

ACTA UNIV. SAPIENTIAE, MATHEMATICA, 3, 1 (2011) 97-109

Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function

Kuldip Raj School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India email: lkuldeepraj68@rediffmail.com email

Sunil K. Sharma School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India email: sunilksharma42@yahoo.co.in

Abstract. In the present paper we introduce some sequence spaces combining lacunary sequence, invariant means in 2-normed spaces defined by Musielak-Orlicz function $\mathcal{M} = (\mathcal{M}_k)$. We study some topological properties and also prove some inclusion results between these spaces.

1 Introduction and preliminaries

The concept of 2-normed space was initially introduced by Gahler [2] as an interesting linear generalization of a normed linear space which was subsequently studied by many others see ([3], [9]). Recently a lot of activities have started to study sumability, sequence spaces and related topics in these linear spaces see ([4], [10]).

Let X be a real vector space of dimension d, where $2 \le d < \infty$. A 2-norm on X is a function $||., .|| : X \times X \to \mathbb{R}$ which satisfies

- (i) ||x, y|| = 0 if and only if x and y are linearly dependent
- (ii) ||x,y|| = ||y,x||
- (iii) $\|\alpha x,y\| = |\alpha| \|x,y\|, \ \alpha \in \mathbb{R}$
- (iv) $||x, y + z|| \le ||x, y|| + ||x, z||$ for all $x, y, z \in X$.

2010 Mathematics Subject Classification: 40A05, 40A30

Key words and phrases: Paranorm space, Difference sequence space, Orlicz function, Musielak-Orlicz function, Lacunary sequence, Invariant mean The pair $(X, \|., .\|)$ is then called a 2-normed space see [3]. For example, we may take $X = \mathbb{R}^2$ equipped with the 2-norm defined as $\|x, y\| =$ the area of the parallelogram spanned by the vectors x and y which may be given explicitly by the formula

$$\|x_1, x_2\|_E = \operatorname{abs} \left(\left| \begin{array}{cc} x_{11} & x_{12} \\ x_{21} & x_{22} \end{array} \right| \right).$$

Then, clearly $(X, \|., .\|)$ is a 2-normed space. Recall that $(X, \|., .\|)$ is a 2-Banach space if every cauchy sequence in X is convergent to some x in X.

Let σ be the mapping of the set of positive integers into itself. A continuous linear functional φ on l_{∞} , is said to be an invariant mean or σ -mean if and only if

- (i) $\varphi(x) \ge 0$ when the sequence $x = (x_k)$ has $x_k \ge 0$ for all k,
- (ii) $\varphi(e) = 1$, where e = (1, 1, 1, ...) and
- $(\mathrm{iii}) \ \phi(x_{\sigma(k)}) = \phi(x) \ \mathrm{for \ all} \ x \in l_\infty.$

If $x = (x_n)$, write $Tx = Tx_n = (x_{\sigma(n)})$. It can be shown in [11] that

$$V_{\sigma} = \Big\{ x \in l_{\infty} \mid \lim_{k} t_{kn}(x) = l, \text{ uniformly in } n, \ l = \sigma - \lim x \Big\},$$

where

$$t_{kn}(x) = \frac{x_n + x_{\sigma^1 n} + \ldots + x_{\sigma^k n}}{k+1}.$$

In the case σ is the translation mapping $n \to n + 1$, σ -mean is often called a Banach limit and V_{σ} , the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences see [6].

By a lacunary sequence $\theta = (k_r)$ where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$. We write $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . The space of lacunary strongly convergent sequence was defined in [1].

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- (i) $p(x) \ge 0$, for all $x \in X$
- (ii) p(-x) = p(x), for all $x \in X$
- (iii) $p(x + y) \le p(x) + p(y)$, for all $x, y \in X$
- (iv) if (σ_n) is a sequence of scalars with $\sigma_n \to \sigma$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n-x) \to 0$ as $n \to \infty$, then $p(\sigma_n x_n \sigma x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [12], Theorem 10.4.2, P-183).

An orlicz function $M : [0, \infty) \to [0, \infty)$ is a continuous, non-decreasing and convex function such that M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [5] used the idea of Orlicz function to define the following sequence space. Let w be the space of all real or complex sequences $x = (x_k)$, then

$$l_{M} = \left\{ x \in w \mid \sum_{k=1}^{\infty} M\left(\frac{|x_{k}|}{\rho}\right) < \infty \right\}$$

which is called a Orlicz sequence space. Also l_{M} is a Banach space with the norm

$$\|\mathbf{x}\| = \inf\left\{\rho > 0 \mid \sum_{k=1}^{\infty} M\left(\frac{|\mathbf{x}_k|}{\rho}\right) \le 1\right\}.$$

Also, it was shown in [5] that every Orlicz sequence space l_M contains a subspace isomorphic to $l_p(p \ge 1)$. The Δ_2 - condition is equivalent to $M(Lx) \le LM(x)$, for all L with 0 < L < 1. An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t) dt$$

where η is known as the kernel of M, is right differentiable for $t \ge 0, \eta(0) = 0, \eta(t) > 0, \eta$ is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$.

A sequence $\mathcal{M} = (\mathcal{M}_k)$ of Orlicz function is called a Musielak-Orlicz function see ([7], [8]). A sequence $\mathcal{N} = (\mathcal{N}_k)$ is called a complementary function of a Musielak-Orlicz function \mathcal{M}

$$N_k(v) = \sup \{ |v|u - M_k | u \ge 0 \}, k = 1, 2, \dots$$

For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows

$$\begin{split} t_{\mathcal{M}} &= & \Big\{ x \in w \mid I_{\mathcal{M}}(cx) < \infty, \ \mbox{for some } c > 0 \Big\}, \\ h_{\mathcal{M}} &= & \Big\{ x \in w \mid I_{\mathcal{M}}(cx) < \infty, \ \mbox{for all } c > 0 \Big\}, \end{split}$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$\|x\| = \inf\left\{k > 0 \mid I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$\|x\|^0 = \inf \left\{ \frac{1}{k} \left(1 + I_\mathcal{M}(kx) \right) \mid k > 0 \right\}.$$

Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, (X, ||., .||) be a 2-normed space and $\mathfrak{p} = (P_k)$ be any sequence of strictly positive real numbers. By S(2 - X)we denote the space of all sequences defined over (X, ||., .||). We now define the following sequence spaces:

$$\begin{split} w^{o}_{\sigma}\left[\mathcal{M}, p, \|., .\|\right]_{\theta} &= \left\{ x \in S(2-X) \mid \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[\mathcal{M}_{k} \left(\left\| \frac{t_{kn}(x)}{\rho}, z \right\| \right) \right]^{p_{k}} = 0, \\ \rho > 0, \text{ uniformly in } n \right\}, \\ w_{\sigma}\left[\mathcal{M}, p, \|., .\|\right]_{\theta} &= \left\{ x \in S(2-X) \mid \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[\mathcal{M}_{k} \left(\left\| \frac{t_{kn}(x-l)}{\rho}, z \right\| \right) \right]^{p_{k}} = 0, \\ \rho > 0, \text{ uniformly in } n \right\}, \text{ and} \\ w^{\infty}_{\sigma}\left[\mathcal{M}, p, \|., .\|\right]_{\theta} &= \left\{ x \in S(2-X) \mid \sup_{r, n} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[\mathcal{M}_{k} \left(\left\| \frac{t_{kn}(x)}{\rho}, z \right\| \right) \right]^{p_{k}} < \infty, \\ \text{ for some } \rho > 0 \right\}. \end{split}$$

When $\mathcal{M}(\mathbf{x}) = \mathbf{x}$ for all k, the spaces $w_{\sigma}^{o}[\mathcal{M}, \mathbf{p}, \|., .\|]_{\theta}$, $w_{\sigma}[\mathcal{M}, \mathbf{p}, \|., .\|]_{\theta}$ and $w_{\sigma}^{\infty}[\mathbf{M}_{\mathbf{k}}, \mathbf{p}, \|., .\|]_{\theta}$ reduces to the spaces $w_{\sigma}^{o}[\mathbf{p}, \|., .\|]_{\theta}$, $w_{\sigma}[, \mathbf{p}, \|., .\|]_{\theta}$ and $w_{\sigma}^{\infty}[\mathbf{p}, \|., .\|]_{\theta}$ respectively.

If $\mathbf{p}_{\mathbf{k}} = 1$ for all \mathbf{k} , the spaces $w_{\sigma}^{o}[\mathcal{M}, \mathbf{p}, \|., .\|]_{\theta}$, $w_{\sigma}[\mathcal{M}, \mathbf{p}, \|., .\|]_{\theta}$ and $w_{\sigma}^{\infty}[\mathcal{M}, \mathbf{p}, \|., .\|]_{\theta}$ reduces to $w_{\sigma}^{o}[\mathcal{M}, \|., .\|]_{\theta}$, $w_{\sigma}[\mathcal{M}, \|., .\|]_{\theta}$ and $w_{\sigma}^{\infty}[\mathcal{M}, \|., .\|]_{\theta}$ respectively.

The following inequality will be used throughout the paper. If $0\leq p_k\leq \sup p_k=H,\,K=\max(1,2^{H-1})$ then

$$|a_{k} + b_{k}|^{p_{k}} \le K \left\{ |a_{k}|^{p_{k}} + |b_{k}|^{p_{k}} \right\}$$
(1)

for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^{p_k} \le \max(1, |a|^H)$ for all $a \in \mathbb{C}$.

In the present paper we study some topological properties of the above sequence spaces.

2 Main results

Theorem 1 Let $\mathcal{M} = (\mathcal{M}_k)$ be Musielak-Orlicz function, $\mathfrak{p} = (\mathfrak{p}_k)$ be a bounded sequence of positive real numbers, then the classes of sequences $w_{\sigma}^{o}[\mathcal{M},\mathfrak{p}, \|., .\|]_{\theta}, w_{\sigma}[\mathcal{M},\mathfrak{p}, \|., .\|]_{\theta}$ and $w_{\sigma}^{\infty}[\mathcal{M},\mathfrak{p}, \|., .\|]_{\theta}$ are linear spaces over the field of complex numbers.

Proof. Let $x, y \in w_{\sigma}^{o}[\mathcal{M}, p, ||., .||]_{\theta}$ and $\alpha, \beta \in \mathbb{C}$. In order to prove the result we need to find some ρ_{3} such that

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(\alpha x+\beta y)}{\rho_3},z\right\|\right)\right]^{p_k}=0, \text{ uniformly in } n.$$

Since $x, y \in w_{\sigma}^{o}[\mathcal{M}, p, \|., .\|]_{\theta}$, there exist positive ρ_{1}, ρ_{2} such that

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x)}{\rho_1},z\right\|\right)\right]^{p_k}=0, \text{ uniformly in } n$$

and

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(y)}{\rho_2},z\right|\right)\right]^{p_k}=0, \text{ uniformly in } n.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since (M_k) is non-decreasing and convex

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} \left[\mathsf{M}_k \left(\left\| \frac{\mathbf{t}_{kn}(\alpha x + \beta y)}{\rho_3}, z \right\| \right) \right]^{\mathfrak{p}_k} &\leq \frac{1}{h_r} \sum_{k \in I_r} \left[\mathsf{M}_k \left(\left\| \frac{\mathbf{t}_{kn}(\alpha x)}{\rho_3}, z \right\| + \left\| \frac{\mathbf{t}_{kn}(\beta y)}{\rho_3}, z \right\| \right) \right] \\ &\leq \frac{1}{h_r} \sum_{k \in I_r} \left[\mathsf{M}_k \left(\left\| \frac{\mathbf{t}_{kn}(x)}{\rho_1}, z \right\| + \left\| \frac{\mathbf{t}_{kn}(y)}{\rho_2}, z \right\| \right) \right] \\ &\leq \mathsf{K} \frac{1}{h_r} \sum_{k \in I_r} \left[\mathsf{M}_k \left(\left\| \frac{\mathbf{t}_{kn}(x)}{\rho_1}, z \right\| \right) \right] + \\ &\quad + \mathsf{K} \frac{1}{h_r} \sum_{k \in I_r} \left[\mathsf{M}_k \left(\left\| \frac{\mathbf{t}_{kn}(y)}{\rho_2}, z \right\| \right) \right] \\ &\rightarrow 0 \text{ as } r \rightarrow \infty, \text{ uniformly in } n. \end{split}$$

So that $\alpha x + \beta y \in w_{\sigma}^{o}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta}$. This completes the proof. Similarly, we can prove that $w_{\sigma}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta}$ and $w_{\sigma}^{\infty}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta}$ are linear spaces. \Box

Theorem 2 Let $\mathcal{M} = (\mathcal{M}_k)$ be Musielak-Orlicz function, $\mathfrak{p} = (\mathfrak{p}_k)$ be a bounded sequence of positive real numbers. Then $w^o_{\sigma}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta}$ is a topological linear spaces paranormed by

$$g(x) = \inf\left\{\rho^{\frac{p_r}{H}}: \left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x)}{\rho}, z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1, r = 1, 2, \dots, \ n = 1, 2, \dots\right\},$$

where $H = \max(1, \sup_k p_k < \infty)$.

 $\begin{array}{l} \textbf{Proof. Clearly } g(x) \geq 0 \ \mathrm{for} \ x = (x_k) \in w_\sigma^o \big[\mathcal{M}, p, \|., .\| \big]_\theta. \ \mathrm{Since} \ M_k(0) = 0, \ \mathrm{we} \\ \mathrm{get} \ g(0) = 0. \end{array} \end{array}$

Conversely, suppose that g(x) = 0, then

$$\inf\left\{\rho^{\frac{p_r}{H}}: \left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x)}{\rho}, z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1, r \ge 1, \ n \ge 1\right\} = 0.$$

This implies that for a given $\varepsilon>0,$ there exists some $\rho_\varepsilon(0<\rho_\varepsilon<\varepsilon)$ such that

$$\left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x)}{\rho_\varepsilon},z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1.$$

Thus

$$\left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x)}{\varepsilon},z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \le \left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x)}{\rho_{\varepsilon}},z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1,$$

for each r and n. Suppose that $x_k \neq 0$ for each $k \in N$. This implies that $t_{kn}(x) \neq 0$, for each $k, n \in N$. Let $\varepsilon \to 0$, then $\left\| \frac{t_{kn}(x)}{\varepsilon}, z \right\| \to \infty$. It follows that

$$\left(\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[M_{k}\left(\left\|\frac{t_{kn}(x)}{\varepsilon},z\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}}\to\infty$$

which is a contradiction.

Therefore, $t_{kn}(x)=0$ for each k and thus $x_k=0$ for each $k\in N.$ Let $\rho_1>0$ and $\rho_2>0$ be such that

$$\left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x)}{\rho_1},z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1$$

and

$$\left(\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(y)}{\rho_2},z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1$$

for each r . Let $\rho=\rho_1+\rho_2.$ Then, we have

$$\begin{split} &\left(\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[M_{k}\left(\left\|\frac{t_{kn}(x+y)}{\rho},z\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\ &\leq \left(\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[M_{k}\left(\left\|\frac{t_{kn}(x)+t_{kn}(y)}{\rho_{1}+\rho_{2}},z\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\ &\leq \left(\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[\frac{\rho_{1}}{\rho_{1}+\rho_{2}}M_{k}\left(\left\|\frac{t_{kn}(x)}{\rho_{1}},z\right\|\right)+\frac{\rho_{2}}{\rho_{1}+\rho_{2}}M_{k}\left(\left\|\frac{t_{kn}(y)}{\rho_{2}},z\right\|\right)\right]^{p^{k}}\right)^{\frac{1}{H}} \\ &\leq \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)\left(\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[M_{k}\left(\left\|\frac{t_{kn}(x)}{\rho_{1}},z\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\ &+ \left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right)\left(\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[M_{k}\left(\left\|\frac{t_{kn}(y)}{\rho_{2}},z\right\|\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1. \\ &\qquad (by Minkowski's inequality) \end{split}$$

Since $\rho's$ are non-negative, so we have

$$\begin{split} g(x+y) &= \\ &= \inf \left\{ \rho^{\frac{p_r}{H}} \mid \left(\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left\| \frac{t_{kn}(x) + t_{kn}(y)}{\rho}, z \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1, r \geq 1, n \geq 1 \right\} \\ &\leq \inf \left\{ \rho^{\frac{p_r}{H}}_1 \mid \left(\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left\| \frac{t_{kn}(x)}{\rho_1}, z \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1, r \geq 1, n \geq 1 \right\} + \\ &+ \inf \left\{ \rho^{\frac{p_r}{H}}_2 \mid \left(\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left\| \frac{t_{kn}(x)}{\rho_2}, z \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1, r \geq 1, n \geq 1 \right\}. \end{split}$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition,

$$g(\lambda x) = \inf \left\{ \rho^{\frac{p_r}{H}} \mid \left(\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left\| \frac{t_{kn}(\lambda x)}{\rho}, z \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r \ge 1, n \ge 1 \right\}.$$

Then

$$g(\lambda x) = \inf\left\{ \left(|\lambda|t\right)^{\frac{p_r}{H}} \mid \left(\frac{1}{h_r}\sum_{k\in I_r} \left[M_k\left(\left\|\frac{t_{kn}(x)}{t}, z\right\|\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1, r \ge 1, n \ge 1\right\}.$$

where $t=\frac{\rho}{|\lambda|}.$ Since $|\lambda|^{p_r}\leq \max(1,|\lambda|^{\sup p_r}),$ we have

$$\begin{split} g(\lambda x) &\leq & \max(1, |\lambda|^{\sup p_r}) \\ & & \inf \left\{ t^{\frac{p_r}{H}} \mid \left(\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left\| \frac{t_{kn}(x)}{t}, z \right\| \right) \right]^{p_k} \right)^{\frac{1}{H}} \leq 1, r \geq 1, n \geq 1 \right\}. \end{split}$$

So, the fact that scalar multiplication is continuous follows from the above inequality.

This completes the proof of the theorem.

 $\begin{array}{ll} \textbf{Theorem 3} \ \ Let \ \mathcal{M} = (M_k) \ \ be \ \ Musielak\mbox{-}Orlicz \ function. \ If \\ & \sup_k \big[M_k(t)\big]p_k < \infty \ for \ all \ t > 0, \end{array} \end{array}$

then

$$w_{\sigma}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta} \subset w_{\sigma}^{\infty}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta}$$

Proof. Let $x \in w_{\sigma}[\mathcal{M}, p, \|., .\|]_{\theta}$. By using inequality (1), we have

$$\begin{split} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(\left\| \frac{t_{kn}(x)}{\rho}, z \right\| \right) \right]^{p_{k}} &\leq \frac{K}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(\left\| \frac{t_{kn}(x-l)}{\rho}, z \right\| \right) \right]^{p_{k}} \\ &+ \frac{K}{h_{r}} \sum_{k \in I_{r}} \left[M_{k} \left(\left\| \frac{l}{\rho}, z \right\| \right) \right]^{p_{k}}. \end{split}$$

$$\begin{split} &\operatorname{Since\,} \sup_k \left[M_k(t) \right]^{p_k} < \infty, \, \mathrm{we \ can \ take \ that \ } \sup_k \left[M_k(t) \right]^{p_k} = \mathsf{T}. \ \mathrm{Hence \ we} \\ & \operatorname{get} \, x \in w^\infty_\sigma \big[\mathcal{M}, p, \|., \| \big]_\theta. \end{split}$$

Theorem 4 Let $\mathcal{M} = (M_k)$ be Musielak-Orlicz function which satisfies Δ_2 -condition for all k, then

$$w_{\sigma}[\mathfrak{p}, \|., .\|]_{\theta} \subset w_{\sigma}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta}.$$

Proof. Let $x \in w_{\sigma}[p, ||., .||]_{\theta}$. Then we have

$$\mathcal{T}_r = \frac{1}{h_r} \sum_{k \in I_r} \| t_{kn}(x-l), z \|^{p_k} \to \infty \text{ as } r \to \infty \text{ uniformly in } n, \text{ for some } l.$$

Let $\varepsilon>0$ and choose δ with $0<\delta<1$ such that $M_k(t)<\varepsilon$ for $0\le t\le \delta$ for all k. So that

$$\begin{split} \frac{1}{h_{r}} &\sum_{k \in I_{r}} \left[M_{k} \left(\left\| \frac{t_{kn}(x-l)}{\rho}, z \right\| \right) \right]^{p_{k}} = \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\ \|t_{kn}(x-l)z\| \leq \delta}}^{l} \left[M_{k} \left(\left\| \frac{t_{kn}(x-l)}{\rho}, z \right\| \right) \right]^{p_{k}} + \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\ \|t_{kn}(x-l)z\| \leq \delta}}^{2} \left[M_{k} \left(\left\| \frac{t_{kn}(x-l)}{\rho}, z \right\| \right) \right]^{p_{k}} \right] \end{split}$$

For the first summation in the right hand side of the above equation, we have $\sum_{\text{write}}^{1} \leq \varepsilon^{H}$ by using continuity of M_{k} for all k. For the second summation, we

$$||t_{kn}(x-l), z|| \le 1 + ||\frac{t_{kn}(x-l)}{\delta}, z||.$$

Since M_k is non-decreasing and convex for all k, it follows that

$$\begin{split} \mathsf{M}_k(\|t_{kn}(x-l),z\|) &< \mathsf{M}_k\left(1 + \left\|\frac{t_{kn}(x-l)}{\delta},z\right\|\right) \\ &\leq \frac{1}{2}\mathsf{M}_k(2) + \frac{1}{2}\mathsf{M}_k\left((2)\left\|\frac{t_{kn}(x-l)}{\delta},z\right\|\right). \end{split}$$

Since M_k satisfies Δ_2 -condition for all k, we can write

$$\begin{split} \mathsf{M}_{k}\Big(||\mathsf{t}_{kn}(\mathsf{x}-\mathsf{l}),z||\Big) &\leq \frac{1}{2}\mathsf{L}\left\|\frac{\mathsf{t}_{kn}(\mathsf{x}-\mathsf{l})}{\delta},z\right\|\mathsf{M}_{k}(2) + \frac{1}{2}\mathsf{L}\left\|\frac{\mathsf{t}_{kn}(\mathsf{x}-\mathsf{l})}{\delta},z\right\|\mathsf{M}_{k}(2) \\ &= \mathsf{L}\left\|\frac{\mathsf{t}_{kn}(\mathsf{x}-\mathsf{l})}{\delta},z\right\|\mathsf{M}_{k}(2). \end{split}$$

So we write

$$\frac{1}{h_r}\sum_{k\in I_r}\left[M_k\left(\left\|\frac{t_{kn}(x-l)}{\rho},z\right\|\right)\right]^{p_k}\leq \varepsilon^{H}+[\max(1,LM_k(2))\delta]^{H}\mathcal{T}_r.$$

Letting $r \to \infty$, it follows that $x \in w_{\sigma}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta}$. This completes the proof.

Theorem 5 Let $\mathcal{M} = (\mathcal{M}_k)$ be Musielak-Orlicz function. Then the following statements are equivalent:

$$\begin{split} & (i) \ w_{\sigma}^{\infty}\left[p, \|.,.\|\right]_{\theta} \subset w_{\sigma}^{o}\left[\mathcal{M}, p, \|.,.\|\right]_{\theta}, \\ & (ii) \ w_{\sigma}^{o}\left[p, \|.,.\|\right]_{\theta} \subset w_{\sigma}^{o}\left[\mathcal{M}, p, \|.,.\|\right]_{\theta}, \\ & (iii) \ \sup_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} \left[M_{k}(t)\right]^{p_{k}} < \infty \ \textit{for all } t > 0. \end{split}$$

Proof. (i) \Longrightarrow (ii) We have only to show that $w_{\sigma}^{o}[p, \|., .\|]_{\theta} \subset w_{\sigma}^{\infty}[p, \|., .\|]_{\theta}$. Let $x \in w_{\sigma}^{o}[p, \|., .\|]_{\theta}$. Then there exists $r \ge r_{o}$, for $\varepsilon > 0$, such that

$$\frac{1}{h_r}\sum_{k\in I_r}\left\|\frac{t_{kn}(x)}{\rho},z\right\|^{p_k}<\varepsilon.$$

Hence there exists H > 0 such that

$$\sup_{r,n} \frac{1}{h_r} \sum_{k \in I_r} \left\| \frac{t_{kn}(x)}{\rho}, z \right\|^{p_k} < H$$

for all n and r. So we get $x \in w_{\sigma}^{\infty}[p, \|., .\|]_{\theta}$. (ii) \Longrightarrow (iii) Suppose that (iii) does not hold. Then for some t > 0

$$\sup_r \frac{1}{h_r} \sum_{k \in I_r} \left[M_k(t) \right]^{p_k} = \infty$$

and therefore we can find a subinterval $I_{r(m)}$ of the set of interval I_r such that

$$\frac{1}{h_{r(m)}} \sum_{k \in I_{r(m)}} \left[M_k(\frac{1}{m}) \right]^{p_k} > m, \ m = 1, 2,$$
(2)

Let us define $x = (x_k)$ as follows, $x_k = \frac{1}{m}$ if $k \in I_{r(m)}$ and $x_k = 0$ if $k \notin I_{r(m)}$. Then $x \in w^o_{\sigma}[p, \|., .\|]_{\theta}$ but by eqn. (2), $x \notin w^{\infty}_{\sigma}[\mathcal{M}, p, \|., .\|]_{\theta}$. which contradicts (ii). Hence (iii) must hold. (iii) \Longrightarrow (i) Suppose (i) not holds, then for $x \in w_{\sigma}^{\infty}[p, \|., .\|]_{\theta}$, we have

$$\sup_{\mathbf{r},\mathbf{n}} \frac{1}{\mathbf{h}_{\mathbf{r}}} \sum_{\mathbf{k} \in \mathbf{I}_{\mathbf{r}}} \left[\mathsf{M}_{\mathbf{k}} \left(\left\| \frac{\mathbf{t}_{\mathbf{k}\mathbf{n}}(\mathbf{x})}{\rho}, z \right\| \right) \right]^{\mathbf{p}_{\mathbf{k}}} = \tag{3}$$

Let $\mathbf{t} = \left\| \frac{\mathbf{t}_{kn}(\mathbf{x})}{\rho}, \mathbf{z} \right\|$ for each k and fixed n, so that eqn. (3) becomes

$$\sup_r \frac{1}{h_r} \sum_{k \in I_r} \left[M_k(t) \right]^{p_k} = \infty$$

which contradicts (iii). Hence (i) must hold.

Theorem 6 Let $\mathcal{M} = (\mathcal{M}_k)$ be Musielak-Orlicz function. Then the following statements are equivalent:

(i) $w_{\sigma}^{o}[\mathcal{M}, p, \|., .\|]_{\theta} \subset w_{\sigma}^{o}[p, \|., .\|]_{\theta}$, (ii) $w_{\sigma}^{o}[\mathcal{M}, \mathbf{p}, \|., .\|]_{\theta} \subset w_{\sigma}^{\infty}[\mathbf{p}, \|., .\|]_{\theta}$, $(\mathrm{iii}) \ \inf_r \sum_{k \in I_r} \left[M_k(t) \right]^{p_k} > 0 \ \textit{for all} \ t > 0.$

Proof. (i) \implies (ii) : It is easy to prove.

 $(ii) \Longrightarrow (iii)$ Suppose that (iii) does not hold. Then

$$\inf_r \frac{I}{h_r} \sum_{k \in I_r} \left[M_k(t) \right]^{p_k} = 0 \mbox{ for some } t > 0,$$

and we can find a subinterval $I_{r(m)}$ of the set of interval I_r such that

$$\frac{1}{h_r} \sum_{k \in I_{r(m)}} [M_k(m)]^{p_k} < \frac{1}{m}, \ m = 1, 2, \dots$$
(4)

Let us define $x_k = m$ if $k \in I_{r(m)}$ and $x_k = 0$ if $k \notin I_{r(m)}$. Thus by eqn.(4), $x \in w_{\sigma}^{o}[\mathcal{M}, p, \|., .\|]_{\theta}$ but $x \notin w_{\sigma}^{\infty}[p, \|., .\|]_{\theta}$ which contradicts (ii). Hence (iii) must hold.

(iii) \implies (i) It is obvious.

Theorem 7 Let $\mathcal{M} = (\mathcal{M}_k)$ be Musielak-Orlicz function. Then $w^{\infty}_{\sigma}[\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta} \subset w^{\circ}_{\sigma}[\mathfrak{p}, \|., .\|]_{\theta}$ if and only if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k(t) \right]^{p_k} = \infty$$
(5)

Proof. Let $w_{\sigma}^{\infty} [\mathcal{M}, \mathfrak{p}, \|., .\|]_{\theta} \subset w_{\sigma}^{o} [\mathfrak{p}, \|., .\|]_{\theta}$. Suppose that eqn. (5) does not hold. Therefore there is a subinterval $I_{r(m)}$ of the set of interval I_r and a number $t_o > 0$, where $t_o = \left| \frac{t_{k\pi}(x)}{\rho}, z \right|$ for all k and n, such that

$$\frac{1}{h_{r(m)}} \sum_{k \in I_{r(m)}} [M_k(t_o)]^{p_k} \le M < \infty, \ m = 1, 2, \dots$$
(6)

Let us define $x_k = t_o$ if $k \in I_{r(m)}$ and $x_k = 0$ if $k \notin I_{r(m)}$. Then, by eqn. (6), $x \in w^{\infty}_{\sigma} [M_k, p, \|., .\|]_{\theta}$. But $x \notin w^o_{\sigma} [p, \|., .\|]_{\theta}$. Hence eqn. (5) must hold.

Conversely, suppose that eqn. (5) hold and that $x \in w^{\infty}_{\sigma} [M_k, p, \|., .\|]_{\theta}$. Then for each r and n

$$\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[M_{k}\left(\left\|\frac{t_{kn}(x)}{\rho}, z\right\|\right)\right]^{p_{k}} \le M < \infty.$$
(7)

Now suppose that $x \notin w_{\sigma}^{o}[p, \|., .\|]_{\theta}$. Then for some number $\epsilon > 0$ and for a subinterval I_{ri} of the set of interval I_r , there is k_o such that $||t_{kn}(x), z||^{p_k} > \epsilon$ for $k \geq k_o$. From the properties of sequence of Orlicz functions, we obtain

$$\left[M_k\left(\frac{\varepsilon}{\rho}\right)\right]^{p_k} \le \left[M_k\left(\left\|\frac{t_{kn}(x)}{\rho}, z\right\|\right)\right]^{p_k}$$

which contradicts eqn.(6), by using eqn. (7). This completes the proof. \Box

References

- A. R. Freedman, J. J. Sember and R. Ramphel, Cesaro-type summability spaces, *Proc. London Math. Soc.*, **37** (1978), 508–520.
- [2] S. Gahler, 2- metrische Raume und ihre topologishe Struktur, Math. Nachr., 26 (1963), 115–148.
- [3] H. Gunawan, H. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27 (2001), 321–329.
- [4] M. Gurdal, S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math., 33 (2009), 257–264.
- [5] J. Lindenstrauss, L. Tzafriri, On Orlicz seequence spaces, Israel J. Math., 10 (1971), 379–390.
- [6] G. G. Lorentz, A contribution to the theory of divergent series, Act. Math., 80 (1948), 167–190.
- [7] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [8] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034, Springer Verlag, 1983.
- [9] W. Raymond, Y. Freese, J. Cho, Geometry of linear 2-normed spaces, N. Y. Nova Science Publishers, Huntington, 2001.
- [10] A. Sahiner, M. Gurdal, S. Saltan, H. Gunawan, Ideal Convergence in 2-normed spaces, *Taiwanese J. Math.*, **11** (2007), 1477–1484.
- [11] P. Schaefer, Infinite martices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104–110.
- [12] A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stnd., 1984.

Received: October 20, 2010