wiener space (W,FH,

PH). The reader can consult [14] for a complete survey on this topic. Let
W represented as C0([0, 1],R) of continuous function ω : [0, 1] −→ R with
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w(0) = 0, equipped with the ||.||∞-norm i.e W is also a (separable) Banach-
space, W∗ is its topological dual and (Wt)t∈[0,1] be a canonical Brownian

motion generating the filtration (FH
t )t∈[0,1]. Random-variables on W are called

Wiener functionals and the coordinate process ω(t) is a Brownian motion
under PH. So we write ω(t) = W(t, ω) = W(t). Recall that PH is the unique
probability measure on W such that the canonical process (W(t))t∈R is a
centered Gaussian process with the covariance Kernel RH:

EH[W(t)W(s)] = RH(t, s).

The Cameron-Martin space HH is an subspace of W defined as

HH = {KHḣ; ḣ ∈ L2([0, 1], dt)},

i.e, any h ∈ HH can be represented as h(t) = KHḣ(t) =

∫1

0

KH(s, t)ḣ(s)ds,

ḣ belongs to L2([0, 1]). The scalar product on the space HH is given by
(h, g)HH

= (KHḣ, KHġ)HH
= (ḣ, ġ)L2([0,1]).

We note that for any H ∈ (0, 1), RH(t, s) can be written as

RH(t, s) =

∫1

0

KH(t, r)KH(s, r)dr,

and RH = KHK∗
H, where KH is the Hilbert-Schmidt operator introduced in the

first section. RH is also the injection from W∗ into the space HH and it can be
decomposed as RHη = KH(K∗

Hη), for any η in W∗ (see, [18]). The restriction
of K∗

H to W∗ is the injection from W∗ into L2([0, 1]).

If y is an HH-valued random variable, we denote by ẏ the L2([0, 1],R)-valued

random variable such that y(ω, t) =

∫t

0

KH(t, s)ẏ(ω, s)ds. Here, for F ∈ S(χ)

the H-Gross-Sobolev derivative of F, denoted by ∇F and is the HH⊗χ-valued
mapping defined by

∇F(ω) =

n∑

i=1

∂f

∂xi

(〈l1, ω〉, . . . , 〈ln, ω〉)RH(li) ⊗ x, (1)

where χ is a separable Hilbert space, S(χ) is the set of χ-valued smooth cylin-
dric functionals, and for each 1 ≤ i ≤ n, li is in W∗ and xi belongs to χ.
Hence, for any RHη ∈ HH we have by the Cameron-Martin theorem

EH[F(ω + RHη)] =

∫

F(ω) exp
(

〈η, ω〉 − ||RHη||2HH
/2

)

dPH(ω). (2)
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The Ornstein-Uhlenbeck semigroup {TH
t , t ≥ 0} of bounded operators which

acts on Lp(PH, χ) for any p ≥ 1 can be described by the Mehler formula:

(TH
t F)(ω) =

∫

W

F
(

e−tω +
√

1 − e−2tω ′
)

PH(dω ′). (3)

The directional derivative of F ∈ S(χ) in the the direction RHη ∈ HH is given
by

(∇F, RHη)HH
=

d

dt
F(ω + t.RHη)

∣

∣

∣

t=0
, (4)

and from (2) we have ∇F depends only on the equivalence classes with respect
to PH and EH((∇F, RHη)HH

) = EH(F〈ω, η〉).

For any p ≥ 1 we define Sobolev space DH
p,k(χ), k ∈ Z, as the completion

of S(χ) with respect to the norm

||F||p,k,H = ||F||Lp
H

+ ||∇kF||Lp(PH ;χ),

hence the operator ∇ can be extended as continuous linear operator from
DH

p,k(χ) to DH
p,k−1(HH ⊗ χ) for any p > 1 and k ∈ Z (see [18]). Thus

∇ : DH
p,k(χ) → DH

p,k−1(HH⊗χ); its formal adjoint with respect to PH is the op-

erator δH in the sense that ∀F ∈ S, ∀y ∈ S(HH), EH[FδHy] = EH

[

(∇F, y)HH

]

,

and since ∇ has continuous extensions, δH has also a continuous linear exten-
sion from DH

p,k(HH) to DH
p,k−1 for any p > 1 and k ∈ N.

Recall the following, unique, Wiener-Itô chaos expansion for all PH-square
integrable functional F from W to R

F = EF +

∞∑

1

JH
nF, (5)

where JH
n is the n-fold iterated Itô integral of F. If y ∈ HH and ϑ

y
1 = exp(δHy−

1/2||y||2HH
), then we have

JH
nϑ

y
1 =

1

n!
δ

(n)

H y⊗n. (6)

More precisely, if F ∈ ∪k∈ZD
H
2,k,

JH
nF =

1

n!
δ

(n)

H

(

EH∇
(n)F

)

.
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For H ∈ (0, 1), let {πH
t ; t ∈ [0, 1]} be the family of orthogonal projection in HH

defined by
πH

t (KHy) = KH(y1[0,1]), y ∈ L2([0, 1]). (7)

The operator Υ(πH
t ) is the second quantization of πH

t from L2(PH) into itself
defined by

F =
∑

n≥0

δ
(n)

H fn 7→ ΥπH
t (F) =

∑

n≥0

δ
(n)

H

(

(πH
t )⊗nfn

)

.

Thus we have, for y ∈ HH,

Υ(πH
t )

(

ϑ
y
1

)

= exp(δH(πH
t y) − 1/2||πH

t y||2HH
) = ϑ

y
1, (8)

hence the bijectivity of the operator KH has the following consequence

FH
t = σ{δH(πH

t y), y ∈ HH} ∨ NH,

where NH is the set of the PH-negligible events.

We also note that for any F ∈ L2(PH),

Υ(πH
t )F = EH[F|FH

t ],

and in particular

EH[Wt|F
H
t ] =

∫t

0

KH(t, s)1[0,1](s)δHWs,

EH[exp(δHy − 1/2||y||2HH
)|FH

t ] = exp(δH(πH
t y) − 1/2||πH

t y||2HH
),

for any y ∈ HH.

We shall recall the following results

Theorem 1 ([3]) Let F be DH
2,1. Then F belongs to FH

t iff ∇F = πH
t ∇F.

Theorem 2 (Itô-Clark representation formula) For any F ∈ DH
2,1,

F − EH[F] =

∫1

0

EH[K−1
H (∇F)(s)|FH

s ]δHWs

= δH

(

KH(EH[K−1
H (∇F)(.)|F.])

)

.
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3 Monotonicity and positive correlations

Our method relies on the Itô-Clark formula which plays a crucial role to es-
tablish positive correlation between two random functionals under some hy-
potheses. Thus we recall here the following correlation identity, in the first
lemma, which is based on the Clark formula and the Itô isometry. We refer to
[3] and [9] for tutorial references on this identity.

Lemma 1 For any F, G ∈ L2(PH) we have

Cov(F, G) = EH

[

∫1

0

EH[K−1
H (∇F)(s)|FH

s ]EH[K−1
H (∇G)(s)|FH

s ]ds
]

. (9)

Proof. We have

Cov(F, G) = EH

[

(F − EH[F])(G − EH[G])
]

= EH

[

∫1

0

EH[K−1
H (∇F)(s)|FH

s ]δHWs

∫1

0

EH[K−1
H (∇G)(s)|FH

s ]δHWs

]

= EH

[

∫1

0

EH[K−1
H (∇F)(s)|FH

s ]EH[K−1
H (∇G)(s)|FH

s ]ds
]

.

�

Proposition 1 Let G be a FH
t -measurable element of DH

2,1. Then the identity

(9) can be written as

Cov(F, G) = EH

[

∫1

0

EH[K−1
H (∇F)(s)|FH

s ]K−1
H (∇G)(s)ds

]

= EH

[

∫1

0

EH[K−1
H (∇F)(s)|FH

s ]K−1
H (πH

t ∇G)(s)ds
]

.

The next result is an immediate consequence of (9).

Lemma 2 Let F, G ∈ L2(PH) such that

EH[K−1
H (∇F)(s)|FH

s ]EH[K−1
H (∇G)(s)|FH

s ] ≥ 0, ds × dP − a.s.

Then F and G are positively correlated and we have Cov(F, G) ≥ 0.

The main results of this section are the following:

Corollary 1 If F, G ∈ DH
2,1 satisfy K−1

H [∇F](t) ≥ 0, K−1
H [∇G](t) ≥ 0a.s., then

F and G are positively correlated.
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Corollary 2 If G ∈ DH
2,1, and if EH[K−1

H (∇F)(s)|FH
s ] ≥ 0, K−1

H [∇G](t) ≥
0a.s., then F and G are positively correlated.

The next theorem studies the positivity of K−1
H [∇F](t), for any functional

F ∈ DH
2,1 under the monotonicity assumption.

Theorem 3 For any increasing functional F ∈ DH
2,1 we have

K−1
H [∇F](t) ≥ 0, dt × dPH − a.s.

Proof. Let F be increasing functional i.e. F(. + y) ≥ F(.) a.s., for all y ∈ HH

and {ut
n, n ≥ 0} be an orthonormal basis of  L2([0, 1]), for H ∈ (0, 1), Vt

n be
the σ field generated by {δHKHut

i, i ≤ n}. Since ∨nV
t
n = FH

t , the sequence

Fn = EH

[

F/Vt
n

]

converge to F in DH
2,1, and from πH

t KHut
n = KHut

n, for Fn we

have ∇Fn = πH
t ∇Fn and ∇F = πH

t ∇F follows. Hence, by the Cameron-Martin
formula (2) we have for any Vt

n-measurable and square-integrable random
variable ϑt

n,

EH

[

Fn(ω + yt
n)

]

= EH

[

exp(δHyt
n − 1/2||yt

n||2HH
)Fn(ω)

]

= EH

[

ϑt
nFn(ω)

]

= EH

[

ϑt
nEH[F/Vt

n](ω)
]

= EH

[

EH[ϑt
nF/Vt

n](ω)
]

= EH[ϑt
nF(ω)]

= EH[F(ω + yt
n)].

On the other hand, for any square-integrable function f on [0, 1]n we have

Fn(ω + y) = Fn(ω + yt)

= f
(

δHKHut
0 + (KHut

0, K
−1
H yt)L2([0,1]), . . . ,

. . . , δHKHut
n + (KHut

n, K−1
H yt)L2([0,1])

)

= f
(

δHKHut
0 + (KHut

0, π
H
t K−1

H yt
n)L2([0,1]), . . . ,

. . . , δHKHut
n + (KHut

n, πH
t K−1

H yt
n)L2([0,1])

)

= Fn(ω + yt
n)

= EH[F(ω + yt
n)/Vt

n]

≥ EH[F/Vt
n](ω)

= Fn(ω) − a.s.
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Thus, we conclude that the smooth function Fn(ω + τy) is increasing in
τ, for any τ ∈ R where πH

t K−1
H yt

n = K−1
H yt

n is positive, hence we have from
(4) that (∇Fn, K−1

H y)L2([0,1]) is positive. Since ∇Fn is positive and ∇Fn → ∇F

then ∇F is also positive.

To complete the proof, it suffices to use the fact that

δH(πH
t ∇F) =

∫t

0

K−1
H [∇F](s)δHWs

and because ∇F positive we get K−1
H [∇F](s) ≥ 0, a.s. �

Theorem 4 For any increasing functional F ∈ L2(PH) we have

EH[K−1
H (∇F)(s)|FH

s ] ≥ 0, dt × dPH − a.s.

Proof. Let {TH
t , t ≥ 0} be a semigroup defined as in (3), and assume that F

is increasing functional in L2(PH). Taking t = 1/n, ∀n ≥ 1, we have TH
1/n

F

is also increasing from (3) and element of DH
2,1. Hence from lemma 3, ∇TH

1/n
F

is positive and also K−1
H [∇TH

1/n
F](s) ≥ 0, a.s., then EH[K−1

H (∇TH
1/n

F)(t)|FH
t ]

follows. Finally, using the fact that TH
1/n

F → F as n goes to infinity we get the
result. �
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[9] C. Houdré, V. Perez-Abreu, Covariance identities and inequalities for
functionals on Wiener space and Poisson space, Ann. Probab., 23 (1995),
400–419.
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