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Abstract. In this study we prove the orthopole theorem for a hyperbolic
triangle.

1 Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an at-
tempt to understand Euclid’s axiomatic basis of geometry. It is also known
as a type of non-euclidean geometry, being in many respects similar to eu-
clidean geometry. Hyperbolic geometry includes similar concepts as distance
and angle. Both these geometries have many results in common but many
are different. Several useful models of hyperbolic geometry are studied in the
literature as, for instance, the Poincaré disc and ball models, the Poincaré half-
plane model, and the Beltrami-Klein disc and ball models [5] etc. Following
[8] and [9] and earlier discoveries, the Beltrami-Klein model is also known as
the Einstein relativistic velocity model. Here, in this study, we give hyperbolic
version of the orthopole theorem in the Poincaré disc model. The well-known
orthopole theorem states that if A′, B′, C′ be the projections of the vertices
A, B,C of a triangle ABC on a straight line d, the perpendiculars from A′ on
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BC, from B′ on CA, and from C′ on AB are concurrent at a point called the
orthopole of d for the triangle ABC [4]. This result has a simple statement
but it is of great interes. We just mention here few different proofs given by
R. Goormaghtigh [3], J. Neuberg [6], W. Gallaty [2]. We use in this study the
Poincaré disc model.

We begin with the recall of some basic geometric notions and properties in
the Poincaré disc. Let D denote the unit disc in the complex z-plane, i.e.

D = {z ∈ C : |z| < 1}.

The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition⊕ in D, allowing the Möbius transformation
of the disc to be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the
complex conjugate of z0. Let Aut(D,⊕) be the automorphism group of the
groupoid (D,⊕). If we define

gyr : D×D → Aut(D,⊕)

by the equation

gyr[a, b] =
a⊕ b

b⊕ a
=

1 + ab

1 + ab
,

then the following properties of ⊕ can be easy verified using algebraic calcu-
lation:

a⊕ b = gyr[a, b](b⊕ a), gyrocommutative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c, left gyroassociative law

(a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c), right gyroassociative law

gyr[a, b] = gyr[a⊕ b, b], left loop property

gyr[a, b] = gyr[a, b⊕ a], right loop property

For more details, please see [7].

Definition 1 The hyperbolic distance function in D is defined by the equation

d(a, b) = |aª b| =

∣∣∣∣
a − b

1 − ab

∣∣∣∣ .

Here, aª b = a⊕ (−b), for a, b ∈ D.
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Theorem 1 (The Möbius Hyperbolic Pythagorean Theorem) Let ABC

be a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗), with vertices A,B, C ∈
Vs, sides a,b, c ∈ Vs and side gyrolenghts a, b, c ∈ (−s, s), a = −B⊕ C,

b = −C⊕A, c = −A⊕B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ and with gyroangles α,β,

and γ at the vertices A,B, and C. If γ = π/2, then

c2

s
=

a2

s
⊕ b2

s

(see [8, p. 290]).
For further details we refer to the recent book of A. Ungar [7].

Theorem 2 (Converse of Carnot’s theorem for hyperbolic triangle)
Let ABC be a hyperbolic triangle in the Poincaré disc, whose vertices are the
points A,B and C of the disc and whose sides (directed counterclockwise) are
a = −B ⊕ C, b = −C ⊕ A and c = −A ⊕ B. Let the points A′, B′ and C′ be
located on the sides a, b and c of the hyperbolic triangle ABC, respectively. If
the following holds
∣∣−A⊕ C′

∣∣2ª∣∣−B⊕ C′
∣∣2⊕∣∣−B⊕A′∣∣2ª∣∣−C⊕A′∣∣2⊕∣∣−C⊕ B′

∣∣2ª∣∣−A⊕ B′
∣∣2 = 0,

and two of the three perpendiculars to the sides of the hyperbolic triangle at
the points A′, B′ and C′ are concurrent, then the three perpendiculars are con-
current (See [1]).

2 Main results

In this section, we prove the orthopole theorem for a hyperbolic triangle.

Theorem 3 Let A′, B′, C′ be the projections of the vertices A,B, C of the gy-
rotriangle ABC on a straight gyroline d. If two of the three perpendiculars from
A′ on BC, from B′ on CA, and from C′ on AB are concurrent, then the three
perpendiculars are concurrent.

Proof. Let’s note A′′, B′′, C′′ the projections of the points A′, B′, C′ on BC,CA,

AB, respectively (See Figure 1).
If we use Theorem 1 in the gyrotriangles AA′B′ and AA′C′, we get

∣∣−A⊕ B′
∣∣2 =

∣∣−B′ ⊕A′∣∣2 ⊕ ∣∣−A′ ⊕A
∣∣2 (1)

and ∣∣−C′ ⊕A
∣∣2 =

∣∣−A⊕A′∣∣2 ⊕ ∣∣−A′ ⊕ C′
∣∣2 (2)
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Figure 1: Projections of the points

Because |−A′ ⊕A|
2 = |−A⊕A′|2 , from the relations (1) and (2) we have

∣∣−A⊕ B′
∣∣2 ª ∣∣−B′ ⊕A′∣∣2 =

∣∣−C′ ⊕A
∣∣2 ª ∣∣−A′ ⊕ C′

∣∣2

i.e.

α =
∣∣−A⊕ B′

∣∣2 ª ∣∣−A⊕ C′
∣∣2 =

∣∣−A′ ⊕ B′
∣∣2 ª ∣∣−A′ ⊕ C′

∣∣2 = α′ (3)

Similary we prove that

β =
∣∣−B⊕ C′

∣∣2 ª ∣∣−B⊕A′∣∣2 =
∣∣−B′ ⊕ C′

∣∣2 ª ∣∣−B′ ⊕A′∣∣2 = β′ (4)

respectively

γ =
∣∣−C⊕A′∣∣2 ª ∣∣−C⊕ B′

∣∣2 =
∣∣−C′ ⊕A′∣∣2 ª ∣∣−C′ ⊕ B′

∣∣2 = γ′. (5)

From the relations (3), (4) and (5) result

(α⊕ β)⊕ γ = (α′ ⊕ β′)⊕ γ′.

Since ((−1, 1),⊕) is a commutative group, we immediately obtain
∣∣−A⊕ B′

∣∣2 ª ∣∣−A⊕ C′
∣∣2 ⊕ ∣∣−B⊕ C′

∣∣2 ª ∣∣−B⊕A′∣∣2

⊕ ∣∣−C⊕A′∣∣2 ª ∣∣−C⊕ B′
∣∣2 = 0.

(6)

If we use the Theorem 1 in the gyrotriangles AB′B′′, AC′C′′, BC′C′′, BA′A′′,
CA′A′′ and CB′B′′, we get

∣∣−A⊕ B′
∣∣2 =

∣∣−B′ ⊕ B′′
∣∣2 ⊕ ∣∣−B′′ ⊕A

∣∣2 , (7)
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∣∣−A⊕ C′
∣∣2 =

∣∣−C′ ⊕ C′′
∣∣2 ⊕ ∣∣−C′′ ⊕A

∣∣2 , (8)
∣∣−B⊕ C′

∣∣2 =
∣∣−C′ ⊕ C′′

∣∣2 ⊕ ∣∣−C′′ ⊕ B
∣∣2 , (9)

∣∣−B⊕A′∣∣2 =
∣∣−A′ ⊕A′′∣∣2 ⊕ ∣∣−A′′ ⊕ B

∣∣2 , (10)
∣∣−C⊕A′∣∣2 =

∣∣−A′ ⊕A′′∣∣2 ⊕ ∣∣−A′′ ⊕ C
∣∣2 , (11)

∣∣−C⊕ B′
∣∣2 =

∣∣−B′ ⊕ B′′
∣∣2 ⊕ ∣∣−B′′ ⊕ C

∣∣2 . (12)

Now, from the relations (6) - (12), result

∣∣−A⊕ B′′
∣∣2 ª ∣∣−A⊕ C′′

∣∣2 ⊕ ∣∣−B⊕ C′′
∣∣2 ª ∣∣−B⊕A′′∣∣2 ⊕ ∣∣−C⊕A′′∣∣2

ª ∣∣−C⊕ B′′
∣∣2 = 0,

and by Theorem 2 we obtain that the gyrolines A′A′′, B′B′′, and C′C′′ are
concurrent. ¤

Many of the theorems of Euclidean geometry have relatively similar form in
the Poincare disc model, the orthopole theorem for a hyperbolic triangle is an
example in this respect.
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