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Abstract. We give a detailed study of the discrete Fourier transform
(DFT) of r-even arithmetic functions, which form a subspace of the space
of r-periodic arithmetic functions. We consider the DFT of sequences
of r-even functions, their mean values and Dirichlet series. Our results
generalize properties of the Ramanujan sum. We show that some known
properties of r-even functions and of the Ramanujan sum can be obtained
in a simple manner via the DFT.

1 Introduction

The discrete Fourier transform (DFT) of periodic functions is an important
tool in various branches of pure and applied mathematics. For instance, in
number theory, the DFT of a Dirichlet character χ (mod r) is the Gauss sum
(character sum) given by

G(χ, n) =
∑

k (mod r)

χ(k) exp(2πikn/r), (1)

and if χ = χ0 is the principal character (mod r), then (1) reduces to the
Ramanujan sum cr(n).
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For the history, properties and various applications, including signal and
image processing, of the DFT see for example the books of Briggs and Henson
[6], Broughton and Bryan [7], Sundararajan [25], Terras [26]. For recent number
theoretical papers concerning the DFT see [4, 13, 21].

It is the aim of the present paper to give a detailed study of the DFT of
r-even arithmetic functions, to be defined in Section 2, which form a subspace
of the space of r-periodic arithmetic functions.

Some aspects of the DFT of r-even functions were given by Haukkanen [13],
Lucht [15] and were considered also by Samadi, Ahmad and Swamy [20] in the
context of signal processing methods. Schramm [21] investigated the DFT of
certain special r-even functions, without referring to this notion.

Our results generalize and complete those of [13, 15, 20, 21]. Note that the
Ramanujan sum cr(n) is r-even and it is the DFT of χ0, which is also r-even.
Therefore, our results generalize properties of the Ramanujan sum.

The paper is organized as follows. Section 2 presents an overview of the basic
notions and properties needed throughout the paper. In Section 3 we give a
new simple characterization of r-even functions. Section 4 contains properties
of the DFT of r-even functions, while in Sections 5 and 6 we consider sequences
of r-even functions and their DFT, respectively. Mean values and Dirichlet
series of the DFT of r-even functions and their sequences are investigated in
Sections 7 and 8.

We also show that some known properties of r-even functions and of the
Ramanujan sum can be obtained in a simple manner via the DFT.

2 Preliminaries

In this section we recall some known properties of arithmetic functions, peri-
odic arithmetic functions, even functions, Ramanujan sums and the DFT. We
also fix the notations, most of them being those used in the book by Schwarz
and Spilker [22].

2.1 Arithmetic functions

Consider the C-linear space F of arithmetic functions f : N = {1, 2, . . .} → C
with the usual linear operations. It is well known that with the Dirichlet
convolution defined by

(f ∗ g)(n) =
∑

d|n

f(d)g(n/d) (2)
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the space F forms a unital commutative C-algebra. The unity is the function
ε given by ε(1) = 1 and ε(n) = 0 for n > 1. The group of invertible functions
is F∗ = {f ∈ F : f(1) 6= 0}. The Möbius function µ is defined as the inverse of
the function 1 ∈ F∗ (constant 1 function). The divisor function is τ = 1 ∗ 1,
Euler’s function is ϕ = µ ∗ id and σ = 1 ∗ id is the sum-of-divisors function,
where id(n) = n (n ∈ N). A function f ∈ F is called multiplicative if f(1) = 1

and f(mn) = f(m)f(n) for any m, n ∈ N such that gcd(m, n) = 1. The set M
of multiplicative functions is a subgroup of F∗ with respect to the Dirichlet
convolution. Note that 1, id, µ, τ, σ, ϕ ∈ M. For an f ∈ F we will use the
notation f ′ = µ ∗ f.

2.2 Periodic functions

A function f ∈ F is called r-periodic if f(n + r) = f(n) for every n ∈ N, where
r ∈ N is a fixed number (this periodicity extends f to a function defined on
Z). The set Dr of r-periodic functions forms an r-dimensional subspace of F .
A function f ∈ F is called periodic if f ∈

⋃
r∈N

Dr. The functions δk with
1 ≤ k ≤ r given by δk(n) = 1 for n ≡ k (mod r) and δk(n) = 0 for n 6≡ k

(mod r) form a basis of Dr (standard basis).
The functions ek with 1 ≤ k ≤ r defined by ek(n) = exp(2πikn/r) (additive

characters) form another basis of the space Dr. Therefore, every r-periodic
function f has a Fourier expansion of the form

f(n) =
∑

k (mod r)

g(k) exp(2πikn/r) (n ∈ N), (3)

where the Fourier coefficients g(k) are uniquely determined and are given by

g(n) =
1

r

∑

k (mod r)

f(k) exp(−2πikn/r) (n ∈ N) (4)

and the function g is also r-periodic.
For a function f ∈ Dr its discrete (finite) Fourier transform (DFT) is the

function f̂ ∈ F defined by

f̂(n) =
∑

k (mod r)

f(k) exp(−2πikn/r) (n ∈ N), (5)

where by (5) and (4) one has f̂ = rg.
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For any r ∈ N the DFT is an automorphism of Dr satisfying ̂̂f = rf. The
inverse discrete Fourier transform (IDFT) is given by

f(n) =
1

r

∑

k (mod r)

f̂(k) exp(2πikn/r) (n ∈ N). (6)

If f ∈ Dr, then
r∑

n=1

|f̂(n)|2 = r

r∑

n=1

|f(n)|2, (7)

which is a version of Parseval’s formula.
Let f, h ∈ Dr. The Cauchy convolution of f and h is given by

(f ⊗ h)(n) =
∑

a (mod r)

f(a)h(n − a) (n ∈ N), (8)

where (Dr,⊗) is a unital commutative semigroup, the unity being the function

εr given by εr(n) = 1 for r | n and εr(n) = 0 otherwise. Also, f̂ ⊗ h = f̂ ĥ and

f̂ ⊗ ĥ = rf̂h.
For the proofs of the above statements and for further properties of r-

periodic functions and the DFT we refer to the books by Apostol [3, Ch.
8], Montgomery and Vaughan [17, Ch. 4], Schwarz and Spilker [22].

2.3 Even functions

A function f ∈ F is said to be an r-even function if f(gcd(n, r)) = f(n) for
all n ∈ N, where r ∈ N is fixed. The set Br of r-even functions forms a τ(r)

dimensional subspace of Dr, where τ(r) is the number of positive divisors of
r. A function f ∈ F is called even if f ∈

⋃
r∈N

Br. The functions gd with d | r

given by gd(n) = 1 if gcd(n, r) = d and gd(n) = 0 if gcd(n, r) 6= d form a
basis of Br. This basis can be replaced by the following one. The functions cq

with q | r form a basis of the subspace Br, where cq are the Ramanujan sums,
quoted in the Introduction, defined explicitly by

cq(n) =
∑

k (mod q)
gcd(k,q)=1

exp(2πikn/q) (n, q ∈ N). (9)

Consequently, every r-even function f has a (Ramanujan-)Fourier expansion
of the form

f(n) =
∑

d|r

h(d)cd(n) (n ∈ N), (10)
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where the (Ramanujan-)Fourier coefficients h(d) are uniquely determined and
are given by

h(d) =
1

r

∑

e|r

f(e)cr/e(r/d) (d | r) (11)

and the function h is also r-even. Notation: h(d) = αf(d) (d | r). Note that
(Br,⊗) is a subsemigroup of (Dr,⊗) and αf⊗h(d) = rαf(d)αh(d) (d | r), cf.
Application 4.

Recall the following properties of Ramanujan sums cr(n). They can be rep-
resented as

cr(n) =
∑

d|gcd(n,r)

dµ(r/d) (n, r ∈ N), (12)

and as

cr(n) =
µ(m)ϕ(r)

ϕ(m)
, m = r/ gcd(n, r), (n, r ∈ N), (13)

where (13) is Hölder’s identity. It follows that cr(n) = ϕ(r) for r | n and
cr(n) = µ(r) for gcd(n, r) = 1.

Let ηr(n) = r if r | n and ηr(n) = 0 otherwise. For any fixed n ∈ N,
c
.
(n) = µ ∗ η

.
(n) and r 7→ cr(n) is a multiplicative function. On the other

hand, n 7→ cr(n) is multiplicative if and only if µ(r) = 1.
As it was already mentioned, cr(.) is the DFT of the principal character

(mod r) to be denoted in what follows by ρr and given explicitly by ρr(n) = 1

if gcd(n, r) = 1 and ρr(n) = 0 otherwise. Note that ρr = g1 with the notation
of above (for r fixed). Thus

ρ̂r = cr, ĉr = rρr. (14)

The concept of r-even functions originates from Cohen [8] and was further
studied by Cohen in subsequent papers [9, 10, 11]. General accounts of r-even
functions and of Ramanujan sums can be found in the books by McCarthy [16],
Schwarz and Spilker [22], Sivaramakrishnan [23], Montgomery and Vaughan
[17, Ch. 4]. See also the papers [12, 24, 27].

3 Characterization of r-even functions

For an r ∈ N let B ′
r = {f ∈ F : f(n) = 0 for any n ∤ r}. We have

Proposition 1 Let f ∈ F and f ′ = µ ∗ f. Then the following assertions are
equivalent:
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i) f ∈ Br,
ii) f(n) =

∑
d|gcd(n,r) f ′(d) (n ∈ N),

iii) f ′ ∈ B ′
r.

Proof. If f ′ ∈ B ′
r, then for any n ∈ N,

f(n) =
∑

d|n

f ′(d) =
∑

d|n,d|r

f ′(d) =
∑

d|gcd(n,r)

f ′(d)

= (f ′ ∗ 1)(gcd(n, r)) = f(gcd(n, r)).

This shows that iii) ⇒ ii) ⇒ i).
Now we show that i) ⇒ iii). Assume that f ∈ Br and f ′ 6∈ B ′

r, i.e., f ′(n) 6= 0

for some n ∈ N with n ∤ r. Consider the minimal n ∈ N with this property.
Then all proper divisors d of n with f ′(d) 6= 0 divide r so that

f(n) =
∑

d|n

f ′(d) =
∑

d|gcd(n,r)

f ′(d) + f ′(n) = f(gcd(n, r)) + f ′(n) 6= f(gcd(n, r)),

which gives f 6∈ Br. �

Remark 1 Let f ∈ Br. Assume that f(n) =
∑

d|gcd(n,r) g(d) (n ∈ N) for a

function g ∈ F . Then f = gε
.
(r) ∗ 1 and f = f ′ ∗ 1, by Proposition 1. Hence

gε
.
(r) = f ′ and obtain that g(n) = f ′(n) for any n | r.

For f = cr (Ramanujan sum) we have by (12), Proposition 1 and Remark 1
the next identity, which can be shown also directly.

Application 1 For any n, r ∈ N,

∑

d|n

cr(d)µ(n/d) =

{
nµ(r/n), n | r,

0, n ∤ r.
(15)

4 The DFT of r-even functions

We investigate in this section general properties of the DFT of r-even functions.

Proposition 2 For each r ∈ N the DFT is an automorphism of Br. For any
f ∈ Br,

f̂(n) =
∑

d|r

f(d)cr/d(n) (n ∈ N) (16)



The discrete Fourier transform 11

and the IDFT is given by

f(n) =
1

r

∑

d|r

f̂(d)cr/d(n) (n ∈ N). (17)

Proof. By the definition of r-even functions and grouping the terms according
to the values d = gcd(k, r),

f̂(n) =
∑

d|r

f(d)
∑

1≤j≤r/d
gcd(j,r/d)=1

exp(−2πijn/(r/d)) =
∑

d|r

f(d)cr/d(n)

giving (16) and also that f̂ ∈ Br. Now applying (16) for f̂ (instead of f) and

using that ̂̂f = rf we have (17). �

Proposition 2 is given by Lucht [15, Th. 4]. Formulas (16) and (17) are
implicitly given by Haukkanen [13, Th. 3.2 and Eq. (9)], Samadi, Ahmad and
Swamy [20, Eq. (18)] for r-even functions, and by Schramm [21] for functions
n 7→ F(gcd(n, r)), where F ∈ F is arbitrary, without referring to the notion of
even functions.

Remark 2 By Proposition 2, for a function f ∈ Dr one has f ∈ Br if and
only if f̂ ∈ Br. This can be used to show that a given function is r-even, cf.
Application 4. Furthermore, it follows that the Fourier coefficients αf(d) of
f ∈ Br can be represented as

αf(d) =
1

r
f̂(r/d) (d | r). (18)

Corollary 1 Let f ∈ Br. Then

f̂(n) =
∑

d|r

f(d)ϕ(r/d) (r | n), (19)

f̂(n) =
∑

d|r

f(d)µ(r/d) (gcd(n, r) = 1). (20)

Corollary 2 If f is a real (integer) valued r-even function, then f̂ is also real
(integer) valued.

Proof. Use that cr(n) ∈ Z for any n, r ∈ N. �
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Corollary 3 Let f be an r-even function. Then

f̂(n) =
∑

d|gcd(n,r)

d f ′(r/d) (n ∈ N), (21)

and (f̂) ′(n) = nf ′(r/n) for any n | r and (f̂) ′(n) = 0 otherwise.

Proof. Recall that c
.
(n) = µ∗η

.
(n), see (12). We obtain f̂(n) = (f∗c

.
(n))(r)

= (f ∗ µ ∗ η
.
(n))(r) = (f ′ ∗ η

.
(n))(r), and apply Remark 1. �

Note that by (21) the DFT of any f ∈ Br can be written in the following
forms:

f̂(n) = (f ′ ∗ η
.
(n))(r), (22)

and

f̂ = h ∗ 1, (23)

where h(n) = nf ′(r/n) for n | r and h(n) = 0 otherwise.

Proposition 3 Let f be an r-even function. Then

∑

d|n

f̂(d) =
∑

d|gcd(n,r)

d f ′(r/d)τ(n/d) (n ∈ N). (24)

Proof. Using (23),

∑

d|n

f̂(d) = (f̂ ∗ 1)(n) = (h ∗ 1 ∗ 1)(n) = (h ∗ τ)(n) =
∑

d|n

h(d)τ(n/d)

=
∑

d|gcd(n,r)

d f ′(r/d)τ(n/d).

�

In the special case f = ρr we reobtain (cf. [2, Th. 1] – where σ should be
replaced by τ, [16, p. 91]),

∑

d|n

cr(d) =
∑

d|gcd(n,r)

dµ(r/d)τ(n/d) (n ∈ N). (25)

The DFT can be used to obtain short direct proofs of certain known pro-
perties for Ramanujan sums and special r-even functions. We give the following
examples.
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Application 2 By ρ̂r = cr, cf. (14), we obtain ̂̂ρr = rρr. Therefore, by Propo-
sition 2,

∑

d|r

cr(r/d)cd(n) =

{
r, gcd(n, r) = 1,

0, otherwise,
(26)

see [16, p. 94].

Application 3 Let f(n) = (−1)n, which is r-even for any even number r. Its
DFT is

f̂(n) =

r∑

k=1

(−1)k exp(−2πikn/r) =

r∑

k=1

(− exp(−2πin/r))k, (27)

which is r for n = r/2 + mr (m ∈ Z) and 0 otherwise. Using Proposition 2 we
obtain for any even number r,

∑

d|r

(−1)dcr/d(n) =

{
r, n ≡ r/2 (mod r),

0, otherwise,
(28)

cf. [18, Th. IV], [16, p. 90].

Application 4 Let f, h ∈ Br. We show that their Cauchy product f⊗h ∈ Br

and the Fourier coefficients of f ⊗ h are given by αf⊗h(d) = rαf(d)αh(d) for
any d | r, cf. Section 2.3.

To obtain this use that ̂(f ⊗ h)(n) = f̂(n)ĥ(n) (n ∈ N), valid for functions
f, h ∈ Dr, cf. Section 2.2. Hence for any n ∈ N,

̂(f ⊗ h)(gcd(n, r)) = f̂(gcd(n, r))ĥ(gcd(n, r)) = f̂(n)ĥ(n) = ̂(f ⊗ h)(n),

showing that f̂ ⊗ h is r-even. It follows that f⊗h is also r-even. Furthermore,
by (18), for every d | r,

αf⊗h(d) =
1

r
(f̂ ⊗ h)(r/d) =

1

r
f̂(r/d)ĥ(r/d) = rαf(d)αh(d).

Application 5 Let Nr(n, k) denote the number of (incongruent) solutions
(mod r) of the congruence x1 + . . . + xk ≡ n (mod r) with gcd(x1, r) = . . . =

gcd(xk, r) = 1. Then it is immediate from the definitions that

Nr(., k) = ρr ⊗ · · · ⊗ ρr︸ ︷︷ ︸
k

. (29)
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Therefore, N̂r(., k) = (ρ̂r)
k = (cr)

k. Now the IDFT formula (17) gives at
once

Nr(n, k) =
1

r

∑

d|r

((cr(r/d))kcd(n) (n ∈ N), (30)

formula which goes back to the work of H. Rademacher (1925) and A. Brauer
(1926) and has been recovered several times. See [16, Ch. 3], [22, p. 41], [24].

Application 6 We give a new proof of the following inversion formula of
Cohen [9, Th. 3]: If f and g are r-even functions and if f is defined by

f(n) =
∑

d|r

g(d)cd(n) (n ∈ N), (31)

then

g(m) =
1

r

∑

d|r

f(r/d)cd(n), m = r/ gcd(n, r), (n ∈ N). (32)

To show this consider the function G(n) = g(r/ gcd(n, r)) which is also
r-even. By Proposition 2,

Ĝ(n) =
∑

d|r

G(r/d)cd(n) =
∑

d|r

g(d)cd(n) = f(n). (33)

Hence
rg(m) = rG(n) = ̂̂G(n) = f̂(n) =

∑

d|r

f(r/d)cd(n). (34)

Application 7 Anderson and Apostol [1] and Apostol [2] investigated prop-
erties of r-even functions Sg,h given by

Sg,h(n) =
∑

d|gcd(n,r)

g(d)h(r/d) (n ∈ N), (35)

where g, h ∈ F are arbitrary functions.
For f = Sg,h we have according to (21) and Remark 1, f ′(n) = g(n)h(r/n)

(n | r) and obtain at once

Ŝg,h(n) =
∑

d|gcd(n,r)

df ′(r/d) =
∑

d|gcd(n,r)

dg(r/d)h(d), (36)

which is proved in [1, Th. 4] by other arguments.
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Application 8 If f is any r-even function, then

r∑

n=1

|f̂(n)|2 = r
∑

d|r

|f(d)|2ϕ(r/d). (37)

This follows by the Parseval formula (7) and grouping the terms of the right
hand side according to the values gcd(n, r). For f = ρr we reobtain the familiar
formula

r∑

n=1

(cr(n))2 = rϕ(r) (r ∈ N). (38)

5 Sequences of r-even functions

In this section we consider sequences of functions (fr)r∈N such that fr ∈ Br for
any r ∈ N. Note that the sequence (fr)r∈N can be viewed also as a function of
two variables: f : N2 → C, f(n, r) = fr(n).

We recall here the following concept: A function f : N2 → C of two variables
is said to be multiplicative if f(mn, rs) = f(m, r)f(n, s) for every m, n, r, s ∈ N
such that gcd(mr, ns) = 1. For example, the Ramanujan sum c(n, r) = cr(n)

is multiplicative, viewed as a function of two variables.
The next result includes a generalization of this property of the Ramanujan

sum.

Proposition 4 Let (fr)r∈N be a sequence of functions. Assume that
i) fr ∈ Br (r ∈ N),
ii) r 7→ fr(n) is multiplicative (n ∈ N).
Then
1) the function f : N2 → C, f(n, r) = fr(n) is multiplicative as a function of

two variables,
2) fr(m)fr(n) = fr(1)fr(mn) holds for any m, n, r ∈ N with gcd(m, n) = 1,
3) n 7→ fr(n) is multiplicative if and only if fr(1) = 1.

Proof. 1) For any m, n, r, s ∈ N such that gcd(mr, ns) = 1 we have by i) and
ii),

frs(mn) = fr(mn)fs(mn) = fr(gcd(mn, r))fs(gcd(mn), s)

= fr(gcd(m, r))fs(gcd(n, s)) = fr(m)fs(n).

2) By the definition of multiplicative functions of two variables f : N2 → C it
is immediate that f(n, r) =

∏
p f(pa, pb) for n =

∏
p pa, r =

∏
p pb, and the

given quasi-multiplicative property is a direct consequence of this equality.



16 L. Tóth, P. Haukkanen

3) Follows by 2). �

Part 1) of Proposition 4 is given also in [14] and for parts 2) and 3) cf. [23,
Th. 80, 81].

We say that the sequence (fr)r∈N of functions is completely even if there
exists a function F ∈ F of a single variable such that fr(n) = F(gcd(n, r)) for
any n, r ∈ N. This concept originates from Cohen [9] (for a function of two
integer variables f(n, r) satisfying f(n, r) = F(gcd(n, r)) for any n, r ∈ N he
used the term completely r-even function, which is ambiguous).

If the sequence (fr)r∈N is completely even, then fr ∈ Br for any r ∈ N, but
the converse is not true. For example, the Ramanujan sums cr(n) do not form
a completely even sequence. To see this, assume the contrary and let p be any
prime. Then for n = r = p, F(p) = cp(p) = p − 1 and for n = p, r = p2,
F(p) = cp2(p) = −p, a contradiction.

If (fr)r∈N is completely even, then fr(n) = F(gcd(n, r)) =
∑

d|gcd(n,r) F ′(d)

(n, r ∈ N) and by Remark 1 we have f ′r(n) = F ′(n) for any n | r, where
F ′ = µ ∗ F.

6 The DFT of sequences of r-even functions

First we consider multiplicative properties of the DFT of sequences of r-even
functions.

Proposition 5 Let (fr)r∈N be a sequence of functions. Assume that
i) fr ∈ Br (r ∈ N),
ii) r 7→ fr(n) is multiplicative (n ∈ N).
Then
1) the function r 7→ f̂r(n) is multiplicative (n ∈ N),
2) the function f̂ : N2 → C, f̂(n, r) = f̂r(n) is multiplicative as a function of

two variables,
3) f̂r(m)f̂r(n) = f ′r(r)f̂r(mn) holds for any m, n, r ∈ N with gcd(m, n) = 1,
4) n 7→ f̂r(n) is multiplicative if and only if f ′r(r) = 1.

Proof. 1) Let r, s ∈ N, gcd(r, s) = 1. Then, for any fixed n ∈ N, by Proposition
2 and using that cr(n) is multiplicative in r,

f̂rs(n) =
∑

d|rs

frs(d)crs/d(n) =
∑

a|r
b|s

frs(ab)c(r/a)(s/b)(n)
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=
∑

a|r
b|s

fr(a)fs(b)cr/a(n)cs/b(n) =
∑

a|r

fr(a)cr/a(n)
∑

b|s

fs(b)cs/b(n)

= f̂r(n)f̂s(n).

2), 3), 4) If fr ∈ Br, then f̂r ∈ Br (r ∈ N) and by 1) we know that the
function r 7→ f̂r(n) is multiplicative (n ∈ N). Now apply Proposition 4 for the
sequence (f̂r)r∈N and use that f̂r(1) = f ′r(r). �

Proposition 6 Let (fr)r∈N be a sequence of functions such that fr ∈ Br (r ∈
N). Then ∑

d|r

f̂d(n) =
∑

d|gcd(n,r)

d fr(r/d) (n, r ∈ N), (39)

which is also r-even (r ∈ N). Furthermore,

∑

d|n

∑

e|r

f̂e(d) =
∑

d|gcd(n,r)

d fr(r/d)τ(n/d) (n, r ∈ N). (40)

Proof. Similar to the proof of Proposition 3. �

In the special case fr = ρr we reobtain the following known identities for
the Ramanujan sum:

∑

d|r

cd(n) =

{
r, r | n,

0, r ∤ n,
(41)

∑

d|n

∑

e|r

ce(d) =

{
r τ(n/r), r | n,

0, r ∤ n,
(42)

(41) being a familiar one and for (42) see [16, p. 91].
Consider in what follows the DFT of completely even sequences, defined in

Section 5. Note that formulae (16) and (17) for the DFT and IDFT, respec-
tively of such sequences (that is, functions with values F(gcd(n, r))) were given
by Schramm [21]. He considered also special cases of F.

Corollary 4 Let (fr)r∈N be a sequence of functions. Assume that
i) (fr)r∈N is completely even with fr(n) = F(gcd(n, r)) (n, r ∈ N),
ii) F is multiplicative.
Then
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1) the function f : N2 → C, f(n, r) = fr(n) is multiplicative in both vari-
ables, with the other variable fixed, and is multiplicative as a function of two
variables,

2) the function r 7→ f̂r(n) is multiplicative (n ∈ N),
3) the function f̂ : N2 → C, f̂(n, r) = f̂r(n) is multiplicative as a function of

two variables.
4) n 7→ f̂r(n) is multiplicative if and only if F ′(r) = 1.

Proof. Follows from the definitions and from Proposition 5. �

The results of Section 4 can be applied for completely even sequences.

Corollary 5 Let (fr)r∈N be a completely even sequence with fr(n) = F(gcd(n, r))

(n, r ∈ N). Then

f̂r(n) =
∑

d|gcd(n,r)

d F ′(r/d) (n, r ∈ N), (43)

∑

d|r

f̂r/d(d) =
∑

e2k=r

e F(k) (r ∈ N). (44)

Proof. Here (43) follows at once by Corollary 3, while (44) is a simple conse-
quence of it. �

In particular, for fr = ρr (44) gives

∑

d|r

cr/d(d) =

{√
r, r is a square,

0, otherwise,
(45)

see [16, p. 91].
It follows from (43) that the DFT of a completely even sequence of functions

is a special case of the functions Sg,h defined by (35), investigated by Anderson
and Apostol [1], Apostol [2].

The example of cr(n) shows that the DFT sequence of a completely even
sequence is, in general, not completely even (cr(n) = ρ̂r(n), where ρr(n) =

ε(gcd(n, r))).
Consider now the completely even sequence fr(n) = τ(gcd(n, r)). Then using

(43),

f̂r(n) =
∑

d|gcd(n,r)

d(µ ∗ τ)(r/d) =
∑

d|gcd(n,r)

d = σ(gcd(n, r)) (46)

is completely even.
Next we characterize the completely even sequences such that their DFT is

also a completely even sequence.
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Proposition 7 Let (fr)r∈N be a completely even sequence of functions with
fr(n) = F(gcd(n, r)). Then the DFT sequence (f̂r)r∈N is completely even if and
only if F = c τ, where c ∈ C. In this case f̂r(n) = c σ(gcd(n, r)).

Proof. Assume that there is a function G ∈ F such that

f̂r(n) =
∑

d|gcd(n,r)

d F ′(r/d) = G(gcd(n, r)).

Then for any n = r ∈ N, G(r) = f̂r(r) =
∑

d|r d F ′(r/d) = (id ∗F ′)(r), hence

G has to be G = id ∗F ′. Now for n = 1 and any r ∈ N, G(1) = f̂r(1) = F ′(r).
Denoting G(1) = c we obtain that F ′ is the constant function c. Therefore,
F = c1 ∗ 1 = c τ.

Conversely, for F = c τ we have F ′ = µ∗c τ = c1 and f̂r(n) = c
∑

d|gcd(n,r) d =

c σ(gcd(n, r)). �

We now give a Hölder-type identity, see (13), for the DFT of completely even
sequences, which is a special case of [1, Th. 2], adopted to our case. We recall
that a function F ∈ F is said to be strongly multiplicative if F is multiplicative
and F(pa) = F(p) for every prime p and every a ∈ N.

Proposition 8 Let (fr)r∈N be a completely even sequence with fr(n) = F(gcd
(n, r)) (n, r ∈ N). Suppose that

i) F is strongly multiplicative,
ii) F(p) 6= 1 − p for any prime p.
Then

f̂r(n) =
(F ∗ µ)(m)(F ∗ ϕ)(r)

(F ∗ ϕ)(m)
, m = r/ gcd(n, r), (n, r ∈ N). (47)

Furthermore, for every prime power pa (a ∈ N),

f̂pa (n) =






pa−1(p + F(p) − 1), pa | n,

pa−1(F(p) − 1), pa−1 || n,

0, pa−1 ∤ n.

(48)

Proof. Here for any prime p, (F ∗ µ)(p) = F(p) − 1, (F ∗ µ)(pa) = 0 for any
a ≥ 2 and (F ∗ ϕ)(pa) = pa−1(F(p) + p − 1) for any a ≥ 1. The function F is
multiplicative, thus f̂r(n) is multiplicative in r, cf. Corollary 4. Therefore, it
is sufficient to verify the given identity for r = pa, a prime power. Consider
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three cases: Case 1) pa | n, where gcd(n, pa) = pa; Case 2) pa || n, where
gcd(n, pa) = pa−1; Case 3) pa | n, where gcd(n, pa) = pδ with δ ≤ a − 2. �

Recall that a function f ∈ F is said to be semi-multiplicative if f(m)f(n) =

f(gcd(m, n))f(lcm[m, n]) for any m, n ∈ N. For example, r 7→ cr(n) is semi-
multiplicative for any n ∈ N. As a generalization of this property we have:

Corollary 6 Let (fr)r∈N be a completely even sequence with fr(n) = F(gcd
(n, r)) (n, r ∈ N) satisfying conditions i) and ii) of Proposition 8. Then r 7→
f̂r(n) is semi-multiplicative for any n ∈ N.

Proof. If g ∈ F is multiplicative, then it is known that for any constant C

and any r ∈ N, the function n 7→ Cg(r/ gcd(n, r)) is semi-multiplicative, cf.
[19], and apply (47). �

7 Mean values of the DFT of r-even functions

The mean value of a function f ∈ F is m(f) = limx→∞
1
x

∑
n≤x f(n) if this

limit exists. It is known that
∑

n≤x cr(n) = O(1) for any r > 1. It follows
from (10) that the mean value of any r-even function f exists and is given
by m(f) = αf(1) = 1

r
f̂(r) = 1

r
(f ∗ ϕ)(r), using (18), (19) (see also [27, Prop.

1]). Therefore, if f is r-even, then the mean value of f̂ exists and is given by

m(f̂) = 1
r
̂̂f(r) = f(r). This follows also by Proposition 2. More exactly, we have

Proposition 9 Let f ∈ Br (with r ∈ N fixed).
i) If x ∈ N and r | x, then

x∑

n=1

f̂(n) = f(r)x. (49)

ii) For any real x ≥ 1,

∑

n≤x

f̂(n) = f(r)x + Tf(x), |Tf(x)| ≤
∑

d|r

d|f ′(r/d)|. (50)

iii) The mean value of the DFT function f̂ is f(r).
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Proof. For any x ≥ 1, by Corollary 3,
∑

n≤x

f̂(n) =
∑

n≤x
d|gcd(n,r)

d f ′(r/d) =
∑

d|r

d f ′(r/d)[x/d] =
∑

d|r

d f ′(r/d)(x/d − {x/d})

= x
∑

d|r

f ′(r/d) −
∑

d|r

d f ′(r/d){x/d} = xf(r) + Tf(x),

where Tf(x) is identically zero for x ∈ N, r | x. Furthermore, Tf(x) = O(1) for
x → ∞. �

Now we generalize Ramanujan’s formula

∞∑

n=1

cr(n)

n
= −Λ(r) (r > 1), (51)

where Λ is the von Mangoldt function.

Proposition 10 Let f be an r-even function (r ∈ N).
i) Then uniformly for x and r,

∑

n≤x

f̂(n)

n
= f(r)(log x+C)−(f∗Λ)(r)+O

(
x−1Vf(x)

)
, Vf(x) =

∑

d|r

d |f ′(r/d)|,

(52)
where C is Euler’s constant.

ii) If f(r) = 0, then
∞∑

n=1

f̂(n)

n
= −(f ∗ Λ)(r). (53)

Proof. i) By Corollary 3,

∑

n≤x

f̂(n)

n
=

∑

n≤x

1

n

∑

d|(n,r)

d f ′(r/d) =
∑

d|r

f ′(r/d)
∑

j≤x/d

1

j

=
∑

d|r

f ′(r/d)
(
log(x/d) + C + O(d/x)

)

= (log x + C)
∑

d|r

f ′(r/d) −
∑

d|r

f ′(r/d) log d + O
(

x−1
∑

d|r

d|f ′(r/d)|

)

= (log x + C)f(r) − (f ∗ µ ∗ log)(r) + O
(

x−1
∑

d|r

d|f ′(r/d)|

)
.
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ii) Part ii) follows from i) with x → ∞. �

Remark 3 There is no simple general formula for
∑

r≤x f̂r(n), where n ∈ N
is fixed and (fr)r∈N is a sequence of r-even functions (for example, cr(0) =

ϕ(r) and cr(1) = µ(r) have different asymptotic behaviors). For asymptotic
formulae concerning special functions of type

∑n
k=1 F(gcd(k, n)) see the recent

papers [5, 28].

8 Dirichlet series of the DFT of sequences of r-even

functions

We consider the Dirichlet series of the DFT of sequences (fr)r∈N such that
fr ∈ Br for any r ∈ N. By f̂r(n) = (η

.
(n) ∗ µ ∗ fr)(r), cf. (22), we have

formally,

∞∑

r=1

f̂r(n)

rs
=

∞∑

r=1

ηr(n)

rs

∞∑

r=1

(fr ∗ µ)(r)

rs
=

σs−1(n)

ns−1

∞∑

r=1

1

rs

∑

kℓ=r

µ(k)fr(ℓ) (54)

=
σs−1(n)

ns−1

∞∑

k=1

µ(k)

ks

∞∑

ℓ=1

fkℓ(ℓ)

ℓs
,

where σk(n) =
∑

d|ndk. This can be written in a simpler form by considering
the DFT of completely even sequences of functions.

Proposition 11 Let (fr)r∈N be a completely even sequence of functions with
fr(n) = F(gcd(n, r)) and let aF denote the absolute convergence abscissa of the
Dirichlet series of F. Then

∞∑

r=1

f̂r(n)

rs
=

σs−1(n)

ns−1ζ(s)

∞∑

r=1

F(r)

rs
(55)

for any n ∈ N, absolutely convergent for Re s > max{1, aF},

∞∑

n=1

f̂r(n)

ns
= ζ(s)(F ∗ φ1−s)(r) (56)

for any r ∈ N, absolutely convergent for Re s > 1, where φk(r) =
∑

d|r dkµ(r/d)

is a generalized Euler function,

∞∑

n=1

∞∑

r=1

f̂r(n)

nsrt
=

ζ(s)ζ(s + t − 1)

ζ(t)

∞∑

n=1

F(n)

nt
(57)
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absolutely convergent for Re s > 1, Re t > max{1, aF}.

Proof. Apply (22) and (23). �

For F = ε we reobtain the known formulae for the Ramanujan sum.
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