AcTtA UNIV. SAPIENTIAE, MATHEMATICA, 4, 1 (2012) 26-35

&

Mills’ ratio: Reciprocal convexity and
functional inequalities

Arpad Baricz
Babeg—Bolyai University,
Department of Economics,
Cluj—Napoca 400591, Romania
email: bariczocsi@yahoo.com

Dedicated to my children Boréka and Koppéany

Abstract. This note contains sufficient conditions for the probabil-
ity density function of an arbitrary continuous univariate distribution,
supported on (0,00), such that the corresponding Mills ratio to be re-
ciprocally convex (concave). To illustrate the applications of the main
results, the reciprocal convexity (concavity) of Mills ratio of the gamma
distribution is discussed in details.

1 Introduction

By definition (see [7]) a function f: (0,00) — R is said to be (strictly) recip-
rocally convex if x — f(x) is (strictly) concave and x — f(1/x) is (strictly)
convex on (0, 00). Merkle [7] showed that f is reciprocally convex if and only
if for all x,y > 0 we have

f( 2xy ) < f(x) + f(y) Sf(x—l—y) < xf(x)—I—yf(y).
X+y 2 2 x+vy

(1)

We note here that in fact the third inequality follows from the fact that the
function x — f(1/x) is convex on (0, co) if and only if x — xf(x) is convex on
(0,00). In what follows, similarly as in [7], a function g : (0,00) — R is said
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to be (strictly) reciprocally concave if and only if —g is (strictly) reciprocally
convex, i.e. if x — g(x) is (strictly) convex and x — g¢(1/x) is (strictly) concave

n (0,00). Observe that if f is differentiable, then x — f(1/x) is (strictly)
convex (concave) on (0,00) if and only if x — x*f/(x) is (strictly) increasing
(decreasing) on (0, c0).

As it was shown by Merkle [7], reciprocally convex functions defined on
(0, 00) have a number of interesting properties: they are increasing on (0, co)
or have a constant value on (0, co), they have a continuous derivative on (0, co)
and they generate a sequence of quasi-arithmetic means, with the first one
between harmonic and arithmetic mean and others above the arithmetic mean.
Some examples of reciprocally convex functions related to the FEuler gamma
function were given in [7].

By definition (see [9]) a function f : (0,00) — R is said to be completely
monotonic, if f has derivatives of all orders and satisfies

(=1 M (x) >0

for all x > 0 and n € {0, 1,...}. Note that strict inequality always holds above
unless f is constant. It is known (Bernstein’s Theorem) that f is completely
monotonic if and only if [9, p. 161]

o
f(x) :J e *tdv(t),
0
where v is a nonnegative measure on [0, co) such that the integral converges for
all x > 0. An important subclass of completely monotonic functions consists
of the Stieltjes transforms defined as the class of functions g : (0,00) — R of
the form
B © dv(t)
alx) = et | -,

where o > 0 and v is a nonnegative measure on [0, c0) such that the integral
converges for all x > 0.

It was pointed out in [7] that if a function h : (0,00) — R is a Stieltjes
transform, then —h is reciprocally convex, i.e. h is reciprocally concave. We
note that some known reciprocally concave functions comes from probability
theory. For example, the Mills ratio of the standard normal distribution is a
reciprocally concave function. For this let us see some basics. The probability
density function ¢ : R — (0, co), the cumulative distribution function ® : R —
(0,1) and the reliability function @ : R — (0,1) of the standard normal law,
are defined by
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and ©
DO(x)=1—0(x) :J @ (t)dt.

The function m: R — (0, 00), defined by

m(x) = o0 _ e /2 JOO e /2t = JOO e Me /20t
(p(x) X 0 ’

is known in literature as Mills’ ratio [8, Sect. 2.26] of the standard normal
law, while its reciprocal T = 1/m, defined by r(x) = 1/m(x) = @(x)/®(x), is
the so-called failure (hazard) rate. For Mills’ ratio of other distributions, like
gamma distribution, we refer to [6] and to the references therein.

It is well-known that Mills’ ratio of the standard normal distribution is con-
vex and strictly decreasing on R, at the origin takes on the value m(0) = /7t/2.
Moreover, it can be shown (see [2]) that x — m/(x)/m(x) is strictly increasing
and x — x?m’(x) is strictly decreasing on (0, co). With other words, the Mills
ratio of the standard normal law is strictly reciprocally concave on (0, 00).
Some other monotonicity properties and interesting functional inequalities in-
volving the Mills ratio of the standard normal distribution can be found in [2].
The following complements the above mentioned results.

Theorem 1 Let m be the Mills ratio of the standard normal law. Then the
function x — m(y/x)//x is a Stieltjes transform and consequently it is strictly
completely monotonic and strictly reciprocally concave on (0, 00). In particular,
if x,y > 0, then the following chain of inequalities holds

xty 2y | o VM) +vxm(/y)
2xy x+y /)~ 2\/xy

y [ 2 m(\/m>>ﬁm(ﬁ)+¢gm(@_
~\Vx+vy 2 - x+y

In each of the above inequalities equality holds if and only if x =y.

Proof. For x > 0 the Mills of the standard normal distribution can be repre-
sented as [5, p. 145]

o X < x
= ———oe(t)dt=2 ——@(t)dt.
mix) = | rgeta =2 el
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From this we obtain that

m(yvx) 1 Joo 1 e /2
VX V2mlo x+s /s

which shows that the function x — m(y/x)/y/x is in fact a Stieltjes transform
and owing to Merkle [7, p. 217] this implies that the function x — —m(y/x)//x
is reciprocally convex on (0,00), i.e. the function x — m(y/x)/4/x is recipro-
cally concave on (0, 00). The rest of the proof follows easily from (1). We note
that the strictly complete monotonicity of the function x — m(y/x)/y/x can be
proved also by using the properties of completely monotonic functions. Mills
ratio m of the standard normal distribution is in fact a Laplace transform and
consequently it is strictly completely monotonic (see [2]). On the other hand,
it is known (see [9]) that if u is strictly completely monotonic and v is non-
negative with a strictly completely monotone derivative, then the composite
function wowv is also strictly completely monotonic. Now, since the function m
is strictly completely monotonic on (0,00) and x — 2(y/x)’ = 1/4/x is strictly
completely monotonic on (0,00), we obtain that x — m(y/x) is also strictly
completely monotonic on (0, 00). Finally, by using the fact that the product
of completely monotonic functions is also completely monotonic, the function
x — m(y/x)/y/x is indeed strictly completely monotonic on (0, co). O

ds,

Now, since the Mills ratio of the standard normal distribution is reciprocally
concave a natural question which arises here is the following: under which con-
ditions does the Mills ratio of an arbitrary continuous univariate distribution,
having support (0, 0c0), will be reciprocally convex (concave)? The goal of this
paper is to find some sufficient conditions for the probability density function of
an arbitrary continuous univariate distribution, supported on the semi-infinite
interval (0, 00), such that the corresponding Mills ratio to be reciprocally con-
vex (concave). The main result of this paper, namely Theorem 2 in section 2,
is based on some recent results of the author [3] and complement naturally the
results from [2, 3]. To illustrate the application of the main result, the Mills
ratio of the gamma distribution is discussed in details in section 3.

We note that although the reciprocal convexity (concavity) of Mills ratio is
interesting in his own right, the convexity of the Mills ratio of continuous dis-
tributions has important applications in monopoly theory, especially in static
pricing problems. For characterizations of the existence or uniqueness of global
maximizers we refer to [4] and to the references therein. Another application
can be found in [10], where the convexity of Mills ratio is used to show that
the price is a sub-martingale.
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2 Reciprocal convexity (concavity) of Mills ratio

In this section our aim is to find some sufficient conditions for the probability
density function such that the corresponding Mills ratio to be reciprocally con-
vex (concave). As in [3] the proof is based on the monotone form of ’'Hospital’s
rule [1, Lemma 2.2].

Theorem 2 Let f: (0,00) — (0,00) be a probability density function and let
w: (0,00) — R, defined by w(x) = f'(x)/f(x), be the logarithmic derivative
of f. Let also F : (0,00) — (0,1), defined by F(x) = Jﬁo f(t)dt, be the sur-
vival function and m : (0,00) — (0,00), defined by m(x) = F(x)/f(x), be the
corresponding Mills ratio. Then the following assertions are true:

(a) If f(x)/w(x) = 0 as x — oo, w'/w? is (strictly) decreasing (increasing)
on (0,00) and the function

x3w’(x)

X xw?Z(x) —xw’(x) — 2w(x)

is (strictly) increasing (decreasing) on (0,00), then Mills ratio m is
(strictly) reciprocally convex (concave) on (0, 00).

(b) If xf(x)/(1—xw(x)) = 0, f(x)/w(x) — 0 as x — 0o, w'/w? is (strictly)
decreasing (increasing) on (0,00) and the function

x2w’(x) —xw(x) + 2

xw?Z(x) —xw’(x) — 2w(x)

X =

is (strictly) increasing (decreasing) on (0,00), then Mills ratio m is
(strictly) reciprocally convex (concave) on (0, 00).

Proof. (a) By definition Mills ratio m is (strictly) reciprocally convex (con-
cave) if m is (strictly) concave (convex) and x — m(1/x) is (strictly) convex
(concave). It is known (see [3, Theorem 2]) that if f(x)/w(x) tends to zero as x
tends to infinity and the function w’/w? is (strictly) increasing (decreasing),
then m is (strictly) convex (concave). Thus, we just need to find conditions for
the (strict) convexity (concavity) of the function x — m(1/x). This function is
(strictly) convex (concave) on (0, c0) if and only if the function x — x?m’(x)
is (strictly) increasing (decreasing) on (0, c0). On the other hand, observe that
Mills ratio m satisfies the differential equation

m’'(x) = —w(x)m(x) — 1.
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Thus, by using the monotone form of I'Hospital’s rule (see [1, Lemma 2.2]) to
prove that the function

(FO0) + (x)/(x)) — lim (F(x) + F(x) /()
£(x)/62w(x)) — Tim f0x)/(xZw(x))

Fx) +f(x)/w(x)
f(x)/ (x*w(x))

x = x*m/(x) = —

is (strictly) increasing (decreasing) on (0, 00) it is enough to show that

(F(x) + fx)/w(x))" x3w’(x)
(f(x)/(x2w(x)))’

Cxw?(x) —xw’(x) — 2w(x)

)
is (strictly) increasing (decreasing) on (0, co).

(b) Observe that according to [7, Lemma 2.2] the function x — m(1/x)
is (strictly) convex (concave) if and only if x +— xm(x) is (strictly) convex
(concave) on (0,00). Now, by using the monotone form of I’'Hospital’s rule
(see [1, Lemma 2.2]) the function

F(x) — xf(x)/(1 —xw(x))

x = (xm(x)" = m(x) —x — xwx)m(x) = f(x)/(1 —xw(x))

is (strictly) increasing (decreasing) on (0, co) if the function

(Fx) = xf(x)/(1 —=xw(x)))  x2w’(x) — xw(x) + 2
X — =
(f(x)/(1 —xw(x)))’ xw?2(x) —xw’(x) — 2w(x)

is (strictly) increasing (decreasing) on (0, 00). Note that we used tacitly the
fact that if xf(x)/(1 —xw(x)) — 0 as x — oo, then f(x)/(1 —xw(x)) — 0 as
X — 00. n

We note here that the reciprocal concavity of the Mills ratio of the standard
normal distribution can be verified easily by using part (a) or part (b) of
Theorem 2. More precisely, in the case of the standard normal distribution we

have w(x) = —x, w’(x) = —1. Consequently @(x)/w(x) = —@(x)/x — 0 as
X — 00, the function x — w’(x)/w?(x) = —1/x? is strictly increasing and
x3w’(x) x?
X = =

xw2(x) —xw’(x) —2w(x)  x2+3
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is strictly decreasing on (0,00). This is turn implies that by using part (a)
of Theorem 2 the Mills ratio of the standard normal distribution is strictly
reciprocally concave on (0, 00).

Similarly, since @(x)/(1 +x?) — 0, x@(x)/(1 +x%) = 0, —(x)/x — 0 as
X — 00, the function x — w’(x)/w?(x) = —1/x? is strictly increasing and

x2w’(x) —xw(x) +2 2

= xw2(x) —xw'(x) — 2w(x)  x3 1+ 3x

is strictly decreasing on (0,00), part (b) of Theorem 2 also implies that the
Mills ratio of the standard normal distribution is strictly reciprocally concave
on (0, c0).

Thus, Theorem 2 in fact generalizes some of the main results of [2].

3 Reciprocal convexity (concavity) of Mills ratio of
the gamma distribution

The gamma distribution has support (0,00}, probability density function, cu-
mulative distribution function and survival function as follows

oa—1,—x
flx) =00 = oo
F(x) = F(x; &) = YIEC&T) = F(10c) J:t“_1e_tdt
and
F(x) =F(x;o0) = Im = F(L)J’ t* e tdt,

where T is the Euler gamma function, y(-,-) and I'(-,-) denote the lower and
upper incomplete gamma functions, and « > 0 is the shape parameter. As we
can see below, the Mills ratio of the gamma distribution m : (0,00) — (0, 00),
defined by

I, x)

m(x) =m(x; &) = Xo—Tg—x’

is reciprocally convex on (0,00) for all 0 < a < 1 and reciprocally concave on
(0,00) for all 1 < o < 2. In [3] it was proved that if o« > 1, then the Mills
ratio m is decreasing and log-convex, and consequently convex on (0, 00). We
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note that the convexity of Mills ratio of the gamma distribution actually can
be verified directly (see [10]), since

0o /¢ o—1 0
m(x) = J <> e tdt = J xu* Tell=wxqy
x 1

and

o0 o0
= J u* Tel-wWxgy 4 J xu® (1 —u)eT"Wxdu,
1 1

where the last equality follows from integration by parts. From this we clearly
have that -
m”(x) = J (e —1)(1 —u)?u*2Zel"Wxqy
1

and consequently m is convex on (0,00) if & > 1 and is concave on (0, 00) if
0 < « < 1. The concavity of the function m can be verified also by using [3,
Theorem 2]. Namely, if let w(x) = f'(x)/f(x) = (c—1)/x —1, then f(x)/w(x)
tends to zero as x tends to infinity and the function x — w’(x)/w?(x) =
(1 —o)/(x—1—x)? is decreasing on (0,00) for all 0 < « < 1. Consequently
in view of [3, Theorem 2] m is indeed concave on (0, 00) for all 0 < o« < 1.

Now let us focus on the reciprocal convexity (concavity) of the Mills ratio
of gamma distribution. Since

x3w’(x) (1 — a)x?

xw2(x) —xw’(x) —2w(x) (x—1—x)24+2x+1—a’

we obtain that

3

x>w’(x) _2(0(—1)(0(—2)(X2+(]—0()X)

<xw2(x)—xw’(x)—2w(x)> (=1 —=%)2+2x+1—a)?2 °

This last expression is clearly positive if 0 < o < 1 and x > 0, and thus, by
using part (a) of Theorem 2 we conclude that Mills ratio m is reciprocally
convex on (0,00) for all 0 < a < 1.

Similarly, since

x2w'(x) —xw(x) + 2 B x% 4+ 2(2 — a)x
xw2(x) —xw’(x) —2w(x) x24+22—a)x+ (a—1)(x—2)’
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we get

x2w'(x) — xw(x) + 2 /_ 20— 1) (ax —2)(x + 2 — )
(xwz(x) —xw’(x) —2w(x)> (2 22— a)x+ (e — 1) (x—2))2

and this is negative if 1 < o« < 2 and x > 0. Consequently, by using part (b)
of Theorem 2 we get that the Mills ratio of the gamma distribution is indeed
reciprocally concave for 1 < o < 2. Here we used that if x tends to oo, then
the expressions f(x)/w(x) and xf(x)/(1 —xw(x)) tend to 0.

Finally, we note that the convexity (concavity) of x — m(1/x) can be ver-
ified also by using the integral representation of Mills ratio of the gamma
distribution. More precisely, if we rewrite m(x) as

m(x) = Joo <1 + E) i e “du,

0 X
then -~ 5
o
x*m/(x) = —J (x—1) (1 + E) ue “du
0 X

and 5

0 -3

[xzm'(x)]/:J (x—1)(x—2) (1 +E)a u—ze*udu.
0 X X

This shows that x — x?m’(x) is decreasing on (0,00) if 1 < « < 2 and

increasing on (0,00) if 0 < « < 1 or &« > 2. Summarizing, the Mills ratio
of the gamma distribution is reciprocally convex on (0,00) if 0 < o« < 1 and
reciprocally concave on (0,00) if T < a < 2. When « > 2 the functions
x — m(x) and x — m(1/x) are convex on (0, c0), thus in this case m is nor
reciprocally convex and neither reciprocally concave on its support.
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