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Abstract. In this paper, with the help of the duality operator and
K. Fan’s lemma, we present existence results for strong vector equilib-
rium problems, under pseudomonotonicity assumptions and without any
pseudomonotonicity assumptions, respectively. Then, as an application,
the main results allow us to state existence theorems for strong vector
variational inequality problems.

1 Introduction and mathematical tools

Let A be a nonempty subset of a topological space E, let C be a nontrivial
pointed convex cone of a real topological linear space Z, and let φ : A×A→ Z

be a given bifunction. In [1], the scalar equilibrium problem was extended to
vector-valued bifunctions in the following way:

find ā ∈ A such that φ(ā, b) /∈ −C \ {0} for all b ∈ A. (VEP)

Throughout this paper we deal with (VEP), which is called the strong vector
equilibrium problem. In the last decade, the study of strong vector equilibrium
problems and their particular cases received a special attention from many
authors, see, for instance: [1, 3, 7, 8, 12, 14, 15, 16, 24, 26].
Most of the existence results for vector equilibrium problems, are given

in the hypothesis of a cone with nonempty interior, but, there are important
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ordered topological linear spaces whose ordering cones have an empty interior.
For example, when Z := Lp(T, µ), where (T, µ) is a σ-finite measure space and
p ∈ [1,+∞[, the cone

C := {u ∈ Lp(T, µ) | u(t) ≥ 0 a.e. in [0, T ]}

has an empty interior. Therefore, for optimization problems stated in infinite
dimensional spaces, several generalized interior-point conditions were given in
order to assure strong duality. To this purpose some generalizations of the
classical interior have been introduced (see, for example, [5, 6, 17, 20, 25]).
Another way to overcome this problem is to introduce approximative solu-

tions. H. W. Kuhn and A. W. Tucker [22] observed that some efficient solu-
tions of optimization problems are not satisfactorily characterized by a scalar
minimization problem. To eliminate such anomalous efficient points various
concepts of proper efficiency for optimization problems have been introduced
(see, for instance, [4, 13, 18, 19]).
The aim of this paper is to present new existence results for (VEP) without

any solidness assumption for the cone C.
The paper is organized as follows. In Section 2 with the help of the du-

ality operator, we attach to problem (VEP) a generalized dual strong vector
equilibrium problem. By introducing a new generalization of the maximal g-
pseudomonotonicity due to W. Oettli [24], new existence results for the strong
vector equilibrium problem (VEP) are given. To see which convexity notion sat-
isfies assumption (iv) of Theorem 1, in Corollary 1 this assumption is replaced
by the one in which we demand the C-quasiconvexity of the vector-function
φ(a, ·) for all a ∈ A.
Then, in Section 3, considering two particular cases of the duality operator,

we present existence results for (VEP) under pseudomonotonicity assumptions,
respectively, without any pseudomonotonicity assumptions. The results allow
us to recover already established results from the literature. For example we
recover results from [10] and [24].
Section 4 is devoted to applications. Thus, we give existence results for

strong vector variational inequalities under pseudomonotonicity assumptions,
and without any pseudomonotonicity assumptions, respectively. In Example
1 is showed that the set of operators which satisfies the assumptions of The-
orem 2 is nonempty. Furthermore, from this example we see that there exist
maximal pseudomonotone operators which are not strongly pseudomonotone
in the sense of Definition 5.
In what follows, by using Ky Fan’s lemma we will present new existence

results for (VEP) without any solidness assumption on the cone C.
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Definition 1 Let A be a nonempty subset of a real topological linear space E.
A multifunction T : A → 2A is said to be a KKM-operator if, for every finite
subset {a1, a2, . . . , an} of A, the following inclusion holds:

co {a1, a2, . . . , an} ⊆
n∪
i=1

T(ai).

In finite dimensional spaces the next lemma was given by B. Knaster, C.
Kuratowski, S. Mazurkiewicz in [21], while in infinite dimensional spaces it
was established by Ky Fan.

Lemma 1 ([9]) Let A be a nonempty subset of a real Hausdorff topological
linear space E, and let T : A→ 2A be a KKM-operator satisfying the following
conditions:

(i) T(a) is closed for all a ∈ A;

(ii) there is ā ∈ A such that T(ā) is a compact set.

Then ∩
a∈A

T(a) ̸= ∅.

Now, let us recall the following weakened convexity notion, which can be
found, by example, in [11].

Definition 2 Let E and Z be real topological linear spaces, letA be a nonempty
subset of E, and let C ⊆ Z be a convex cone. A function f : A → Z is said to
be C-quasiconvex if A is convex and, for all a1, a2 ∈ A and all λ ∈ [0, 1], we
have

f(λa1 + (1− λ)a2) ≤C f(a1)

or

f(λa1 + (1− λ)a2) ≤C f(a2).

2 Existence results via Ky Fan’s lemma

From now on, E is considered to be a real Hausdorff topological linear space,
A ⊆ E is a nonempty convex subset, and C is a pointed convex cone of the
real topological linear space Z.
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With the help of an operator, we attach to problem (VEP) a dual problem.
Let D be an operator from F(A,Z) := {ψ | ψ : A × A → Z} into itself,
which is called the duality operator. In fact, D is a set of fixed rules applied
to problem (VEP). By means of D we introduce the following generalized dual
strong vector equilibrium problem:

find ā ∈ A such that D(φ)(ā, b) /∈ −C \ {0} for all b ∈ A. (DVEP)

The following proposition shows that, under a certain hypothesis, the gen-
eralized dual of this dual problem becomes the initial problem. Its proof is
straightforward.

Proposition 1 If

D ◦ D(φ) = φ,

then the generalized dual problem of (DVEP) is problem (VEP).

Let G : A×A→ Z be defined by

G(a, b) := −D(φ)(b, a) for all a, b ∈ A.

In this framework, problem (DVEP) can be written as:

find ā ∈ A such that G(b, ā) /∈ C \ {0} for all b ∈ A. (GVEP)

The next notions are generalizations of the g-monotonicity and maximal
g-monotonicity, respectively, introduced by W. Oettli [24] in the scalar case.

Definition 3 The bifunction φ : A×A→ Z is said to be:

(i) G-pseudomonotone if, for all a, b ∈ A,

φ(a, b) /∈ −C \ {0} implies G(b, a) /∈ C \ {0};

(ii) maximal G-pseudomonotone if it is G-pseudomonotone and, for all a, b ∈
A,

G(x, a) /∈ C \ {0} for all x ∈]a, b] implies φ(a, b) /∈ −C \ {0}.

Proposition 2 If φ : A × A → Z is maximal G-pseudomonotone, then the
sets of solutions of problems (VEP) and (GVEP) coincide.
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Proof. Let ā ∈ A be a solution of problem (VEP), i.e.

φ(ā, b) /∈ −C \ {0} for all b ∈ A.

By the G-pseudomonotonicity of φ we deduce that G(b, ā) /∈ C \ {0} for all
b ∈ A, which assures that ā is a solution of problem (GVEP).
For the converse inclusion, suppose that ā ∈ A is a solution of problem

(GVEP), i.e.

G(b, ā) /∈ C \ {0} for all b ∈ A.

Take b ∈ A. Thus, by the convexity of the set A we have ]ā, b] ⊆ A. Therefore

G(x, ā) /∈ C \ {0} for all x ∈]ā, b].

Since φ is maximal G-pseudomonotone, we get φ(ā, b) /∈ −C\{0}. Taking into
account that b ∈ A was arbitrarily chosen, it results that ā is a solution of
problem (VEP).
Now, let us consider the case when the set of solutions of problem (GVEP)

is empty, i.e. for any a ∈ A there exists ba ∈ A such that

G(ba, a) ∈ C \ {0}.

Due to fact that φ is maximal G-pseudomonotone we have

φ(a, ba) ∈ −C \ {0},

which means that the set of solutions of problem (VEP) is the empty set. Thus,
we proved that the sets of solutions of problems (GVEP) and (VEP) coincide
also for this particular case, and this completes the proof. �
By using the dual formulation (GVEP) of problem (VEP) we obtain the

following existence results for solutions of problem (VEP).

Theorem 1 Suppose that the bifunctions φ : A×A→ Z and G : A×A→ Z

satisfy the following conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) φ is maximal G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) ∈ −C \ {0}} is convex;
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(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Proof. First, we show that the multifunction T : A→ 2A, defined by

T(b) := cl {a ∈ A | φ(a, b) /∈ −C \ {0}},

is a KKM-operator. In view of assumption (i), it results that the set T(b) is
nonempty for each b ∈ A.
By contradiction, we suppose that T is not a KKM-operator, i.e. there exist

a finite subset {b1, b2, . . . , bn} of A and numbers λ1, . . . , λn ≥ 0 with λ1+ · · ·+
λn = 1 such that

b̄ :=

n∑
i=1

λibi /∈ T(bj) for all j ∈ {1, 2, . . . , n}.

This relation gives

φ(b̄, bj) ∈ −C \ {0} for all j ∈ {1, . . . , n}.

So, bj ∈ W(b̄) for all j ∈ {1, . . . , n}. But, by assumption (iv), the set W(b̄)
is convex. Consequently, it follows that b̄ ∈ W(b̄). This is a contradiction to
assumption (i).
Assumption (v) assures the existence of an element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Thus, T(b̃) ⊆ D. Because D is compact and T(b̃) is closed, it follows that T(b̃)
is a compact set. The assumptions of Lemma 1 are satisfied and, by this we
get the existence of a point ā ∈ D such that ā ∈ T(b) for all b ∈ A. The
G-pseudomonotonicity of φ and the closedness of the set S(b) imply that

T(b) ⊆ S(b) for all b ∈ A.

Therefore, we obtain ā ∈ S(b) for all b ∈ A, i.e. ā is a solution of problem
(GVEP). By Proposition 2, ā is a solution of problem (VEP). �
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Remark 1 It is worth to underline that our result is different from Theorem
1 established in [1]. Assumption (i) of Theorem 1 is stronger than condition
(i) of Theorem 1 from [1] (we just have to take B = A and T to be the identity
operator in condition (i) of Theorem 1 of [1]), while our coercivity condition
is weaker than the compactness assumption for the set A. Further, the part
of the maximal G-pseudomonotonicity which assures the inclusion between
the set of solutions of the dual problem and the set of solution of the initial
problem, is different from the one considered in condition (v) of the Theorem
1 from [1].

Corollary 1 Suppose that the bifunctions φ : A×A→ Z and G : A×A→ Z

satisfy the following conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) φ is maximal G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the function φ(a, ·) : A→ Z is C-quasiconvex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Proof. For the proof of this corollary, we have to show that the assumptions
of Theorem 1 are satisfied. It is obvious that the assumptions (i), (ii), (iii) and
(v) are satisfied. To verify assumption (iv), fix a ∈ A, and let b1, b2 ∈ A and
λ ∈ [0, 1] be such that b1, b2 ∈W(a), i.e.

φ(a, b1) ∈ −C \ {0} and φ(a, b2) ∈ −C \ {0}.

By the C-quasiconvexity of φ(a, ·) there is an index i0 ∈ {1, 2} with the prop-
erty

φ(a, bi0) ∈ φ(a, tb1 + (1− t)b2) + C.

So, there exists c ∈ C such that

φ(a, bi0) = φ(a, tb1 + (1− t)b2) + c. (1)
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Because d := φ(a, bi0) ∈ −C \ {0}, by (1) we get

φ(a, tb1 + (1− t)b2) = −c+ d ∈ −C \ {0}.

Thus, the set W(a) is convex. �

Remark 2 Assumption (iv) in Theorem 1 does not imply assumption (iv)
of Corollary 1. Indeed, let E = Z, let C ⊆ Z be a pointed convex cone such
that the ordering defined by C is not total on A, and let φ : A × A → Z be
defined by

φ(a, b) := b for all a, b ∈ A.

In order to verify assumption (iv) of Theorem 1, fix a ∈ A and take b1, b2 ∈
W(a). Thus b1, b2 ∈ −C \ {0}. Because −C \ {0} is convex, we have

λb1 + (1− λ)b2 ∈ −C \ {0} for every λ ∈ [0, 1].

So, W(a) is a convex set.
Now, let b1, b2 ∈ A and λ ∈ [0, 1]. Suppose that φ(a, ·) : A → Z is C-

quasiconvex. Thus, we obtain

b1 ∈ b2 + C or b2 ∈ b1 + C.

Since b1 and b2 were arbitrarily chosen and the ordering induced by C on A
is not total, it follows that the function φ(a, ·) is not C-quasiconvex.

3 Particular cases of the generalized dual problem

In what follows we consider two particular cases of the operator D. Firstly we
define D : F(A,Z) → F(A,Z) by

D(ψ)(a, b) := −ψ(b, a) for all a, b ∈ A. (2)

So, the generalized dual strong vector equilibrium problem becomes:

find ā ∈ A such that φ(b, ā) /∈ C \ {0} for all b ∈ A. (DVEP1)

Under pseudomonotonicity assumptions we will give an existence result for
the strong vector equilibrium problem (VEP). For this, we recall some mono-
tonicity notions, used in the past for vector-valued bifunctions. Taking into
consideration that the vector-valued bifunction G : A × A → Z, associated
with the operator D : F(A,Z) → F(A,Z) defined by (2), coincides with φ,
Definition 3 yields the following definition.
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Definition 4 The bifunction φ : A×A→ Z is said to be:

(i) pseudomonotone if, for all a, b ∈ A,

φ(a, b) /∈ −C \ {0} implies φ(b, a) /∈ C \ {0};

(ii) maximal pseudomonotone if it is pseudomonotone and, for all a, b ∈ A,

φ(x, a) /∈ C \ {0} for all x ∈]a, b] implies φ(a, b) /∈ −C \ {0}.

Proposition 3 If φ : A×A→ Z is maximal pseudomonotone, then the sets
of solutions of problems (VEP) and (DVEP1) coincide.

Proof. Take
G(b, a) := φ(b, a) for all a, b ∈ A

in Proposition 2. �
Theorem 1 provides the next existence result of solutions of (VEP) under a

pseudomonotonicity assumption.

Corollary 2 Suppose that the bifunction φ : A×A→ Z satisfies the following
conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) φ is maximal pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | φ(b, a) /∈ C \ {0}} is closed;

(iv) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) ∈ −C \ {0}} is convex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Now, if we define D : F(A,Z) → F(A,Z) by D(ψ) := ψ, we obtain an
existence result for problem (VEP) without pseudomonotonicity assumptions.
It is easy to verify that the assumption of φ to be maximal G-pseudomonotone
is fulfilled.
In this case, the generalized dual problem of problem (VEP) is exactly:

find ā ∈ A such that φ(ā, b) /∈ −C \ {0} for all b ∈ A. (VEP)
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Corollary 3 Suppose that the bifunction φ : A×A→ Z satisfies the following
conditions:

(i) φ(a, a) ∈ C for all a ∈ A;

(ii) for each b ∈ A, the set S(b) := {a ∈ A | φ(a, b) /∈ −C \ {0}} is closed;

(iii) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) ∈ −C \ {0}} is convex;

(iv) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) ∈ −C \ {0} for all x ∈ A \D.

Then problem (VEP) admits a solution.

Theorem 1 and Corollary 3 allow us to reobtain Lemma 1 and Theorem 2
established by W. Oettli [24], which are existence results for scalar equilibrium
problems. Indeed, in what follows assume that Z := R and C := R+.

Corollary 4 ([24]) Let the bifunctions φ : A × A → R and G : A × A → R
satisfy the following conditions:

(i) φ(a, a) ≥ 0 for all a ∈ A;

(ii) φ is maximal G-pseudomonotone;

(iii) for each b ∈ A, the set S(b) := {a ∈ A | G(b, a) ≤ 0} is closed;

(iv) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) < 0} is convex;

(v) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) < 0 for all x ∈ A \D.

Then the scalar equilibrium problem admits a solution.

Corollary 5 ([24]) Suppose that the bifunction φ : A × A → R satisfies the
following conditions:

(i) φ(a, a) ≥ 0 for all a ∈ A;

(ii) for each b ∈ A, the set S(b) := {a ∈ A | φ(a, b) ≥ 0} is closed;
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(iii) for each a ∈ A, the set W(a) := {b ∈ A | φ(a, b) < 0} is convex;

(iv) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

φ(x, b̃) < 0 for all x ∈ A \D.

Then the scalar equilibrium problem admits a solution.

Corollary 5 is a slight generalization of an existence result established in
[10] and recovered by [23]. In the sequel we deduce Fan’s result.

Corollary 6 ([10]) Let A be a compact set, and let φ : A×A→ R satisfy the
following conditions:

(i) φ(a, a) ≥ 0 for all a ∈ A;

(ii) φ(·, b) : A→ R is upper semicontinuous for all b ∈ A;

(iii) φ(a, ·) : A→ R is quasiconvex for all a ∈ A.

Then the scalar equilibrium problem admits a solution.

Proof. Because A is compact and φ(·, b) : A → R is upper semicontinuous
on A for all b ∈ A, the assumptions (ii) and (iv) of Corollary 5 are satisfied.
It remains to show the convexity of the set W(a) for each a ∈ A. So, let

b1, b2 ∈ A and λ ∈ [0, 1]. By the quasiconvexity of φ(a, ·) : A → R and the
inequality

max {φ(a, b1), φ(a, b2)} < 0

we deduce that
φ(a, λb1 + (1− λ)b2) < 0.

Thus, assumption (iii) of Corollary 5 is also satisfied and the proof is com-
pleted. �

4 Applications to strong vector variational
inequalities

Strong vector variational inequality problems are particular cases of the strong
vector equilibrium problem (VEP). Let A be a nonempty convex subset of
a real topological linear space E, and let F : A → L(E,Z) be a mapping,
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where L(E,Z) denotes the set of all continuous linear functions from E to a
real Hausdorff topological linear space Z. Further, let C ⊆ Z be a nontrivial
pointed convex cone. Using these notations, in this section we will study the
following variational inequalities:

find ā ∈ A such that ⟨F(b), b− ā⟩ /∈ −C \ {0} for all b ∈ A; (MVI)

find ā ∈ A such that ⟨F(ā), b− ā⟩ /∈ −C \ {0} for all b ∈ A. (SVI)

As in the previous section, for all a, b ∈ A, ⟨F(b), b− a⟩ denotes the value of
the function F(b) at the point b−a. Problem (MVI) is called the strong Minty
vector variational inequality, while (SVI) is called the strong Stampacchia vec-
tor variational inequality.
Using the generalized duality theory presented in the main section we deduce

that the strong Stampacchia vector variational inequality (SVI) admits as a
generalized dual the strong Minty vector variational inequality (MVI). We
notice that the vice-versa also holds, i.e. the generalized dual problem of (MVI)
is (SVI).
In [12] there is presented an existence result for (SVI) under the following

monotonicity property. The mapping F : A → L(E,Z) is said to be strongly
pseudomonotone if, for all a, b ∈ A,

⟨F(a), b− a⟩ /∈ −C \ {0} implies ⟨F(b), b− a⟩ ∈ C.

In what follows we work with the notion of pseudomonotonicity, which is
weaker than the above one. To see this, we will give an example.

Definition 5 ([12]) The mapping F : A→ L(E,Z) is said to be pseudomono-
tone if, for all a, b ∈ A,

⟨F(a), b− a⟩ /∈ −C \ {0} implies ⟨F(b), b− a⟩ /∈ −C \ {0}.

Example 1 Let E := R2, A := [0, 1] × [0, 1], Z := R2, C := R2+, and define
F : A→ L(R2,R2) by

⟨F(a), x⟩ := (x1+x2)(a1−2, a2+2) for all a := (a1, a2) ∈ A, x := (x1, x2) ∈ R2.

Let a := (a1, a2) and b := (b1, b2) be points from A. Since a1 − 2 < 0 and
a2 + 2 > 0, it follows from

⟨F(a), b− a⟩ = (b1 + b2 − a1 − a2)(a1 − 2, a2 + 2)
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that ⟨F(a), b−a⟩ /∈ −R2+\{0}. Similarly, taking into consideration that b1−2 <
0 and b2 + 2 > 0, we obtain from

⟨F(b), b− a⟩ = (b1 + b2 − a1 − a2)(b1 − 2, b2 + 2) (3)

that ⟨F(b), b − a⟩ /∈ −R2+ \ {0}. Consequently, F is pseudomonotone. On the
other hand, when b1 + b2 − a1 − a2 ̸= 0, then (3) implies that

⟨F(b), b− a⟩ /∈ R2+.

Thus F is not strongly pseudomonotone.

The following notion is a particular case of Definition 3.

Definition 6 The mapping F : A → L(E,Z) is said to be maximal pseu-
domonotone if the following conditions are satisfied:

(i) F is pseudomonotone;

(ii) for all a, b ∈ A the following implication holds: if ⟨F(x), a− x⟩ /∈ C \ {0}

for all x ∈ ]a, b], then ⟨F(a), a− b⟩ /∈ C \ {0}.

The next statement follows by Proposition 3.

Proposition 4 If F is maximal pseudomonotone, then the solution sets of
problems (SVI) and (MVI) coincide.

Using Corollary 2, we obtain the following existence result for (SVI).

Theorem 2 Suppose that the following conditions are satisfied:

(i) F is maximal pseudomonotone;

(ii) the set S(b) := {a ∈ A | ⟨F(b), b− a⟩ /∈ −C \ {0}} is closed for all b ∈ A;

(iii) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

⟨F(x), b̃− x⟩ ∈ −C \ {0} for all x ∈ A \D.

Then the problem (SVI) admits a solution.
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Proof. Let φ : A × A → Z be defined by φ(a, b) := ⟨F(a), b − a⟩. We show
that φ satisfies the assumptions of Corollary 2. Indeed, the assumptions (ii),
(iii) and (v) are satisfied by the hypothesis (i), (ii) and (iii), respectively. It
remains to verify the assumptions (i) and (iv) of Corollary 2. Let a ∈ A. Since
F(a) ∈ L(E,Z), it follows that φ(a, a) = 0 and that the set

W(a) := {b ∈ A | ⟨F(a), b− a⟩ ∈ −C \ {0}}

is convex. So, all the assumptions of Corollary 2 are fulfilled. Hence, there
exists ā ∈ A which is a solution for (SVI). �

Example 2 To show that there exists mappings which satisfy the assump-
tions of Theorem 2, let E := R2, A := [0, 1] × [0, 1], Z := R2, C := R2+, and
define F : [0, 1]× [0, 1] → L(R2,R2) by

⟨F(a), x⟩ := (x1 + x2)(a1 + 1, a2 + 1) (4)

for all a := (a1, a2) ∈ A and all x := (x1, x2) ∈ R2.
Since

(a1 + 1, a2 + 1) ∈ R2+ \ {0} for each a := (a1, a2) ∈ A,

it results from (4) that

∀a ∈ A : {x ∈ R2 | ⟨F(a), x⟩ /∈ R2+ \ {0}} = {(x1, x2) ∈ R2 | x1+2 ≤ 0}. (5)

This inequality implies that

∀a, b ∈ A : {x ∈ R2 | ⟨F(a), x⟩ /∈ R2+ \ {0}} = {x ∈ R2 | ⟨F(b), x⟩ /∈ R2+ \ {0}}.

(6)
Let a := (a1, a2) and b := (b1, b2) be points from A. Suppose that

⟨F(a), b− a⟩ /∈ −R2+ \ {0}.

Then we have ⟨F(a), a− b⟩ /∈ R2+ \ {0}. By virtue of (6) we obtain

⟨F(b), a− b⟩ /∈ R2+ \ {0}, whence ⟨F(b), b− a⟩ /∈ −R2+ \ {0}.

Thus F is a pseudomonotone mapping
Next suppose that

⟨F(x), a− x⟩ /∈ R2+ \ {0} for all x ∈ ]a, b].
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In particular, we have
⟨F(b), a− b⟩ /∈ R2+ \ {0}.

By virtue of (6) we get ⟨F(a), a − b⟩ /∈ R2+ \ {0}. Hence F is a maximal pseu-
domonotone mapping. In other words, condition (i) in Theorem 2 is satisfied.
From (5) it follows that

S(b) = {a ∈ A | ⟨F(b), a− b⟩ /∈ R2+ \ {0}} = {(a1, a2) ∈ A | a1 + a2 ≤ b1 + b2}

for each b := (b1, b2) ∈ A. Consequently, condition (ii) in Theorem 2 is also
satisfied.
Finally, it is obvious that condition (iii) in Theorem 2 is satisfied for D := A.

By Corollary 3 we obtain an existence result for the strong Stampacchia
vector variational inequality without monotonicity assumptions. This new ex-
istence result is a slight generalization of Theorem 2.1 from [12].

Theorem 3 Suppose that the following conditions are satisfied:

(i) for all b ∈ A the set S(b) := {a ∈ A | ⟨F(a), b− a⟩ /∈ −C \ {0}} is closed;

(ii) there exist a nonempty, compact and convex set D ⊆ A as well as an
element b̃ ∈ D such that

⟨F(x), b̃− x⟩ ∈ −C \ {0} for all x ∈ A \D.

Then problem (SVI) admits a solution.

Proof. Define the bifunction φ : A×A→ Z by

φ(a, b) := ⟨F(a), b− a⟩ for all a, b ∈ A.

Let a ∈ A. Since F(a) ∈ L(E,Z), it follows that φ(a, a) = 0 and that the set

W(a) := {b ∈ A | ⟨F(a), b− a⟩ ∈ −C \ {0}}

is convex. By virtue of this observation, all the assumptions of Corollary 3
are satisfied. So, the strong Stampacchia vector variational inequality admits
a solution. �

Corollary 7 ([12]) Let E be a real Banach space, let A be a compact subset,
let Z be a real Banach space ordered by a nonempty pointed solid convex cone
C. Suppose that F : A → L(E,Z) is a mapping such that for every b ∈ A the
set

{a ∈ A | ⟨F(a), b− a⟩ ∈ −C \ {0}}

is open in A. Then problem (SVI) is solvable.
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