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Abstract. In this paper we give a classification of (κ, µ)-contact metric
manifolds with certain curvature restrictions.

1 Introduction

In 1995, Blair, Koufogiorgos and Papantoniou [3] introduced a type of contact
metric manifolds M(2n+1)(φ, ξ, η, g) whose curvature tensor R satisfies

R(X, Y)ξ = κ{η(Y)X − η(X)Y} + µ{η(Y)hX − η(X)hY}, ∀ X, Y ∈ χ(M).

Here, (κ, µ) are real constants and 2h denotes the Lie-Derivative in the direc-
tion of ξ. In this case we say that the characteristic vector field ξ belongs to
the (κ, µ)-nullity distribution and the class of contact metric manifolds sat-
isfying this condition are called (κ, µ)-contact metric manifolds. In case the
vector field ξ is Killing, this class of manifolds are called Sasakian manifolds.
In 1999, Boeckx [5] proved that a (κ, µ)-contact metric manifolds is either
Sasakian or locally φ-symmetric. Later in 2000, Boeckx [6] gave a full clas-
sification of non-Sasakian (κ, µ)-contact metric manifolds. In 2008, Ghosh [7]
proved that all conformally recurrent (κ, µ)-contact metric manifolds are lo-
cally isometric either to the unit sphere S2n+1 or to En+1 × Sn. In this paper,
we study (κ, µ)-contact metric manifolds with different curvature restrictions
and classify such manifolds.
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2 Preliminaries

Let (M2n+1, g) be an almost contact metric manifold with an almost contact
metric structure (φ, ξ, η, g). Then we have

φ2 = −I + η⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, g(X, ξ) = η(X);

(1)

g(φX,φY) = g(X, Y) − η(X)η(Y), g(φX, Y) = dη(X, Y) = −g(X,φY) (2)

for all X, Y ∈ χ(M). The operator h satisfies the following results [2], [3], [4]:

hφ = −φh, η ◦ h = 0, g(hX, Y) = g(X, hY), h2 = (κ − 1)φ2; (3)
hξ = 0, g(X,φhZ) = g(φhX,Z); (4)

∇Xξ = −φX − φhX, (∇
X
η)(Y) = g(X + hX,φY), (5)

where ∇ is the Riemannian connection of g. In a (κ, µ)-contact metric mani-
folds we have the following [3], [4]:

R(ξ, X)Y = κ{g(X, Y)ξ − η(Y)X} + µ{g(hX, Y)ξ − η(Y)hX}; (6)
R(X, Y)ξ = κ{η(Y)X − η(X)Y} + µ{η(Y)hX − η(X)hY}; (7)
S(X, Y) = {2(n − 1) − nµ}g(X, Y) + {2(n − 1) + µ}g(hX, Y) (8)

+ {2(1 − n) + n(2κ + µ)}η(X)η(Y);

S(X, ξ) = 2nκη(X), Qξ = 2nκξ; (9)
r = 2n(2n − 2 + κ − nµ); (10)

and

(∇Xh)(Y) − (∇Yh)(X) = (1 − κ){2g(X,φY)ξ + η(X)φY − η(Y)φX}

+ (1 − µ){η(X)φhY − η(Y)φhX} (11)

for all X, Y ∈ χ(M) where S, r are respectively the Ricci tensor and the scalar
curvature of M.

For (κ, µ)-contact metric manifolds with h = 0, we have κ = 1, and in this
case the manifold reduces to a Sasakian one. The following relations hold in a
Sasakian manifold [2]:

(i) ∇Xξ = −φX, (ii) (∇
X
η)(Y) = g(X, φY), (12)

R(X, Y)ξ = η(Y)X − η(X)Y, (13)
R(ξ, X)Y = g(X, Y)ξ − η(Y)X, (14)
S(X, ξ) = 2nη(X), (15)

S(φX,φY) = S(X, Y) − 2nη(X)η(Y), (16)
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for all X, Y ∈ χ(M). The above formulae will be used in the sequel.

3 On a class of (κ, µ)-contact metric manifolds

A Riemannian manifold (M,g) is called a hyper-generalized recurrent manifold
(for details we refer to [8]) if and only if its curvature tensor R satisfies the
condition

(∇
W

R)(X, Y)Z = A(W)R(X, Y)Z (17)
+ B(W){S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY}

for all X, Y, Z ∈ χ(M); where A and B are two non-zero 1-forms metrically
equivalent to two vector fields σ and ρ, respectively. Moreover, if the the scalar
curvature r is a non-zero constant, then these associated 1-forms are related
by

A + 4nB = 0. (18)

Consequently we have
σ + 4nρ = 0. (19)

Before proceeding for the main theorems of the paper, we are to state the
following lemma [7]:

Lemma 1 For a (κ, µ)-contact metric space, the relation ∇ξh = µhφ holds.

We are now going to prove the main theorems of the paper:
By contracting (17) with respect to W, we obtain

(div R)(X, Y)Z = g(R(X, Y)Z, σ) +
{
S(Y, Z)g(X, ρ) − S(X,Z)g(Y, ρ)

+ g(Y, Z)S(X, ρ) − g(X,Z)S(Y, ρ)
}
.

(20)

Using the result

(div R)(X, Y)Z = (∇XS)(Y, Z) − (∇YS)(X,Z),

in (20), one obtains

(∇XS)(Y, Z) − (∇YS)(X,Z) = g(R(X, Y)Z, σ)+
[
S(Y, Z)g(X, ρ) − S(X,Z)g(Y, ρ)

+ g(Y, Z)S(X, ρ) − g(X, Z)S(Y, ρ)
]
.

(21)
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Setting Z = ξ, yields on using (9)

2nκ
[
g(X + hX,φY) − g(Y + hY,φX)

]

+ S(Y,φX) − S(X,φY) + S(Y,φhX) − S(X,φhY)

= g(R(X, Y)ξ, σ) + 2nκ[η(Y)g(X, ρ) − η(X)g(Y, ρ)]

− [η(Y)S(X, ρ) + η(X)S(Y, ρ)]. (22)

Replacing X by φX and Y by φY and using (1) and (3), we have

2κ + µ + nµ − µκ = 0. (23)

In a (κ, µ)-contact metric manifold, the scalar curvature r is a non-zero con-
stant, therefore using (18) in (17) and thereby contraction over W yields

(∇XS)(Y, Z) − (∇YS)(X,Z) = g(R(X, Y)Z, σ) −
1

4n

[
S(Y, Z)g(X, σ)

− S(X,Z)g(Y, σ) + g(Y, Z)S(X, σ)

− g(X,Z)S(Y, σ)
]
.

(24)

Using (8) and (11) on (24), one obtains

(3µ + 2nκ − nµ − µ2)
(
η(X)g(φhY,Z) − η(Y)g(φhX,Z)

)

= g(R(X, Y)Z, σ) −
1

4n

[
S(Y, Z)g(X, σ) − S(X,Z)g(Y, σ)

+ g(Y, Z)S(X, σ) − g(X,Z)S(Y, σ)
]
.

(25)

Putting X = ξ and setting Z = σ in the above equality, we have by (6)

(3µ + 2nκ − nµ − µ2)g(φhY, σ) = 0. (26)

Two cases arise from above

(i) 3µ + 2nκ − nµ − µ2 = 0, (27)

(ii) φhσ = 0. (28)

From (23) we have
−κ(µ − 2) + (n + 1)µ = 0.

or, κ = (n + 1)
µ

µ − 2
. (29)
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Putting this value of κ in (23) we have

µ(µ − n − 3)(µ + 2n − 2) = 0. (30)

From (29) and (30) we get the following set of corresponding values of µ and
κ:

µ κ

0 0
n + 3 n + 3

2 − 2n n − 1
n

Since, κ < 1 and n > 1, therefore only the case κ = 0 = µ is admissible
and other possibilities will be ignored. For κ = 0 = µ, from (11) we have,
R(X, Y)ξ = 0, for all X, Y. Therefore by [1], a (κ, µ)-contact metric manifold
(M2n+1, g) admitting such a structure is locally isometric to either (i) the unit
sphere S2n+1(1) or (ii) to the product space En+1 × Sn(4).

Next let us consider the case (ii). From (28) we have the following:

φgσ = 0

⇒ φ2hσ = −hσ + η(hσ)ξ

⇒ hσ = 0, by (3)

⇒ h2σ = (κ − 1)φ2σ = 0.

Since, κ < 1, it follows that φ2σ = 0 and consequently σ = η(σ)ξ i.e. for
all vector field W on M, A(W) = η(σ)η(W). Applying (18), we find B(W) =

η(ρ)η(W). Hence putting the values of A and B in (17), one obtains

(∇WR)(X, Y)Z

= η(σ)η(W)R(X, Y)Z

− η(ρ)η(W)
{
S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X, Z)QY

}
. (31)

Placing φ2W in lieu of W and thereby contracting over W in the resulting
equation, we find

(∇XS)(Y, Z) − (∇YS)(X,Z) = g
(
(∇ξR)(X, Y)Z, ξ

)
. (32)

Replacing Y by ξ, the above equation reduces to

(∇XS)(ξ, Z) − (∇ξS)(X,Z) = g
(
(∇ξR)(X, Y)Z, ξ

)
. (33)
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We have,

(∇XS)(ξ, Z) = 2nκ(∇
X
η)(Z) + S(φX, Z) + S(φhX,Z)

= (2nκ + nµ + µ)g(hX, φZ). (34)

Again, from (8) we have

(∇ξS)(X,Z) = (2n − 2 + µ)g((∇
ξ
h)(X), Z)

= µ{2(n − 1) + µ}g(hφX,Z). (35)

Moreover, applying covariant differentiation with respect to the vector field ξ

we obtain

(∇
ξ
R)(X, ξ)Z = −µg((∇

ξ
h)(X), Z)ξ + µ(∇

ξ
η)(Z)hX

= −µg(µ(hφ)(X), Z)ξ + µη(Z)µ(hφ)(X), by Lemma 3.1

= −µ2g(hφX,Z). (36)

Combining the results (33), (34), (35) and (36) we finally obtain

(2nκ + nµ + µ)g(hX,φZ) − µ{2(n − 1) + µ}g(hφX,Z) = µ2g(hφX,Z).

i.e., (2nκ + nµ + µ)g(hφX,Z) = 0.

i.e., (2nκ + nµ + µ) = 0, since g(hφX,Z) 6≡ 0 . (37)

From (37) we get κ = n−3
2n µ. Putting this value of κ in (23) we find

µ{µ(n − 3) − 2(n − 1)(n + 3)} = 0. (38)

So, either µ = 0 or µ =
2(n−1)(n+3)

n−3 . Hence we obtain the following set of values
for κ and µ:

µ κ

0 0
2(n−1)(n+3)

n−3
(n−1)(n+3)

n , unless n = 3

In case n = 3 from (37) we find κ = 0. Hence from (23) we find µ = 0,
whenever n = 3.

By similar argument, as explained earlier, we are to consider κ = 0 = µ.
Hence the same result follows for case (ii). Thus we can state:

Theorem 1 A hyper-generalized recurrent (κ, µ)-contact metric manifold
(M2n+1, g) is locally isometric to either (i) the unit sphere S2n+1(1) or (ii)
to the product space En+1 × Sn(4).



On (κ, µ)-contact metric manifolds with certain curvature restrictions 71

Recalling Theorem (2.1) (viii) of [8], a hyper-generalized recurrent (κ, µ)-
contact metric manifold is generalized 2-Ricci recurrent. Hence we can state
as follows:

Corollary 1 A generalized 2-Ricci recurrent (κ, µ)-contact metric manifold
is locally isometric to either (i) the unit sphere S2n+1(1) or (ii) to the product
space En+1 × Sn(4).

Again by virtue of Theorem (2.1) (v) of [8], a hyper-generalized recurrent
(κ, µ)-contact metric manifold is generalized conharmonically recurrent. Thus
we have the following:

Corollary 2 A generalized conharmonically recurrent (κ, µ)-contact metric
manifold is locally isometric to either (i) the unit sphere S2n+1(1) or (ii) to
the product space En+1 × Sn(4).

Again, in a (κ, µ)-contact metric manifold, if κ = 1, then it reduces to a
Sasakian manifold. Now we are going to find the consequences of the above
theorem for κ = 1 i.e. for the case of Sasakian manifolds.

Taking X = ξ in (21) gives

(∇ξS)(Y, Z) − (∇YS)(ξ, Z)

= g(R(ξ, Y)Z, σ)

+
[
S(Y, Z)η(ρ) − 2nη(Z)g(Y, ρ) + 2ng(Y, Z)η(ρ) − η(Z)S(Y, ρ)

]
.

Since, for a Sasakian manifold ξ is a Killing vector field, therefore £ξS = 0
and hence ∇ξS = 0. Thereby from the above we obtain

−S(φY,Z) + 2ng(φY,Z)

= g(R(ξ, Y)Z, σ)

+
[
S(Y, Z)η(ρ) − 2nη(Z)g(Y, ρ) + 2ng(Y, Z)η(ρ) − η(Z)S(Y, ρ)

]
. (39)

Replacing Y and Z by φY and φZ respectively and using (1) and (2) yields

S(Y,φZ) − 2ng(Y,φZ)

= η(σ){g(Y, Z) − η(Y)η(Z)}

+ η(ρ)
{
S(Y, Z) + 2ng(Y, Z) − 4nη(Y)η(Z)

}
. (40)

Again replacing φY for Y in (40), we obtain

S(Y, Z) − 2ng(Y, Z) = η(σ)g(φY,Z) + η(ρ)
{
S(φY,Z) + 2ng(φY,Z)

}
. (41)
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Since, S and g are symmetric, the left hand side of (41) is symmetric with
respect to Y and Z. Hence we have

S(Y, Z) = 2ng(Y, Z). (42)

Thus a hyper-generalized recurrent Sasakian manifold is an Einstein man-
ifold with non-vanishing scalar curvature r = 2n(2n + 1). Using (42) in (17)
and thereafter by (18), we acquire

(∇
W

R)(X, Y)Z = −4nB(W)
{
R(X, Y)Z − g(Y, Z)X + g(X,Z)Y

}
. (43)

On cyclic transposition of the last equation twice over X, Y,W and thereafter
summing up these resulting equations we get by virtue of the second Bianchi
identity,

B(W)
{
R(X, Y)Z − g(Y, Z)X + g(X, Z)Y

}

+ B(Y)
{
R(W,X)Z − g(X,Z)W + g(W,Z)X

}

+ B(X)
{
R(Y,W)Z − g(W,Z)Y + g(Y, Z)W

}
= 0. (44)

On contraction with respect to W and using (42), we obtain

R(X, Y)ρ = B(Y)X − B(X)Y. (45)

In a similar fashion, we can also find

R(Z, ρ)X = B(X)Z − g(X,Z)ρ. (46)

Assigning W = ρ in (44) and utilizing (45) and (46) one determines

g(ρ, ρ){R(X, Y)Z − g(Y, Z)X + g(X,Z)Y} = 0.

Since ρ 6= 0, one must have for arbitrary vector fields X, Y and Z on M

R(X, Y)Z = g(Y, Z)X − g(X,Z)Y. (47)

This implies the space under consideration 1 is of constant curvature 1 and
hence locally isometric to the unit sphere. This gives the following theorem:

Theorem 2 A hyper-generalized recurrent Sasakian manifold (M2n+1, g) is
of constant curvature 1 and hence locally isometric to a unit sphere S2n+1(1).

Also by virtue of Theorem (2.1) (v) of [8], a hyper-generalized recurrent
Sasakian manifold is generalized conharmonically recurrent. Hence we state
the following:



On (κ, µ)-contact metric manifolds with certain curvature restrictions 73

Corollary 3 A generalized conharmonically recurrent Sasakian manifold is
of constant curvature 1 and hence locally isometric to a unit sphere S2n+1(1).

Retrieving the Theorem (2.1) (viii) of [8], a hyper-generalized recurrent Sasakian
manifold is generalized 2-Ricci recurrent. Thus one obtains,

Corollary 4 A generalized 2-Ricci recurrent Sasakian manifold is of constant
curvature 1 and hence locally isometric to a unit sphere S2n+1(1).
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