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A diophantine m-tuple is a set {aj,..
aia; + 1 is square for all 1 < 1 < j < m. Diophantus investigated first
the problem of finding rational quadruples, and he provided one example:
{1/16,33/16,68/16,105/16}. The first integer quadruple, {1, 3, 8, 120} was found
by Fermat. Infinitely many diophantine quadruples of integers are known and
it is conjectured that there is no integer diophantine quintuple. This was al-
most proved by Dujella [2], who showed that there can be at most finitely
many diophantine quintuples and all of them are, at least in theory, effectively
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The following variant of the diophantine tuples problem was treated by [4].
Let A and B be two nonzero integers such that D = B2 +4A # 0. Let (Un)mso
be a binary recursive sequence of integers satisfying the recurrence

Uni2 = Aungt + Buy for all n > 0.

It is well-known that if we write o« and 3 for the two roots of the characteristic
equation x> — Ax — B = 0, then there exist constants v, 8 € Q [«] such that

Un =vyo™ + dp™ for all n > 0.

Assume further that the sequence (un)p._, is non-degenerate which means that
v6 #£ 0 and o/ are not root of unity. We shall also make the convention that
lol > B

A diophantine triple with values in the set U = {u,, : n > 0}, is a set of three
distinct positive integers {a,b,c}, such that ab + 1,ac + 1,bc + 1 are all in
U. Note that if u, = 2™+ 1 for all n > 0, then there are infinitely many such
triples (namely, take a, b, ¢ to be any distinct powers of two). The main result
in [4] shows that only similar sequences can possess this property. The precise
result proved there is the following.

Theorem 1 Assume that (un)y_y is a non-degenerate binary recurrence se-
quence with D > 0, and suppose that there exist infinitely many nonnegative
integers a,b,c with 1 < a<b <c, and x,y,z such that

ab+1=u,, ac+l=uy, bc+1=u,

Then B € {£1}, & € {£1}, «, v € Z. Furthermore, for all but finitely many
of siztuples (a,b,c;x,y,z) as above one has 5% = 6BY = 1 and one of the
followings holds:

(i) 5B* = 1. In this case, one of & or dw is a perfect square;

(ii) 6% = —1. In this case, x € {0, 1}.

No finiteness result was proved for the case when D < 0.

The first definition of balancing numbers is essentially due to Finkelstein
[3], although he called them numerical centers. A positive integer n is called
balancing number if

T+2+--+Mm=T)=Mm+1)+MNM+2)+---+(n+71)
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holds for some positive integer r. Then r is called balancer corresponding to
the balancing number n. The n" term of the sequence of balancing numbers
is denoted by By. The balancing numbers satisfy the recurrence relation

Bn+2 = 6Bn—|—1 - Bn»

where the initial conditions are Bo = 0 and By = 1. Let o and 3 denote the
roots of the characteristic polynomial b(x) = x% — 6x + 1. Then the explicit
formula for the terms B, is given by

g oM (3+2V2 - (3-2v2)
Toa—B 42 '

The first few terms of the balancing sequence are

(1)

0, 1, 6, 35, 204, 1189, 6930, 40391, 235416, ....

Let denote the half of the associate sequence of the balancing numbers by
Cn. Clearly, C,, = (o™ + ™)/2 satisfies C;, = 6C;,_1 — C_2. Note that the
terms C,, are odd positive integers:

1, 3, 17, 99, 577, 3363, 19601, 114243, 665857, .. ..

Although Theorem 1 guarantees that there are at most finitely many Fi-
bonacci and Lucas diophantine triples, it does not give a hint to find all of
them. Luca and Szalay described a method to determine diophantine triples
for Fibonacci numbers and Lucas numbers ([6] and [7], respectively). In this
paper, we follow their method, although some new types of problems appeared
when we proved the following theorem.

Theorem 2 There do no exist positive integers a < b < ¢ such that
ab+1=B,, ac +1 =By, bc+1=8B,, (2)

where 0 < x < y < z are natural numbers and (Bn)p_, is the sequence of
balancing numbers.

The main idea in the proof of Theorem 2 coincides the principal tool of [6],
the details are different since the balancing numbers have less properties have
been known then in case of Fibonacci and Lucas numbers.
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2 Preliminary results
The proof of Theorem 2 uses the next lemma.
Lemma 1 The following identities hold.

1. Bn =35B 2 — 6B;_3;

2. Ifn>m then (Bn —Bm) (Bn+ Bm) = BnuomBnim, especially
(Bn—1) (Bn+1) =Bn_1Bny1;

ged (B, Bim) = Bged(n,m), especially ged (Bn, Bn 1) = 1;
ged(Bn, Cn) =15
Brnim = BnCim+ CiBmy;

S v e

Boni1 —1=2B,Cry1.

Proof. The first property is a double application of the recurrence relation of
balancing numbers. The second identity is Theorem 2.4.13 in [9], the next one
is a specific case of a general statement described by [5]. The fourth feature
can be found in the proof of Theorem VII in [1], the fifth property is given in
[8]. Finally, the last one is coming easily from the explicit formulae for By, and
Cn. O

Lemma 2 Any integer n > 2 satisfies the relation ged(Bn,—1,Bn,_2—1) < 34.

Proof. Using the common tools in evaluating the greatest common divisor,
the recurrence relation of balancing numbers, and Lemma 1 the statement is
implied by the following rows. Put Q1 = ged(Bnn — 1,Bn_2 —1). Then

Q1 ged(Bn —1,Bn — Bn2) = ged(Bn — 1,6Bn1 — 2B 2) <
2ged(Bn —1,3Bn 1 —Bn2) < 2ged(Bn1Bni1,3Bn 1 —Bn2) <
Zng B ])3Bn 1— anz) ng(Bn+1,3an1 - anZ) =

(
(
2ged(Bn_1,Bn_2) ged(35Bn_1 — 6By_2,3Bn1 — Bn2) =
(—B
(—B

VANVA

Zng n— 1+6Bn 2»3Bn | Bn Z) =
2gcd n—1+6B12,17Bh2) <
34 ng(_ n—1+ 6BT1,—2) n—Z) =34 ng(_Bn—th—Z) = 34.

IN
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Lemma 3 For any integer n > 2 we have ged(Bon 3 —1,Br — 1) < 1190.

Proof. Similarly to the previous lemma, put Q2 = ged(Bon 3 —1,Br —1).
Then

Q2 = ng(ZBn—ZCn—1 ,Bn—1) < Zng(Bn—Z) Bn—1) ng(Cn—1 ,Bn—1) <

< 2 ng(Bn—Z» Bn—an+1 ) ng(Cn—1 ,Bn_1 Bn+1) <
< 2ged(Bn2,Bn-1) ged(Bn2,Bni1) ged(Cn1,Bn1) ged(Cn1, Bry1)
< 2-1-35-1-17=1190.
For explaining that ged(Cy_1,Bni1) < 17, by Lemma 1 we write
ged(Cno1, Bny1) = ged(Cro1, Bn1Co + C11B3) = ged(Cr1, 17B1q) < 17.
O

Remark 1 For our purposes, it is sufficient to have upper bounds given by
Lemma 2 and Lemma 3. Without proof we state that the possible values for
Q7 are only 1, 2 and 34, while Q, € {1,2,5,34}.

Lemma 4 Let ug > 3 be a positive integer. Then for all integers u > ug the

inequalities

“u70.9831 u—0.983 (3)

<Bu<«

hold.

Proof. Let ¢cg = 4+/2. Since 0 < f < 1 < « then the inequalities u > ug > 3
imply

U
_ g 1-(2)

B> Ll AN Ll N > 09831
T % >

Ql®

For any non-negative integer u,

0

Lemma 5 All positive integer solutions to the system (2) satisfy z <2y —1.

<
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Proof. The last two equations of the system (2) imply
clged (By —1,B,—1). (4)

Obviously, B, = bc + 1 < ¢, hence v/B;, < c. This, together with (4) gives
VB2 < By. By (3) we obtain

- —0.983
xz 09831 < /B, < By < a¥ .

It leads to

(xsz.9831 <«

and then z < 2y — 1. O

2y—1.966
)

3 Proof of Theorem 2

Suppose that the integers 0 < a < b < c and 0 < x < y < z satisfy (2). Thus
1-24 1< ab+ 1 =By implies 2 < x. Thus 3 < y. The proof is split into two
parts.

I. z < 449,

In this case, we ran an exhaustive computer search to detect all positive
integer solutions to the system (2). Observe that we have

a:\/(BX(B”(B]y)”, 2<x<y<z<449.

Going through all the eligible values for x,y and z, and checking if the above
number a is an integer, we found no solution to the system (2).

II. z > 449.
Put Q = ged (B, —1,By —1). From the proof of Lemma 5 we know that
VB, < Q. Applying now Lemma 1,

Q < ged(Bz1B11,By—1By1)

< H ng(Bz—i>By—j): H Bgcd(z—i,y—j)~ (5)
1je{£1} 1je{£1}

Let ged(z—1,y —j) = Zkl—*]l Suppose that ki; > 8, for all the four possible
pairs (i,j) in (5). Then Lemma 4, together with the previous two estimates,
provides

z—0.9831

o \/B>Z < Q < (B(Z,]]/g)z (B(Z_H)/g)z < 064.(2?;—] 70,983)
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which leads to a contradiction if one compares the exponents of «.

Assume now that ki; < 7 fulfills for some i and j, let denote k this k.
Suppose further that ‘ )
z—1 y—j
k1
holds for a suitable positive integer 1 coprime to k.
If 1 > k, then according to y < z, the relation z—1 < y—j implies z=y+1.
But this is impossible since

Q = ged(By41 —1,By — 1) < ged(By12By, By41By—1) = ged(Byi2,By-—1) < Bj

follows in the virtue of Lemma 1. Thus

z—0.9831

o 2 <y/B,<Q<B3z=35

leads to a contradiction by z < 5.1.
Suppose now that k =1=1. Now z—1 =y —j can hold only if z=y + 2.
Thus, by Lemma 3, we have

Q =gecd(Byq2—1,By—1) <34 < Ba.

Hence, as in the previous part, we arrived at a contradiction.

In the sequel, we assume | < k. First suppose 3 < k. Taking any pair
(10,j0) # (1,j) from the remaining three cases of (—1,—1), (—1,1), (1,—1) and
(1,1), we have

. l .. lz=l+Kk—Kj
y—jo=(z=i+j—jo= 0 (6)

Thus

k
< ged(lz — Uo, 1z — li + kj — Kjo)
= ged(lz — U, lig — li 4+ Kj — Kjo).

lz—l+kj—Kj
ged(z—ioy —jo) = ng<Zio> ot ’0)

Since lip — U 4+ kj — kjo does not vanish, it follows that
ged(lz — lig, Lip— U+ kj — kjo) < [lig— U+ kj — kjol < 2(k+1) < 26.

Indeed, it is easy to see that lig— li+kj — kjo = 0, or equivalently l(ip —1) =
k(jo—j) leads to a contradiction since 2 < k <7 and 1 <1 < k—1 are coprime,
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further i — 1 and jo —j are in the set {0, 2} meanwhile at least one of them
is non-zero.
Then (5), together with Lemma 4, yields

z—0.9831
2

3
z4+1
« 0.983 < (X25.o17) .

< Bﬂ . B%G < 3

3
Consequently, z < 449.4. It contradicts the condition separating Case 2 and
1.

Assume now that k = ki; = 2 fulfills for some eligible pair (i,j). Thus 1 = 1.
First suppose that ged(z— 1,y —1) = (z—1)/2. It yields z =2y — 1, and we
go back to the system

ab+1 = By,
ac+1 = By,
bc+1 = B2y-1.

First we obtain
Bzy,1 . bc+1 b

< —
By ac+1 a
since 0 < a < b < ¢. On the other hand, by Lemma 4,

2y—-1-0.9831
Boy—1 _ — u—1.001

—0.983
By oV

follows. Consequently,
aocy71.001 < b,

and
az(xy—LOO] <ab= BX_ 1< BX < O(X70,983'

Thus we arrived at a contradiction by

aZ < ch—er0.0]S < “—0.982 <0.2.

If ged(z—1,y+ 1) = (z—1)/2 then z = 2y + 3 contradicting Lemma 5.
Similarly, ged(z+ 1,y + 1) = (z+ 1)/2 leads to z = 2y + 1. Finally, ged(z +
1,y—1)=(z+1)/2 gives z = 2y — 3, which is possible. But, in this case, by
Lemma 3 we have

a7 < \/By<c<ged(Byy_z—1,By—1) < 1190,
and it results z < 9 in the virtue of Lemma 4.
The proof of Theorem 2 is completed.
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