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covariance identities and inequalities for functionals of the Wiener and the
Poisson processes.

The purpose of this paper is to use the Malliavin calculus tech es to
study the positive correlations between two functionals on the pace
via fractional calculus. Our proofs rely in general on the Ito-Clal resen-
tation formula for the functionals of a fractional Browm;ﬁion and the

monotonicity condition for F and G on the Wiener space e fractional
Brownian motion of index H € (0,1) is the centred Ga ocess whose

covariance kernel is given by
Rus, ) = ByWiwi, 0

and for f given in [a, b], each of the expressmns

d 1—{e) ( d -

(Dg ) = (dx) Ia flx dx flx),
are respectively called right and le here [a] denotes
the integer part of o, {a} = @ — b,f (x) are right
and left fractional integral of th Hence for He (0,1)

the integral transform Kyf is de

%W
, H—1/

Kif H<1/2

Kuf = . H>1/2

Ky is an 1somorph to I;H/Z(LZ([O,H)). IfH > 1/2,
r — Kn(t, 1) is contj

The organizati
preparation a
of Malhavm c
Ornstein-U
tional of

ows: in Section 2, we shall give some
e begin by recalling the basic notions
operator and Sobolev-type space D; 7, the
he Ito-Clark representation formula for func-
ection 3, we shall study the positive correlation
Wiener space satisfying monotonicity property.

2 imij

me basic notions of analysis on the Wiener space (W, FH,
can consult [14] for a complete survey on this topic. Let

This sectio
Py). The
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w(0) = O, equipped with the ||.||» -norm i.e W is also a (separabl h-
space, W¥ is its topological dual and (W, )tm[o1] be a canonic wnian

motion generating the filtration (F )01 ;- Random- varlables on e called
Wiener functionals and the coordinate process w(t) is a Wlan motion

under Py. So we write w(t)= W(tw)= Recall tha the unique
probability measure on W such that the canonlcal pr JtrRr iS a
centered Gaussian process with the covariance Kerne

EnIW ()W (s)] = Ru(t

The Cameron-Martin space Hy is an subspace o ned as

Hy = {Kyh; h& L% [00
i.e, any h ¥ Hy can be represented as h@ Ky h(t & (s)ds,

h belongs to L2([O 1 The scalar on th Hy is given by

We note that for any H K ( 0,1),

KH

and Ry = Ky KH, where Hiber%dt operator introduced in the
first section. Ry is also ctlon f \ into the space Hy and it can be
decomposed asRyn in W¥ (see, [18]). The restriction

of K& to W¥ is th n from L2([0,1]).
If yisan Hy- & r\@we denote by y the L2([0, 1], R)-valued
i uch that Ky (t,s)y(w,s)ds. Here, for FX S (x)

%
N

Q . & I

i=1

where x is a e Hilbert space, S(x) is the set of x-valued smooth cylin-
dric functionalS, g#hd for each 1 < i < n, |; is in W¥ and x; belongs to ¥.
Hence, for any RynXH y we have by the Cameron-Martin theorem

(s, )dr,

0
f F, denoted by K F and is the Hy X x-valued

i(<|1lw>l---l <|n:w>)RH(|i)®X/ (1)

Ey[F(w + Ry )] = JF(w)exp(<n,w>— Runlfi, /2)dPu(w). @
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T hich
o

(THF) (w) = J (e_tw +vV1—e2tw )]PH(d (3)
w

The directional derivative of F € S(x) in the the dlrectl € HH is given
by

Positive correlation

The Ornstein-Uhlenbeck semigroup {TtH,t > 0} of bounded ope
acts on LP(IPy,x) for any p > 1 can be described by the Mehler

(VF, RHT])H = 7]: w + t.Ry (4)

and from (2) we have VF depends only on the equ ce classes with respect
to Py and Ex((VF, Run)x,, ) = En(F 6

For any p > 1 we define Sobolev space ), k € Z, as the completion
of S(x) with respect to the norm ’

IFllpcH = | FHLD(

hnear operator from
E (see Thus

* ith respect to IPH is the op-
EulForyl = Bn|(VFuls, .
s also a continuous linear exten-

1 and k € IN.

hence the operator V can be e
D;l,k(X) to ngq(HH ® X)
V: Dy)k(x) — DL‘,H (Hn
erator 0y in the sense that

and since V has contin
sion from D;[k(HH)

Recall the follo
integrable fun

chaos expansion for all Py-square

g EF + Z JHE, (5)
w en- ed It6 integral of F. If y € Hyy and 8] = exp(dHy—
1 then

]H,Sy (n)y®n. (6)
More precisely, ; Fe UkeZDZ Ko
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Hu

! (Kny) = Kn(ylpy), v e L2(00,1]). (7)
The operator Y(m}!) is the second quantization of 7ttt from @4) into itself

defined by
F=Y s fam vl =3 o ((@

For H € (0, 1), let {mH;t € [0, 1]} be the family of orthogonal proje
defined by

n>0 n>0

Thus we have, for y € Hp, 0
() (8Y) = explon(nlly) - 1@%) =9}, (8)

hence the bijectivity of the operator Ky h@ following consequence

and in particular

EH [expé
for any y

S .
We shal he f@owi ults
T ([3]) D}Y. Then F belongs to F{' iff VF = m'VF.

Theorem 2 egrk representation formula) For any F € DY,
—E

1
WL = | Bl (TR e
= S (Kn(EuKy (VRIED).
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3 Monotonicity and positive correlations \

Our method relies on the Ito-Clark formula which plays a cruciaQ to es-
tablish positive correlation between two random functional er some hy-
potheses. Thus we recall here the following correlation id@ in the first
lemma, which is based on the Clark formula and the Ito6 j . We refer to
[3] and [9] for tutorial references on this identity. 6

1
Cov(F,G) = By UO EulK;] (VF)(s)lFH) GIsIFas|. ()

Proof. We have
Cov(F,G) = En|(F—EnlF)(G ¢
1 1
= B[] Bulk (s oW [N (VG (s L 51W,

)l
!‘m& G)(s)72ds|.
@ A |
Proposition 1 Let G b& ¥ el ment of D;l]. Then the identity
(9) can be written as \

Cov(F, G*QH[ | %

E W (V) ()IFHIK (7Y G) (s)ds .

Lemma 1 For any F,G € L?(Py) we have
(

(s)IFHK! (VG)(s)ds}

I

ate consequence of (9).

H) such that

SH]]EH[KQ](VG)(S)I}"F] >0, dsxdP —a.s.
sitively correlated and we have Cov(F,G) > 0.

Then F and Cﬁ
The main

Corollary 1 If F,G € D} satisfy K;j'[VFI(t) > 0,K'[VGI(t) > Oa.s., then
F and G are positively correlated.

Its of this section are the following:
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Corollary 2 If G € DY, and if EnlKy (VF)(s)IF] > 0, Kig
Oa.s., then F and G are positively correlated.

Y

The next theorem studies the positivity of Kﬁ] [VH(t), f functional
Fe D';J under the monotonicity assumption.

Theorem 3 For any increasing functional F € D}Z{] w @

KG' [VFI(t) >0, dtx dPy —

) as., for ally € Hy
, for H € (0,1), V! be

Proof. Let F be increasing functional i.e. F(. +
and {ul,n > 0} be an orthonormal basis of
the o field generated by {§pKpuf,i < n}. &

Fn=En [F/Vrtl] converge to F in DZF‘I], an = Kpyul, for Frp we
have VF,, = nl'VF,, and VF = i}V ameron-Martin
formula (2) we have for any Viameas e YIntegrable random

: t
variable ¥;,,

 /
En [Falw + )] = (o11y} & HERIN

(YN
*0 EH[%M
On the otb‘\, for an ‘w

3 ) = yY)
\(6 UB—F (KHuB,K;Jyt)LZ([O)]]),...,
Q e ,SHKHU;[.L + (KHU;CL, K;l]yt)LZ([oy”)>
Q7 i

<6HKHU5 + KHU-B, Td[_lKﬁ1y$1)L2([O,1])» ceey

e-integrable function f on [0, 1]™ we have

... ,6HKHU,JTCL + (KH‘U,.JEU T[EKP_{IU%)LZ([O,HO
Fa(w +y3)
EnlF(w +yy,)/ Vil
Eny[F/VE(w)
Fn(w) — a.s.

vl
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Thus, we conclude that the smooth function F,(w + Ty) is i g in
T, for any T € R where WPKﬁy; = KﬁylﬁL is positive, hence w@e from
(4) that (VFy, K;ﬂy)LZ([OJ]) is positive. Since VF, is positive and V7, — VF

then VF is also positive. Q

To complete the proof, it suffices to use the fact that 9

Sn(mVF) = J;K,j [VF](s)sHQ
I(s) =0 @ -

Theorem 4 For any increasing functional F &H) we have
EnlKy (VF) ()7 > 0

and because VF positive we get Kﬁ] [VFI(s

Proof. Let {T{!,t > 0} be a semigro as nd assume that F
is increasing functional in LZ(IP Taki@® t = 1 > 1, we have T}}nF
is also increasing from (3) and el of DHL. rom lemma 3, VT{}nF
is positive and also Kﬁ] [VTT} w0, a EH[KQ](VT]}}nF)(t)I}'F]
follows. Finally, using the T]F/[nF s goes to infinity we get the
result. O
L/
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