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Abstract. In this paper we prove some results on multiplying balancing
and cobalancing numbers and (k, l)-power numerical centers.

1 Introduction

The sequence R = {Ri}
∞
i=0

= R(A, B, R0, R1) is called a second order linear
recurrence sequence if the recurrence relation

Ri = ARi−1 + BRi−2 (i ≥ 2)

holds, where A, B 6= 0, R0, R1 are fixed rational integers and |R0| + |R1| > 0. A
positive integer n is called a balancing number (see [3] and [5]) if

1 + · · · + (n − 1) = (n + 1) + · · · + (n + r)

holds for some positive integer r. The sequence of balancing numbers is denoted
by Bm (m = 1, 2, . . . ). As one can easily check, we have B1 = 6 and B2 = 35.
Note that by a result of Behera and Panda [3], we have

Bm+1 = 6Bm − Bm−1 (m > 1).

In that paper they proved that, there are infinitely many balancing numbers.
In [7] K. Liptai searched for those balancing numbers which are Fibonacci

numbers, too. Using the results of A. Baker and G. Wüstholz [2] he proved

2010 Mathematics Subject Classification: 11A41, 11A51

Key words and phrases: balancing number

90



Multiplying balancing numbers 91

that there are no Fibonacci balancing numbers. Similarly in [8] he proved that
there are no Lucas balancing numbers. Using an other method L. Szalay [12]
got the same result.

In [9] Liptai, Luca, Pintér and Szalay generalized the concept of balancing
numbers in the following way. Let y, k, l be fixed positive integers with y ≥ 4.
A positive integer x with x ≤ y − 2 is called a (k, l)-power numerical center
for y if

1k + · · · + (x − 1)k = (x + 1)l + · · · + (y − 1)l.

In [9] several effective and ineffective finiteness results were proved for (k, l)-
power numerical centers.

Later G.K. Panda and P.K. Ray (see [10]) slightly modified the definition
of balancing number and introduced the notion of cobalancing number. A
positive integer n is called a cobalancing number if

1 + 2 + · · · + (n − 1) + n = (n + 1) + (n + 2) + · · · + (n + K)

for some K ∈ N. In this case K is called the cobalancer of n.
They also proved that the cobalancing numbers fulfill the following recur-

rence relation

bn+1 = 6bn − bn−1 + 2 (n > 1),

where b0 = 1 and b1 = 6. Moreover they found that every balancer is a
cobalancing number and every cobalancer is a balancing number.

In [11] G. K. Panda gave another possible generalization of balancing num-
bers. Let {am}∞

m=0
be a sequence of real numbers. We call an element an of

this sequence a sequence-balancing number if

a1 + a2 + · · · + an−1 = an+1 + an+2 + · · · + an+k

for some k ∈ N. Similarly, one can define the notion of sequence cobalancing

numbers. In [11] it was proved that there does not exist any sequence balancing
number in the Fibonacci sequence.

As a generalization of the notion of a balancing number A. Bérczes, K. Liptai
and I. Pink call a binary recurrence R = R(A, B, R0, R1) a balancing sequence

if

R1 + R2 + . . . + Rn−1 = Rn+1 + Rn+2 + . . . + Rn+k

holds for some k ≥ 1 and n ≥ 2.
In [4] they proved that that any sequence R = R(A, B, 0, R1) with the con-

dition D = A2 + 4B > 0, (A, B) 6= (0, 1) is not a balancing sequence.
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T. Kovács, K. Liptai and P. Olajos in [6] extended the concept of balancing
numbers to arithmetic progressions. Let a > 0 and b ≥ 0 be coprime integers.
If for some positive integers n and r we have

(a + b) + · · · + (a(n − 1) + b) = (a(n + 1) + b) + · · · + (a(n + r) + b)

then we say that an + b is an (a, b)-balancing number. They proved several
effective finiteness and explicit results about them. In the proofs they combined
the Baker’s method, the modular method developed by Wiles and others, the
Chabauty method and the theory of elliptic curves.

In this paper we study a further generalization of balancing numbers. The
idea is due to A. Behera and G. K. Panda. A positive integer n is called a
multiplying balancing number if

1 · 2 · · · (n − 1) = (n + 1)(n + 2) · · · (n + r) (1)

for some positive integer r. The number r is called the balancer corresponding
to the multiplying balancing number n. The cobalancing numbers have a sim-
ilar definition. A positive integer n is called a multiplying cobalancing number

if
1 · 2 · · · (n − 1)n = (n + 1)(n + 2) · · · (n + r) (2)

for some positive integer r. The number r is called the cobalancer corresponding
to the multiplying cobalancing number n.

Using the concept of K. Liptai, F. Luca, . Pintér and L. Szalay ([9] we can
get further generalization. Let m, k, l be fixed positive integers with m ≥ 4. A
positive integer n with n ≤ m−2 is called a (k, l)-power multiplying balancing

number for m if

1k · · · (n − 1)k = (n + 1)l · · · (m − 1)l. (3)

2 The results

Throughout the paper let p the greatest odd prime, which is less than the
multiplying balancing number n, where n ≥ 4. In the first theorem we prove
that only one multiplying balancing number exists.

Theorem 1 The only multiplying balancing number is n = 7 with the balancer

r = 3.

In the proof we use 4 lemmas.
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Lemma 1 There is no prime among the factors of the right side of the equa-

tion

1 · 2 · · · (n − 1) = (n + 1)(n + 2) · · · (n + r)

Proof. Suppose that z is a prime among the factors of the right side. It is
clear that z is not in the prime decomposition of the left side of the equation
(1). Hence the prime decomposition of the right side is not the same as the
left’s. Thus the lemma is proved. �

Let us use the function α2 : N → N, α2(x) :=
∑[log2 x]

k=1

[

x

2k

]

, where x ≥ 2 and
α2(x) shows the index of the prime 2 in x!.

Lemma 2 x − log2 x − 2 < α2(x) < x

Proof.

α2(x) =
[ x

21

]

+
[ x

22

]

+
[ x

23

]

+ · · · +
[ x

2k

]

≤
x

21
+

x

22
+

x

23
+ · · · +

x

2k
=

= x

(

1

21
+

1

22
+ · · · +

1

2k

)

= x

(

1 −
1

2k

)

≤ x − 1 < x

α2(x) >
( x

21
− 1

)

+
( x

22
− 1

)

+ · · · +
( x

2k
− 1

)

︸ ︷︷ ︸
[log2 x]

=

= x

(

1 −
1

2k

)

− [log2 x] = x −
x

2k
− [log2 x] > x − log2 x − 2

�

Lemma 3 If n is multiplying balancing number and r is the balancer, further-

more n > 64 then
3(n + 1)

2
< n + r.

Proof. From (1) it follows, that

(n − 1)! · (n)! = (n + r)!.

If (1) is true then

α2(n − 1) + α2(n) = α2(n + r)

Using Lemma 2 we get

n − 2 log2 n − 5 < r
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We can replace log2 n with n

8
if n > 64, that is

2n −
2n

8
− 5 < n + r

If n > 64 we get

3(n + 1)

2
<

3(n + 1)

2
+

2n

8
− 6.5 < n + r.

�

Proof.[Proof of Theorem 1] Using a results of M. El Bachraoui ([1]) we get
that, if n ≥ 2 then exists a p prime satisfying the inequality

n < p <
3(n + 1)

2
.

Hence the right side of (1) contains a prime if n > 64. But Lemma 1 says
there is no prime on the right side of the equation. The conclusion is that, if
n > 64 there is no multiplying balancing numbers. It can be checked easily if
n = 2, . . . , 64 then there is only one number satisfying the equation (1). We
get n = 7, that is the theorem is proved. �

Theorem 2 There is no multiplying cobalancing number.

In the proof we use the following lemma.

Lemma 4 Using our notation the following inequalities are true

p < n < 2p ≤ n + r < 3p.

Proof. Suppose that n ≥ 2p. The interval [p, 2p] always contains a prime, so
there is a prime greater than p and lower than n which is impossible because of
the definition of p. Hence n < 2p. On the left side of the equation (1) the index
of p is 1, consequently on the right side the index of p is also 1 in the prime
decomposition. So we can write the following inequalities 2p ≤ n + r < 3p. �

Proof. [Proof of Theorem 2] Using a result of Csebisev we get that there is
a prime z between p and 2p. Because of Lemma 4 we have to analyse three
cases z = n, z > n and z < n. If z > n then the prime decomposition of the
left and right side is not the same. Now let z < n.This situation contradicts
the fact that p is the greatest odd prime which is less than n. The last case is
z = n. Hence n + r ≥ 2z because of the prime factor z. Thus the left side of
the equation (2) has as many factor as the right side has which is obviously
impossible. First and last there is no cobalancing numbers. �

The following theorem deals with the (k, l)-power numerical centers.
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Theorem 3 If n ≥ 4 then there is only one (k, l)-power numerical centers.

The only solution is n = 7, m = 11 and k = l.

Proof. First we prove that if n is a (k, l)-power numerical center for m then
k = l. Using Lemma 4 the index of p in the equation (3) is k on the left side
and l on the right side in the prime decomposition. The index of p have to be
equal on the left and right side. So k = l.

So we get that n satisfies (1) if and only if n satisfies (3). So if n ≥ 4 there
is only one (k, l)-power numerical center. It is n = 7, m = 11 and l = k. �

Remark 1 If p = 2 and n = 3 we get the equation

1k · 2k = 4l.

In this case n = 3 (k, l)-power numerical center for m − 5 and there are

infinitely many (k, l) pairs with k = 2l.
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[7] K. Liptai, Fibonacci balancing numbers, Fibonacci Quarterly, 42 (2004),
330–340.

[8] K. Liptai, Lucas balancing numbers, Acta Math. Univ. Ostrav., 14,
(2006), 43–47.
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