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Abstract. The object of the present paper is to define certain new in-
complete generalized Hurwitz—Lerch Zeta functions and incomplete gen-
eralized Gamma functions. Further, we introduce two new statistical dis-
tributions named as, generalized Hurwitz—Lerch Zeta Beta prime dis-
tribution and generalized Hurwitz—Lerch Zeta Gamma distribution and
investigate their statistical functions, such as moments, distribution and
survivor function, characteristic function, the hazard rate function and
the mean residue life functions. Finally, Moment Method parameter es-
timators are given by means of a statistical sample of size n. The results
obtained provide an elegant extension of the work reported earlier by
Garg et al. [3] and others.
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1 Introduction and preliminaries

A generalized Hurwitz—Lerch Zeta function ®(z,s, a) is defined [1, p. 27, Eq.
1.11.1] as the power series

(D(Z’)S)a):Z(Tl_Zl_na)s) (1)

n=0

where a € C\Z,; R{s} > 1 when |z| =1 and s € C when |z| < 1 and continues
meromorphically to the complex s—plane, except for the simple pole at s =1,
with its residue equal to 1.

The function ®@(z,s,a) has many special cases such as Riemann Zeta [1],
Hurwitz—Zeta [23] and Lerch Zeta function [27, p. 280, Example 8]. Some
other special cases involve the polylogarithm (or Jongiére’s function) and the
generalized Zeta function [27, p. 280, Example 8], [23, p. 122, Eq. 2.5] discussed
for the first time by Lipschitz and Lerch.

Lin and Srivastava investigated [12, p. 727, Eq. 8] the Hurwitz—Lerch Zeta
function in the following form

q)( (z,s,a) i 1o (2)

s
n=0 ’V )

where u € C;a,v € C\Z;;p,0 € Ry;p < o for s,z € C; p = o for z €
C,p=o0,seCflorlzl <1;p=0Rs—unu+v} > 1for |z| = 1. Here
(0)en = T'(0 + kn)/T'(0) denotes the generalized Pochhammer symbol, with
the convention (0)g = 1.

Recently, Srivastava et al. [24] studied a new family of the Hurwitz—Lerch
Zeta function

0 n

z
(D(D,GK (z,5,a :Z pn )
e (@

3)

where A,nu € C; a,v € C\Z;; p,0,k > 0; for |z] < T and R{s +v —A —p} > 1
for |z] = 1. Function (3) is a generalization of Hurwitz—Lerch Zeta function

O unv(z,s,a) = d);}ll (z,s,a) which has been studied by Garg et al. [2].

Special attention will be given to the special case of (3) (studied earlier by
Goyal and Laddha [4, p. 100, Eq. (1.5)])

[e.¢]

x 11,1 (Wn  z"
w(z,8,a) = d)(hw)(z,s,a) :Zin—. (4)
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Another case of the Hurwitz—Lerch Zeta function (3), which differs in the
choice of parameters, have been considered in [24] as well. Moreover, the article
[24] contains the integral representation

o) o) | ze_t] a,  (5)

(p,0,x) T st —at e
cD?\,p,\/ (Z»S»a) = F(s) JO t5 e 2‘1’]

valid for all a,s € C,R{a} > 0,R{s} > 0, when |z] < 1, z # 1; and R{s} > 1 for

z = 1. Here o
( , ’ ] Z AnZ (6)

ﬁ

p* —
P
q Bn nl

stands for the unified variant of the Foxmeght generalized hypergeometric
function with p upper and ¢ lower parameters; (a, A), denotes the parameter
p-tuple (a7, Aq),---,(ap,Ap) and a5 € C, by € C\ Z,, Ay, Bj > 0 for all
j=1,p,i=1,q, while the series converges for suitably bounded values of |z|

when
q P
A=14) Bj—) A;j>0.
j=1 j=1

In the case A = 0, the converegence holds in the open disc |z| < 3 = 1_[]9:1 BY.
P AN

i Ay

Remark 1 Let us point out that the original definition of the Fox—Wright
function ,Wqlz] (consult monographs [1, 11, 15]) contains Gamma functions
instead of the here used generalized Pochhammer symbols. However, these two
functions differ only up to constant multiplying factor, that is

(a,A)p ‘z} .

)q:1 F(b) Yo [ (b,B)q

(a,A) [T,
pq’q{ (b,B)z ‘Z]

The unification’s motivation is clear - for Ay = =A, =B = =1,
p¥qlzl one reduces eractly to the generalized hypergeometmc functzon F qlzl,
see recent articles [12, 24].

Finally, we recall the integral expression for function (3), derived by Srivas-
tava et al. [24]:

r o0 t}\*] - tp
0Pz 5,0) = o) J P
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where R{v} > R{A} >0,k >p>0,0>0,seC.
Now, we study generalized incomplete functions and the associated statis-
tical distributions based mainly on integral expressions (5) and (7).

2 Families of incomplete ¢ and & functions

By virtue of integral (7), we define the lower incomplete generalized Hurwitz—
Lerch Zeta function as

(p,o,K) I (V) JX t)\ ! (o,x—p) ztP
) z.S.a = () —_ aldt, (8
Ay (2,5, alx) AT (v —A) (141t)y wvA ((1 —l—t)K’S’ ) (8)

and the upper (complementary) generalized Hurwitz—Lerch Zeta function in
the form

—(p,0,K) rv) J'Oo ! (ok—p) [ 2t°

= )] dt. (9
(pA,uN (Z’S’a‘x) F(MF('V—M (] +t)v Hv—A <(] +t)|<’s‘a> ( )
In both cases one requires R(v),R(A) >0,k >p>0;0>0,secC.

From (8) and (9) readily follows that

CD;?:?,K)(Z, s,a) = Xli)ncf)lo (P;‘?:;’,K)(z, s,alx) = hm (p)\pﬁl; N(z,s, alx), (10)
d);\")if)(z,s,a) (pg\")ff)(z s, alx) +@§\‘|‘un)' )(z,s, alx), x € Ry (11)

In view of the integral expression (5), the lower incomplete generalized Gamma
function and the upper (complementary) incomplete generalized Gamma func-
tion are defined respectively by

S X
(p,0,K) _ s—1 —at qy* (0‘» p)) (H) G) ‘ —bt
E’)\uv (z,s,a,blx) = s) Jo t57 e 2‘111[ (v k) ze }dt (12)
and
(p,0,K);x,00 _ b® 00 s—1_—at * ((X, p)» (H» G) ‘ —bt
En, v (z,s,a,blx) = o) L t5 ey { (v ) ze }dt,

(13)
where R{a},R{s} > 0, when |z| < 1(z # 1) and R{s} > 1, when z = 1,
provided that each side exists. By virtue of (12) and (13) we easily conclude
the properties:

d);pf\’/p)(z,s,a) hm E’Mw (z,s,a,b|x) = hrg EADuGVK)(z,s,a,blx), (14)
(D;\F,){LUVK (z,8,a/b) = ADMUVK)(Z>S> a, blx) + 5>\ e (z s,a,blx), x € Ry.

(15)



Generalized Hurwitz—Lerch Zeta distributions 47

3 Generalized Hurwitz—Lerch Zeta Beta prime
distribution

Special functions and integral transforms are useful in the development of the
theory of probability density functions (PDF). In this connection, one can
refer to the books e.g. by Mathai and Saxena [14, 15] or by Johnson and Kotz
[8, 9]. Hurwitz—Lerch Zeta distributions are studied by many mathematicians
such as Dash, Garg, Gupta, Kalla, Saxena, Srivastava etc. (see e.g. [2, 3, 6,
7, 18, 19, 20, 21, 25]). Due to usefulness and popularity of Hurwitz—Lerch
Zeta distribution in reliability theory, statistical inference etc. the authors
are motivated to define a generalized Hurwitz—Lerch Zeta distribution and to
investigate its important properties.

Let the random variable X be defined on some fixed standard probability
space (Q,§,P). The r.v. X such that possesses PDF

(cmp)( zxP )
M(v) x> Puva (g™

f) =4 TN = A (T + %)™ 0\ (2,5, a) 1o

0 x <0,

we call generalized Hurwitz—Lerch Zeta Beta prime and write X ~ HLZB’. Here
i, A are shape parameters, and z stands for the scale parameter which satisfy
RvI>RA >0,s€C,k>p>0,0>0.

The behaviour of the PDF f(x) at x = 0 depends on A in the manner that
f(0) =0 for A > 1, while limy .o, f(x) = o0 for all 0 <A < 1.

Now, let us mention some interesting special cases of PDF (16).

(i) For 0 = p =k =1 we get the following Hurwitz—Lerch Zeta Beta prime
distribution discussed by Garg et al. [3]:

I'(v) xM1 zZx
®* ) ) > O)
f1(x) = { TNT(Y = N @ vl 5, a) (1 +x)7 u<1 x'° a) x
0 elsewhere

where a & Zgy, R{v} > R{A} > 0,x € R, s € C when [z] < 1 and
R{s—p} > 0, when [z| = 1. Here @7 (-, s, a) stands for the Goyal-Laddha
type generalized Hurwitz—Lerch Zeta function described in (4).

(ii) If we set 0 = p = k = A = 1 it gives a new probability distribution



48

R. K. Saxena, T. K. Pogany, R. Saxena, D. Jankov

(iii)

(iv)

v)

function, defined by

v—1 zZX
o ,S, a x>0,
folx) =< (T+%x)Y D@7 ,~(2,5,0) ”(1 +x )

0 x <0,

(17)

where a & Zy, R{A} > 0, x € R, s € C when [z| < 1 and R{s — u} > 0,

when |z| = 1.
When 0 =p =« =1and v =y, from (16) it follows

A1

M) X L[ ZX
f3(x) = { TVT (L — N Di(z,5,a) (1 +x)”®”<1 —I—X’S’a> x>0,

0 x <0,

(18)

with a ¢ Zy, R{u} > R{A} >0, x € R, s € C when |z| < 1 and R{s—u} >
0, when |z| = 1.

For 0 = p =k =1 and p = 0, we obtain the Beta prime distribution (or
the Beta distribution of the second kind).

For Fischer’s F—distribution, which is a Beta prime distribution, we set
0 =p =k =1 and replace x = mx/n, A = m/2, v=(m -+ n)/2, where
m and n are positive integers.

4 Statistical functions for the HLZB’ distribution

In this section we would introduce some classical statistical functions for the
HLZB’ distributed random variable having the PDF given with (16). These
characteristics are moments of positive, fractional order m,,r € R, being the
Mellin transform of order r + 1 of the PDF; the generating function Gx(t)
which equals to the Laplace transform and the characteristic function (CHF)
b x(t) which coincides with the Fourier transform of the PDF (16).

We point out that all three highly important characteristics of the proba-
bility distributions can be uniquely expressed via the operator of the mathe-
matical expectation E. However, it is well-known that for any Borel function
1V there holds

E(X) = JRw(x)f(xJ dx. (19)
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To obtain explicitely m,, Gx(t), ¢x(t) we also need in the sequel the unified
Hurwitz—Lerch Zeta function, recently introduced by Srivastava et al. [24].
According to [24] we consider nonnegative integer parameters p,q € Ny =
{0,1,2,-+-}; Aj € C, px € C\ Zy; 0j,pk > 0,j = 1,p, k = 1,4. Then the
Unified Hurwitz—Lerch Zeta Function with p + q upper and p + q + 2 lower
parameters, reads as follows

(pi0) ( S Inpy 2"

[y @ (P1y PR3O, j

o Au (z,5,0) =@ ALy ApiHa e Z’S’ a) Z (p])m,] (m+a)sn!’
(20)

where s,R{a} > 0 and the empty product is taken to be unity. The series (20)
converges

1. for all z € C\ {0} if ¥ > —1;

2. in the open disc |z| < V if ¥ = —1;
3. on the circle |z] =V, for ¥ = —1, R{O} > 1/2,

where
q P

g P g P
V::HijHpj_pj, Y::ZGj—ij+s, @::ij—ZAj—l-pizq.
=1 = = = = =

Theorem 1 Let X ~ HLZB' be a r.v. defined on a standard probability space
(Q,F,P) and let r € Ry. Then the rth fractional order moment of X reads as
follows

o (A)r sin7e(v — A) O ATPER O (2,5, a) a1)
T (1=v+A)sin(v—A—r1) d)(p’G'K)(z,s,a) '

ALV
Proof. The fractional moment m, of the r.v. X ~ HLZB' is given by
AT(v) 0 M ko) ZXP
—EX" = o' "(7,,)01 R,
i F(A)F(V—A)J (Tx)c wv A ([T e D9 TER
where A is the related normalizing constant.

Expressing the Hurwitz—Lerch Zeta function in initial power series form,
and interchanging the order of summation and integration, we find that:

. — AT i (Won z
T TN (v —A) O(V—M(K_pn(n-i—a)sn'

n 00 X7\+r+pnf1
Jo e

n

FU\) ) (V _A)(Kfp)n (Tl+ a)sn'

n=0
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By the Euler’s reflection formula we get

r =

AA)T(1—v +A)sinm(v —A) i WonA+1)on(v—A— )Kp)
Nl —v+A+1)sint(v—A—1) - V)in(V =N (kpm (M +a)sn

o0

_ A(A)r sin7t(v —A) Z H)oﬂ A+1)on(v—A— ) p)nZn
 (1=v+A)ysinm(v—A—r1) — V)kn(V =N (k—pm(n+a)snl
which is same as (21). O

We point out that for the integer r € N, the moment (21) it reduces to

(0,0,k—p; K,Kk—p)
(_1 )T(A)r @ u,?\+‘r,v—)\—r;v,v—)\(2’ 5, a) ' (22>

my =
=y oz s,q)

Theorem 2 The generating function Gx(t) and the CHF ¢x(t), t € R for
the r.v. X ~HLZB’ are represented in the form

GX(t) - Ee—tX = 1 - ()\)r tr(D(P 0,K) (Z S Cl) (23)
q);\?ﬁf{,K)(Z,S,a) = (1T+A=V)rr A28, a),
1 s N (Y o
bx(t) = EelX = ) (z,s,a).
(D;‘?:?/K) (Z‘) S, a) =0 (] + A— ’V)T. Tl AT v
(24)

Proof. Setting \(X) = e X in (19) respectively, then expanding the Laplace
kernel into Maclaurin series, by legitimate interchange the order of summation
and integration we obtain the generating function Gx(t) in terms of (22).
Because ¢dx(t) = Gx(—it), t € R, the proof is completed. O

The second set of important statistical functions concers the reliability ap-
plications of the newly introduced generalized Hurwitz—Lech Zeta Beta prime
distribution. The functions associated with r.v. X are the cumulative distribu-
tion function (CDF) F, the survivor function S = 1—F, the hazard rate function
h = f/(1—F), and the mean residual life function K(x) = E(X—x|X > x). Their
explicit formulee are given in terms of lower and upper incomplete (comple-
mentary) @—functions.
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Theorem 3 Let r.v. X ~ HLZB’. Then we have:

_ zxP
hix) = 1) T) o O (W - a> . (29)
Sk TN =2) (T4+x)Y  gPo9(z,5, alx)
K(x) = rv) - (1) om z"
PNy = NG (z,s,alx) i V= Miepm (1+a)onl
X B (V=A=T4 (k—p)n,A+14pn) —x, (26)
where

z
B.(a,b) :J t* ' (1—1°'dt,  min (R{a},R{b}) >0, 2] <1
0

represents the incomplete Beta—function.

Proof. The CDF and the survivor functions of the r.v. X are

(p,0,K) —(p,0,K)

(2N (Z) S, Cl|X) (5% (Z, S, (l|X)
F(x) = (';L’;K) , S(x) = (EZ ) x>0,
(DA,;L";/ (Z» S, (1) (D)\,;Lﬂ’/ (Z, S, (1)

and vanishes elsewhere. Therefore, being h(x) = f(x)/S(x), (25) is proved.
It is well-known that for the mean residual life function there holds [5]

‘I o0
K(x) = —— J tf(t)dt —x.
S(x) Jx
The integral will be

[o¢]

[ _ AT (Won (n+a)—sz™ [ thten
7= wta= it v =N o J, arraet

n=0

where the innermost t—integral reduces to the incomplete Beta function in the
following way:

0 tp—] (T4x) ! : :
J (]—I—‘t)th:J'O tqipi tP— dt:B(]+X)—](p,q—p).
x

Therefore we conlude

S .,

z

j:

AT(v) )Z(u)m(ﬁa)_ Bt (VA= T4 (k=p)n, A+ 14-pm)

F(A)F(v —A (’V — }\)(K—p)n n!

n=0

After some simplification it leads to the stated formula (26). O
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5 Generalized Hurwitz—Lerch Zeta Gamma
distribution

Gamma—type distributions, associated with certain special functions of science
and engineering, are studied by several researchers, such as Stacy [26]. In this
section a new probability density function is introduced, which extends both
the well-known Gamma distribution [21, 28] and Planck distribution [9].

Consider the r.v. X defined on a standard probability space (Q,F,P) , de-
fined by the PDF

. (A p) (1, 0) ‘ze*bX}
poxs—Tleax ! (v, )
f(x) = s) (o) x >0, (27)
(D)\)LL); (z,s,a/b)
0, x <0;

where a, b are scale parameters and s is shape parameter. Further R{a}, R{s} >
0 when |z] < 1(z # 1) and R{s} > 1 when z = 1. Such distribution we call
by convention generalized Hurwitz—Lerch Zeta Gamma distribution and write
X ~ HLZG. Notice that behavior of f(x) near to the origin depends on s in the
manner that f(0) =0 for s > 1, and for s = 1 we have

A) ) )
bav| 00T 2]

f(0) =

03*7(z,1,a/b)

and lim, o, f(x) = 0o when 0 < s < 1.
Now, we list some important special cases of the HLZG distribution.

(a) For 0 = p = k = 1 we obtain the following PDF discussed by Garg et
al. [3]:
}\) 2 —b
bsxsf1efax 2F1 |: v ’26 X:|
r(S) (DA,u,V(Z)S)a/b) ’
where R{a}, R{b},R{s} > 0 and |z| < 1 or |z| = 1 with R{v — A — u} > 0.

fi(x) = (28)

(b) If weset co=p=x=1,b=a, A=0, then (27) reduces to the Gamma
distribution [9, p. 32] and

(¢) foro=p=«k=1,u=~v, A=1it reduces to the generalized Planck dis-
tribution defined by Nadarajah and Kotz [16], which is a generalization
of the Planck distribution [9, p. 273].
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6 Statistical functions for the HLZG distribution

In this section we will derive the statistical functions for the r.v. X ~ HLZG
distribution associated with PDF (27). For the moments m,. of fractional order
T € R4 we derive by definition

(p,o,K)
00 LDy 2 (z,s+71,a/b)
m, = J X (x)dx = (Z)T “(‘;) — . (29)
0 Qv (z,s,a/b)

Next we present the Laplace and the Fourier transforms of the probability
density function (27), that is the generating function Gy(t) and the related
CHF ¢y (t):

P2z s (a+1)/b)

Gx(t) = Ee tY = A (30)
CD;?L;’/K)(Z, s,a/b)
(p’o-YK) :
) ) (z,s,(a—it)/b)
dx(t) = Gy(—it) = EcltY = 2y . teR.  (31)

027 (2,5, a/b)

The second set of the statistical functions include the hazard function h and
the mean residual life function K.

Theorem 4 Let X ~HLZG. Then we have:

()\) Py (p’a 0—) ‘ Ze—bx:|

] )
- bsxs—leg—ax 211]] |: (v, k)
)

h(x) = 39
’ Fs) 20%(z2,5,a/b, blx) (32)
1 = (}\)pn(u)m r(S-i-],(a—I—bn)x) Zn
K(x) = z
i b F(s)E&?;f,’;K)(z, s, a/b, blx) T; (V)kn (n+a/b)st nl
(33)
Here

M(p,z) = J e tdt,  Rp) >0,

z

stands for the upper incomplete Gamma function.
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Proof. From the hazard function formula a simple calculation gives:

bs = —a * ()\, p)) (H» G) —bt
K( ) = .tS t \ dt —
R s, a/b,bi) J oot T e

(e ¢]

_ b 5 Dl 2 % o
(s )Ev)\ppo_vK)(Z) s,a/b,blx) n—o (V)kn n! J.

Further simplification leads to the asserted formula (33). O

7 Statistical parameter estimation in HLZB’
and HLZG distribution models

The statistical parameter estimation becomes one of the main tools in random
model identification procedures. In the study of HLZB' and HLZG distribu-
tions the PDFs (16) and (27) are built by higher transcendental functions such

as generalized Hurwitz—Lerch Zeta function d){) :: ; )(Z,S, a) and Fox—Wright
generalized hypergeometric function ¥j[z]. The power series definitions of
these functions does not enable the successful implementation of the popular
and efficient Maximum Likelihood (ML) parameter estimation, only the nu-
merical system solving can reach any result for HLZB’, while ML cannot be
used for HLZG distribution case, being the extrema of the likelihood function
out of the parameter space.

Therefore, we consider the Moment Method estimators, such that are weakly
consistent (by the Khinchin’s Law of Large Numbers), also strongly consistent

(by the Kolmogorov LLN) and asymptotically unbiased.

7.1 Parameter estimation in HLZB’ model

Assume that the considered statistical population possesses HLZB’ distribu-
tion, that is the r.v. X ~ f(x), (16) generates n independent, identically dis-
tributed replicee = = (Xj)]. T which forms a statistical sample of the size n.
We are now interested in estimating the 9-dimensional parameter

69 = (Cl, 0, K, p))\> w,v,z, S)

or some of its coordinates by means of the sample =.
First we consider the PDF (16) for small z — 0. For such values we get
asymptotics
M(v)xMT
FAT(v =N (1 +x)V

f(x) ~ x>0, (34)
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which is the familiar Beta distribution of the second kind (or Beta prime)
B’(A,v). The moment method estimators for the remaining parameters A >
0,v > 2 read:

- 24X 2 _
A:xn(xfjxn)’ g Xt Xng Lyypn, (35)
Sh Sn
where N o
_ 1 ) 1 = \2
anﬁ. Xj» Sn:EZ(XJ_X“)

expressing the sample mean and the sample variance respectively. Let us men-
tion that for v < 2, the variance of a r.v. X ~ B/(A,v) does not exists, so for
these range of parameters MM is senseless.

The case of full range parameter estimation is highly complicated. The mo-
ment method estimator can be reached by virtue of the positive integer order
moments formula (22) substituting

1 n
X¥L - E ZX; — mT‘)
j=1

where X, is the rth sample moment. Thus, numerical solution of the system
(va)Kip; K>K7p)
(=1D)"(A)r @ H,?\Jrrw—?\—r;v,v—)\(z) s,a) X - 1’79 (36)

TV ofiesa

which results in the vectorial moment estimator 0o = (a,3,%,p,A 1LY, 2, 3).

7.2 Parameter estimation in HLZG distribution

To achieve Gamma distribution’s PDF from the density function (27) of HLZG
in a way different then (b) in Section 6, it is enough to consider the PDF (27)
for a = b and small z — 0. Indeed, we have

bsxs—1e—bx
lim f(x) = (s)
= 0, x <0;

0
x>0, (37)

It is well known that the moment method estimators for parameters b, s are

- X, _ (Xn)?
b= 5 S = — .
Sh Sa
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The general case includes the vectorial parameter
e]o = (a, b, S) A) p) u) O—)’V’ K) Z) .

First we show a kind of recurrence relation for the fractional order moments
between distant neighbours.

Theorem 5 Let 0 <t <1 be nonnegative real numbers, and m, denotes the
fractional positive vth order moment of a r.v. X ~ HLZG. Then it holds true

My = Myt - My, (38)
Proof. It is not difficult to prove

(s)r @;‘?;lf;/K](z, s+1,a/b)

e br q);?if)(z,s,a/b)
L Tist1) @0 (s 4 a/b) Tis+1) O (2,5 a/b)
b (s +t) @ 202,54+ t,a/b) PT(S) @279z 5 a/b)
which is equivalent to the assertion of the Theorem. O

Remark 2 Taking the integer order moments (29), that is my,v € Ny, the
recurrence relation (38) becomes a contiguous relation for distant neighbours:

(s+ 0y @0 (z,s+¢,a/b)

o7 0z sk a/b)

my (39)

me = Me—x - Mk =

for all 0 <k <{, k,L € Np.
Choosing a system of 10 suitable different equations like (38) in which m,
is substituted with X7, — m,, we get

(S + t)T‘—t (D;F"LLO:—;/K)(Zv s+, a/b) . Xig

brt d);\")'ﬂf)(z,s—l—t,a/b) XL

(40)

However, the at least complicated case of (38) occurs at the contiguous (39)
with k = 0,€ = 1,10, that is, by virtue of (40) we deduce the system in
unknown 01o:

(s)e q);\‘?f«)/K)(Z’ s+1{ a/b) =b" @;?L&’/K)(z, s,a/b) Xy 0=T,10.  (41)

The numerical solution of system (41) with respect to unknown parameter
vector 619 we call moment method estimator 01g.
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