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Abstract. In the present paper we introduce some sequence spaces com-
bining lacunary sequence, invariant means in 2-normed spaces defined by
Musielak-Orlicz function M = (My). We study some topological prop-
erties and also prove some inclusion results between these spaces.

1 Introduction and preliminaries

The concept of 2-normed space was initially introduced by Gahler [2] as an
interesting linear generalization of a normed linear space which was subse-
quently studied by many others see ([3], [9]). Recently a lot of activities have
started to study sumability, sequence spaces and related topics in these linear
spaces see ([4], [10]).

Let X be a real vector space of dimension d, where 2 < d < co. A 2-norm
on X is a function ||., .|| : X x X — R which satisfies

(i
(i) [yl = [ly, x|l

) |Ix,y|| = 0 if and only if x and y are linearly dependent
)
) o,y =ledlx, y|, x € R
)

(ii

(iv) |Ix,u+z| < |[x,ull + [|x,z| for all x,y,z € X.
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The pair (X, ||.,.]|) is then called a 2-normed space see [3]. For example, we
may take X = R? equipped with the 2-norm defined as ||x,y|| = the area of the
parallelogram spanned by the vectors x and y which may be given explicitly
by the formula )

Then, clearly (X, ||.,.]|) is a 2-normed space. Recall that (X, ||.,.||) is a 2-Banach
space if every cauchy sequence in X is convergent to some x in X.

Let o be the mapping of the set of positive integers into itself. A continuous
linear functional @ on ly,is said to be an invariant mean or o-mean if and

X111 X12

I, xalle = abs (
’ X21 X22

only if

(i) @(x) > 0 when the sequence x = (xx) has xj > 0 for all k,
(ii)) @(e) =1, where e = (1,1,1,...) and
(iii) @(xg)) = @(x) for all x € 1

If x = (xn), write Tx = Txn, = (Xg(n)). It can be shown in [11] that
Ve = {x € loo | lilzntkn(x) =1, uniformly in n, l=0— limx},

where
Xn+Xgin+ .o +Xgkn

k+1

In the case o is the translation mapping n — n + 1, o-mean is often called
a Banach limit and Vg, the set of bounded sequences all of whose invariant
means are equal, is the set of almost convergent sequences see [6].

By a lacunary sequence 8 = (k;) where kg = 0, we shall mean an increasing

sequence of non-negative integers with k. —k,_1 — 0o as 1 — oo. The intervals
determined by 0 will be denoted by I, = (k._1,k;]. We write h, = k, —

k+—1. The ratio

tkn(x) =

will be denoted by gy. The space of lacunary strongly

T—1
convergent sequence was defined in [1].

Let X be a linear metric space. A function p : X — R is called paranorm, if
(1) p(x) >0, for all x € X
(ii ( ), for all x € X

) P
(iii) p x—l—y p(x)+p(y), for all x,y € X
)

(iv) if (om) is a sequence of scalars with 0, — 0 as 1 — oo and (xy) is a
sequence of vectors with p(xn,—x) — 0 as n — oo, then p(onxn—0x) —
0 asn — oo.
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A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X,p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [12],
Theorem 10.4.2, P-183).

An orlicz function M : [0, 00) — [0, 00) is a continuous, non-decreasing and
convex function such that M(0) =0, M(x) > 0 for x > 0 and M(x) — oo as
X — 00.

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to define the
following sequence space. Let w be the space of all real or complex sequences

x = (xy), then
- |Xk|)
IM=<xew| M( < 00

which is called a Orlicz sequence space. Also Iy is a Banach space with the

norm
: - x|
x| =inf < p > 0| < <T13.
M5

Also, it was shown in [5] that every Orlicz sequence space lpm contains
a subspace isomorphic to l,(p > 1). The A,— condition is equivalent to
M(Lx) < LM(x), for all L with 0 < L < 1. An Orlicz function M can al-
ways be represented in the following integral form

where 1 is known as the kernel of M, is right differentiable for t > 0,1(0) =
0,n(t) > 0, n is non-decreasing and 1n(t) — oo as t — oo.

A sequence M = (My) of Orlicz function is called a Musielak-Orlicz function
see ([7], [8]). A sequence N' = (Ny) is called a complementary function of a
Musielak-Orlicz function M

Ni(v) =sup {Wu—My |u>0}, k=1,2,...

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space
ta and its subspace ha, are defined as follows

tv = {xewlIM(cx)<oo, for some c>0},

hyvy = {X€W|IM(CX)<OO, for all c>0},
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where [ is a convex modular defined by

e¢]

Tmx) =) Milx),x = (i) € tar.
s

We consider tp equipped with the Luxemburg norm
. X
I :mf{k>o | Ly <E) < 1}

or equipped with the Orlicz norm
0_: 1
[[x]|¥ = inf E(1+IM(kx))|k>0 .

Let M = (My) be a Musielak-Orlicz function, (X,]|.,.||) be a 2-normed space
and p = (Px) be any sequence of strictly positive real numbers. By S(2 — X)
we denote the space of all sequences defined over (X, ||.,.]|). We now define the
following sequence spaces:

tkn(x) z

. 1
W3 IMp, | e {x €S2l g [w(

p > 0, uniformly in n},

tin(x — 1) ’ZH)rk_O’
P

T kel

p > 0, uniformly in n}, and

]e—{XGS(Z—X)Isup}:Z [Mk(

nn T kel

wg (M, ., |

)] <
p ) )

for some p > O}.

When M(x) = x for all k, the spaces wg[/\/l,p,l\.,.l\]e, WU[M,‘p,H.,.H]e
and W [Mk,p, Il., .H]e reduces to the spaces wg[p, Il., .H]e, WG[,‘p, Il., .H]e and
wg [p, Il., .II] o Tespectively.

If pp = 1 for all k, the spaces wg[/\/l,p,ll.,.ll]e, WG[M,p,H.,.H]e and
w2 [Mp Il ]y reduces  to WO[M, Il Mg Wo[M,IL.I],  and
w [M, Il., .II] o Tespectively.
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The following inequality will be used throughout the paper. If 0 < py <
suppx = H, K = max(1,2""7) then

lax + biP* < K{law/P* + [by[P*} (1)

for all k and ay, by € C. Also |a|Px < max(1,]a/") for all a € C.
In the present paper we study some topological properties of the above
sequence spaces.

2 Main results

Theorem 1 Let M = (My) be Musielak-Orlicz function, p = (px) be a boun-
ded sequence of positive real numbers, then the classes of sequences
wg[./\/l,p, Il., .H]e, WG[M,D, Il., ‘H]e and w® [M,p, Il., .||]e are linear spaces over
the field of complex numbers.

Proof. Let x,y € Wg[./\/l,p, Il., .H]e and «, € C. In order to prove the result
we need to find some p3 such that

}H{}o hl Z |:Mk< tin(ox + By)

)

Px
z D] =0, uniformly in n.

T kel p3
Since x,y € wg[/\/l,p, Il., .H] o there exist positive py, p2 such that
] B t Px
lim — Z My < kn(x) ,Z ‘)} =0, uniformly in n
e e M
and 1 i o
t
lim — Z Mk< kn(y),z )} = 0, uniformly in n.
T— 00 hr kel pz

Define p3 = max(2|x|p1,2|B|p2). Since (My) is non-decreasing and convex

1 |: ( tkn(OCX“’ By] H):|pk 1 |: ( tkn((xx) | tkn(ﬁy) ‘>:|
— M 7,2 S I M 7,2 + 7)2'
h, kEZIr K p3 h, k;r k p3 p3
Sl |:Mk ( tkn(X)\ZH+ tkn(y)’z‘>:|
h: el p1 p2

<iq 2 P[5+
el,

()

T kel
— 0 as r — oo, uniformly in n.
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So that ax + By € Wg[/\/l,p, Il., .H]e. This completes the proof. Similarly, we
can prove that WG[M,D, Il., .Iﬂe and wg° [M,p, Il., .H]e are linear spaces. [

Theorem 2 Let M = (My) be Musielak-Orlicz function, p = (px) be a
bounded sequence of positive real numbers. Then wg[/\/l,p, Il., .H]e is a topo-
logical linear spaces paranormed by

1
P\ H
— w1 ) tien () <1,r= =
g(x) mf{p -(hrkel My 5  Z <lr=12..., n=1,2,... 3,

where H = max(1, supy px < 00).

Proof. Clearly g(x) > 0 for x = (xx) € wg[M,p, Il., .||]e. Since My(0) =0, we
get g(0) =0.

Conversely, suppose that g(x) =0, then

br 1 Pk ]ﬁ
inf< pH : hZ[Mk( zm <lIr>1,n>1; =0.
T

This implies that for a given € > 0, there exists some pc(0 < pe < €) such

tkn(x)

b

that
1 tien(x
()
kel
Thus
1 tin(x) P 1 tin(x) P
(% 2 [ (o )]7) = (2 e (52 )]
kel, kel,

for each T and n. Suppose that xi # 0 for each k € N. This implies that
tn(x) # 0, for each k,n € N. Let € — 0, then t"“( )

()]

 Z ‘ — 00. It follows that

o

T kel

which is a contradiction.



Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function 103

Therefore, tin(x) = 0 for each k and thus xi = 0 for each k € N. Let p; >0
and py > 0 be such that

Il=

tkn(x)
P1

)

) =

(e e

and

Il=

ez =2 )7)

for each r . Let p = p1 + p2. Then, we have

]

tin (X + ) Z'mpk "
p )

tien (%) + tin(y) ZH)F "
p1+p2 ’

(i3 [

tkn(x)

b

Z)}pk)]ll
)=

(% Z e
(o) (w2 [

(by Minkowski’s inequality)

P1

tkn(y)
p2

1 p1 tien(X) p2 tinly) _[[\]7
§<hr p1+psz< P1 ’ZH>+Pl+psz< 02 - ﬂ )

Il=
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Since p’s are non-negative, so we have

glx+y) =

. (1
— inf ppH|< [qu
Ry
kel

tenlX) + tinly) ‘m) <lrelni
p ’ B

1

Pr\ H
tk“(x),zm ) <l r>ln>13+

Px %
)] <l,r>In>1

g(x+y) < g(x) +gly).

Finally, we prove that the scalar multiplication is continuous. Let A be any
complex number. By definition,

Therefore,

1
P\ H
tkn‘())\X),ZHﬂ ) <l r>1In>1

g(Ax)=inf { p'f | (}1 > [Mk (‘

T kel

Then

()= inf & (A | (Q 5w (]

T kel

P\ W
ZD] <1, r>1,n>1

where t = ﬁ. Since |[A[Pr < max(1,[A*"PPr), we have

Al
1
Pk \ H
ZD] ) <l,r>1,n>1

g(Ax) < max(T,AP"PPr)
So, the fact that scalar multiplication is continuous follows from the above

. Pr 1
inf § £ |<hZ R
inequality.

T kel
This completes the proof of the theorem. O

tkn(x)
t )

tkn(x)
t )
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Theorem 3 Let M = (My) be Musielak-Orlicz function. If

sup [Mk(t)]pk < oo for allt >0,
k

then
W(Y [M)p) H) H]e C W(())‘o [M)pa Ha H]e .

Proof. Let x € WG[M,p, Il., .II]e. By using inequality (1), we have

Pr _ Px
w2 (5] =h S (5]

T kely
>:|Pk

K 1

B M d

" hy kZ [ ¢ (H p’ :
cly

Since supy [Mk(t)]pk < 00, we can take that supy [Mk(t)]pk = T. Hence we

get x € W [M,‘p,\l.,.ll]e. O

Theorem 4 Let M = (My) be Musielak-Orlicz function which satisfies A;-
condition for all k, then

weolp, I, llg € we M, p, Il .[lg-
Proof. Let x € wqs [p, ||, ./llg- Then we have
1
T = — Z txn(x—1),z||P* — 00 as r — oo uniformly in n, for some L.
rkEIr

Let € > 0 and choose 6 with 0 < 6 < 1 such that My(t) < € for 0 <t < 4 for

all k. So that
w2 I (U
I

ften (x = Vz|| <8
For the first summation in the right hand side of the above equation, we have

b E

T kel,
ten (x = Vz|| < 8

Z < e by using continuity of My for all k. For the second summation, we

write

tkTL(X - l)
p

tkn(x B L)

)Z b

tkn(X - l)

)

tkn(x — U

[tin(x = 1), 2l < T+1] 5 2l
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Since My is non-decreasing and convex for all k, it follows that

tin(x—1
Ml = U,2l) < M (1+ 2252, 2])
1 1 ten(x — 1)
<= -~ LS. .
< 3Mu2) + M (12| 0=
Since My satisfies Aj-condition for all k, we can write
T [ tin(x = 1) T || tken(x—=1)
_ < 1 || et 2 i I S
Mic(Iltin(x = 1), 2]} < zL‘ 2 Mi(2) + 5L | 2= 2 My(2)
_1 L(’g_”,z My (2).
So we write
tin(x = 1)

b

P
z m < e+ max(1, LMy(2))8]"7;.

w2
kely

Letting r — o0, it follows that x € WG[M,D, Il., .H}e.
This completes the proof. O

Theorem 5 Let M = (My) be Musielak-Orlicz function. Then the following
statements are equivalent:

1) w [p Il Mg € Wo M, L, Ml

(i1) W2[p, -] 5 < WS[M, P, I ] o

] Px

(iii) sup = Z [Mk(t)] < oo for all t > 0.

T ke,

Proof. (i) = (ii) We have only to show that wg[p, Il., .H]e cwp [p, Il., .H]e.
Let x € Wg[p, ll., .H]e. Then there exists r > 1o, for € > 0, such that

Iy

T kely

Px
< €.

tkn(x) z
p )

Hence there exists H > 0 such that

ten(x) |17
—Z

.zl <H
P
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for all n and r. So we get x € W [p, ll., .H}e.
(ii) = (iii) Suppose that (iii) does not hold. Then for some t > 0
1
Pe
sup -~ kGZI My (t)]P* = oo

and therefore we can find a subinterval I,y of the set of interval I, such that

Pr
Z My (— } >m, m=1,2, (2)
Mr(m ) kel,

Let us define x = (xy) as follows, xx = ;1 if k € Iy and x = 0 if k &
Li(m). Then x € wg[p,|l.,.ll] g but by eqn. (2), x ¢ w [M p, I, Il g which
contradlcts (ii). Hence (iii) must hold. (iii) = (i) Suppose (i) not holds, then

for x € w¥ [p, l., .[l] 5, we have
)] - 2

1
Ssu
w3 [ ([

Let t = tk“ H for each k and fixed n, so that eqn. (3) becomes
1
sup — My (t)1P* = 00
p - kZ Mic(t)]
el
which contradicts (iii). Hence (i) must hold. O

Theorem 6 Let M = (My) be Musielak-Orlicz function. Then the following
statements are equivalent:

() WM,y -]y € WP, Il .
(i) WM,y Mg € W [yl ]

. Px
(iii) ngfkezl My ()] >0 for all t > 0.

Proof. (i) = (ii) : It is easy to prove.
(ii) = (iii) Suppose that (iii) does not hold. Then

]
12f ™ kGZI [My(1)]P* =0 for some t >0,
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and we can find a subinterval L) of the set of interval I; such that

hl Z [Mk(m)]pk<l, m=12... (4)

m
T kGIr(m)

Let us define xi = m if k € L) and x3c = 0 if k & I, ;). Thus by eqn.(4),
X € Wg[/\/l,p, Il., H]e but x € wg [p, Il., H]e which contradicts (ii). Hence (iii)
must hold.

(iii) = (i) It is obvious. O

Theorem 7 Let M = (My) be Musielak-Orlicz function. Then wg [/\/l,p,
s g © WP, Il if and only if

lim = 3 [Mit)] = oo (5)

T—00 T kel
T

Proof. Let wg [M,p, Il., .H]e C wg[p, Il., .||]e. Suppose that eqn. (5) does not
hold. Therefore there is a subinterval I, of the set of interval I and a

number t, > 0, where t, = M, z‘ for all k and n, such that

P

1

(m)

> Milto)? <M <o, m=1,2,... (6)
k€l (m)

Let us define xi = to if k € Iy and xy = 0 if k & I;(;n). Then, by eqn. (6),
x € wg My, p, I, Illg- But x € wg [p, I, .[lg- Hence eqn. (5) must hold.

Conversely, suppose that eqn. (5) hold and that x € w® [My, p,|l., .[ll. Then
for each r and n

1 tkn(x) P
MZ[M“Q oz <M < o0. (7)
kel
Now suppose that x € w3 [p, ., .|[lg. Then for some number € > 0 and for a

subinterval I,; of the set of interval I;, there is ko, such that |[tin(x),z|[Px > €
for k > k. From the properties of sequence of Orlicz functions, we obtain

PG = e (D)

which contradicts eqn.(6), by using eqn. (7). This completes the proof. O

tkn(x)
p )
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