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Abstract. Due to widely study of K-uniformly typed of functions, we es-
tablish here the inclusion relations for K-uniformly starlike, K-uniformly
convex, close to convex and quasi-convex functions under the D;}:gb op-
erator introduced by the authors [1].

1 Introduction

Let U ={z:2z € C |z| <1} be the open unit disk and A denotes the class of
functions f normalized by

f2) =2+ az",
k=2

which is analytic in the open unit disk U and satisfies the condition f(0) =
f'(0)—1 = 0. A function f € A is said to be in UST(k,«), the class of k-
uniformly starlike functions of order c, 0 < « < 1 if it satisfies the condition

()55

f(z)
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—1‘7 k>0, 0<a<l.
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Similarly, a function f € A is said to be in UCV (k, «), the class of k-uniformly
convex functions of order o, 0 < o < 1 if it satisfies the condition

R 50) 4

The classes of uniformly convex and uniformly starlike were introduced by
Goodman [3,4] and later generalized by Kanas and Wisniowska ([14],[15]) (see
also the work of Kanas and Srivastava [16], Ronning ([7],[8]), Ma and Minda
[20] and Gangadharan et al. [2]).

Let F and G be analytic functions in the unit disk U. The function F is
subordinate to G written F' < G. If G is univalent, then F(0) = G(0) and
FU)c G).

In general, given two functions F' and GG which are analytic in U, the function
F is said to be subordinate to G if there exist a function w analytic in U with

, k>0, 0<a<l.

w(0) =0 and (Vz € U): |w(z)| <1,

such that
(VzeU): F(z) = G(w(z)).

For arbitrarily chosen k € [0,00[ and 0 < a < 1, let Q , denote the domain
Qo = {u+iv, (u—a)® >k (u—1)%+k*?).

This characterization enables us to designate precisely the domain 4, as a
convex domain contain in the right half-plane. Moreover, 2 , is an elliptic
region for k > 1, parabolic for k£ = 1, hyperbolic for 0 < £ < 1 and finally Qg o
is the whole right half-plane.

Let g a(2) : U — Qo denote the conformal mapping of U onto Qo so
that ¢ o(0) =0, gr.a'(0) > 0. The explicit forms of gx o(z), were obtained in
[13] as follows:

( #:30‘)2 for k =0,
1=% cos {% arccos(k)ilog (ié)} — ]f:k’% for k € (0,1)
0 (2) = | 14 205 (1og (i£>)2 for k =1,
p sin { e b Vs t Prk> 1,
_ =T mK'(z)

where u(z) = —va L€ (0,1) and K is such k = cosh TOR
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Let P denote the class of Caratheodory functions analytic in U e.g.

P = {p:panalyticinU, p(0) =1, Rp(z) > 0}.

The characterization of the classes UST(k,«) and UCV (k,«), can be ex-
pressed in terms of subordination as follows,

f € UST(k,a) © plz) = Z]{(i)) < qeals), z€U,

and
1
feuCV(k,a)<p(z) = Z]J:’(S> +1 < qralz), z€U.
So that
k+«
. 1
Rp(2) > Rapalz) > 07 (1)
Define UCC(k, cv, ) to be the family of functions f € A such that
2f'(2)
) < qral(z), z€U,

for some g(z) € UST(k, 3). On the other hand, let UQC'(k, o, 3) be the family
of functions f € A such that

/ /
(Z;t,((;))) < Qk:,a(z)a z € U7
for some g(z) € UCV (k, ).

We observe that, UCC(0, «, 3) is the class of close-to-convex functions of
order a and type 8 and UQC(0, o, 3) is the class of quasi-convex functions of
order @ and type (5.

We now state the following definition.

Definition 1 ([1]) Let the function f € A, then for u,m € C, a € C/
{—=1,-2,...}, and A > —1, we define the following operator:

m E4+a\"(A+1),_,4
D/\ —cF Z <1 —|—a> (1)1 2" @
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Here (z) is Pochhammer symbol (or the shifted factorial), defined by

()5 = I'(x+ k) { 1,k=0 and z € C\{0};

I'(z) zz+1)...(z+k—-1)ifke N and z € C,

and I'(z), (x € C) denotes the Gamma function.

It should be noted that the operator D,))jg” f(2) is a generalization of many
operators considered earlier. For m € Z, a > 1, u = 1 and A = 0 the operator
D,’)j;n were studied by Cho and Srivastava [6], for m = —1, p = land A =0
the operator is the integral operator studied by Owa and Srivastava [17], for
any negative real number m and p =1, a =1, A = 0 the operator D;);,T is the
integral operator studied by Jung et. al [5], for any nonnegative integer number
mand g =1,a = 0, A = 0 the operator Dﬁ‘;gl is the differential operator
defined by Salagean [9], for m = 0, u = 1, A > —1 the operator D,’)jZL is
the differential operator defined by Ruscheweyh [19], for p = land A > —1
the operator D,)jjgl is the multiplier transformations defined by Al-Shaqgsi and
Darus [10] and for D,));ZL the operator D;};T is the derivative operator given
by Al-Shagsi and Darus [11]. In particular, we note that D?:g = f(z) and
Dyg = 2f'(2).

It is readily verified from (2) that

2Dy S (2)) = uDpm f(2) — (= 1)D)  f(2) (3)
2DNIf(2)) = (A + 1)DYEE™ F(2) — ADY™ f(2) (4)
2DNTf(2)) = (a+1)DymrLf(2) — aDM f(2). (5)

2 Main results

The main object of this paper is to study the inclusion properties of the above-
mentioned classes under the multiplier transformation Dﬁ:? f(2).
We shall need the following lemmas to prove our theorems:

Lemma 1 ([12]) Let o,v be complex numbers. Suppose also that m(z) be
convex uniwvalent in U with m(0) =1 and Rlom(z) +v| > 0, z € U. If u(z) is
analytic in U with u(0) = 1, then
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Lemma 2 ([18]) Let h(z) be the convex in the unit disk U and let E > 0.
suppose B(z) is analytic in U with R B(z) > E. If g(z) is analytic in U and
9(0) = h(0). Then

E2%¢"(2) + B(2)zd'(2) + g(2) < h(2) = g(2) < h(2).
Our first result is the following:

Theorem 1 Let f(z) € A.
If Dy f(2) € UST(k, ), and Ry > 1%, then DT} f(2) € UST(k, ).

pn+1la
D)x,m !
Proof. Let p(z) = W In view of (3), we can write
ptl,a
A?

M‘Dﬂaglf(z) *p(z) +u— 1

X, = '
Dyt (2)

Differentiating the above expression yields
z (D)"mf(z))/ /
AT (2) + N AONS
Dy f(z) p(z) +p—1
From this and argument given in the introduction we may write

p(2) + 2p'(2)

—Y— < Z).

p(Z) + [l _ 1 qk},a( )
Therefore, the theorem follows by Lemma 1 and the condition (1) since gx o (2)
is univalent and convex in U and R(gx,a(2)) > ]I?FT? O

Theorem 2 Let f(z) € A.
If Dy f(2) € UCV (k. ), then D)7} f(2) € UCV (k, ).

Proof.
/
DM f(2) € UCV (k,a) < 2 (DQ;;” (z)) € UST(k,a)
& D (2f'(2)) e UST (K, a)
& DYy al2/(2)) € UST(k.0)
& Dyl of(2) e UCV (K, ),

and the proof is complete. O
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Theorem 3 Let f(z) € A
IfD,’);;nf(z) e UCC(k,a, B), and Ry > ﬁ, then D;‘ﬁ J(2) e UCC(k, a, B).

Proof. Since Dﬁznf(z) e UCC(k,a, 3), by definition, we can write

Amoe !
Ww,a(z),

for some K(z) € UST(k, 3). For g(z) such that Df)jg"g(z) = K(z), we have

z (Dﬁj?f(z))l
N 7 o(2). 6
Dpitg(2) < Ghel2) ©

Dk,m af ! D/\ m Y !
Letting r(2) = Miw) and R(z) = M, we observe that r and
D,uis»l,u.g(z) Dlu,+1,ag(z)

R are analytic in U and r(0) = R(0) = 1. Now, by Theorem 1, Dﬁ’ﬂ,ag(z) €
UST(k, () and so R(R(z)) > IZi‘f,also, note that

2 (D)) = (DA a9(2) (). ©

Differentiating both sides of (7) yields

(z (Dot (z))/>, 2 (D) 9(2))
z D;‘f{ ) = Diﬁ ) r(z) 4+ zr'(z) = R(2)r(2) + 2r'(2).

Now using the identity (3), we obtain

(DNe) D epe)
Dydg(z) Dﬁz”gm
2D 2 f'(2)) + (= 1D (21(2)
(D;H—l,ag(z)) + (1 — )Du+1 ag( )

2Dy 2 F(2) DA™ (2f'(2)
_1 l‘i

_ Dl © MG i e
( y,+l a9z ))

(2
WJF(N*U

u+1,a9
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(02 ut)) e 1)z(D:i’i,af<z>)’
DX o(2) K DM 9(2)
z(Dﬁﬂ 29(2))
Plutla®H7 4 (1
Dy L9(2) (n=1) (8)
_ R(2)r(z) +2r'(2) + (n— 1)r(z2)
R(z) + (u—1)

21’ (2)

TR ey
From (6), (7) and (8), we conclude that

m < Qk,a(z)‘

In order to apply Lemma 2, Let E =0 and B(z) = m, we obtain

1
RBG)) = o e RRE) + (= 1) > 0

Then we conclude that 7(z) < g (2) and so the proof is complete. O

Using a similar argument in Theorem 2, we can prove

Theorem 4 Let f(z) € A.
If Dyt f(2) € UQC(k, v, B), then DT f(2) € UQC (K, a, B).

Now, we examine the closure property of the above classes of functions under
the generalized Bernardi-Libera-Livingston operator W (f) which is defined by

z

,(z) = 1 /tclf(t)dt (c>—1), f(z)€A. )

2C
0

—(k+a)
Theorem 5 Let ¢ > k+1a )

IfD;‘ﬂyaf(z) € UST(k, ), then Dﬁﬂﬂ\llc(f(z)) € UST (k, ), where U, is

the integral operator defined by (9).

Proof. From (3) and (9), we have

DY Uef(2)) = (c+ )DL f(2) — Dy Wef (2). (10)
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DM wef(2))
Substituting p(z) = Z( = (Z)) in (10), we can write

A,
DAL WS (2)

1) Latial )

(c - =p(2) + ¢ (11)
Dy o Pef (2)
Differentiating (11) yields
/
(Dl (2) )y )
Dyl f(2) p(z) +c

Applying Lemma 1, it follows that p(z) < g (), that is,

2 (DY, (2))

Dy Ve f(2)

< dk,a (Z)a

and so

Dyl Vef(2) € UST(k, cv).

A similar argument leads to:

—(k+a)
Theorem 6 Let ¢ > T

If Dﬁ’ﬂ,a f(z) e UCV (k, ), then Diﬂﬂlllc(f(z)) e UCV (k,«), where ¥,

is the integral operator defined by (9).

—(k+a)
Theorem 7 Let ¢ > r

If DY f(2) € UCC(k,q), then D)y \Wo(f(2)) € UCC(k, ).

Proof. By definition, there exists a function K(z) € UST(k, 3) and for g(z)
such that Dzﬁ’ag(z) = K(z), we have

2 (D)t 2)

A:
D 49(2)

< Qral2). (12)
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Now from (10) we have

2 (DM1af) DML ()

A7 A7
Dl ,9(2) Dl ,9(2)
Z(Dzﬁ’allfczf’(z))’ + cDﬁﬂya\I/sz’(z)
- A, X
z(DM_ﬁ’a\Ing(z))’ + cDuﬁﬂ‘Ilcg(z)

2 <z (DA o e f(z))/> ez (D)LVef(2) (3)
DN Weg(2)) + DN Wog(z)

/L+1,a C I,LJ,»LG,
I
A,m ! !
Z<Z<Du+1va%f(z)) > 4 Z(Dzﬂ,aq’Cf(z))
, A,
— Duﬁ,aqjcg(z) Duﬂ,alpcg(z)
= "
AD1aYes @)

A,
D‘H’i’iu‘ycg(z)

Since Dﬁﬂﬂg(z) € UST(k,(3), by Theorem 6, we have Dzﬂjallfc(g(z)) €

z<D>"m \I/cf(z))/ Z(D/\'m ‘Ilcg(z)>,
. _ n+1,a _ p+1,a
UST(k, (). Letting r(z) = DN vea) and R(z) = DN i) we
observe that R{R(z)} > % Also, note that
A,m ! A,m
2 (DM, 0ef(2) = (D)} Weg(2)r(2) (14)
Differentiating both sides of (14) yields
/!
A,m ! !
z (D;Hrl,aq’cf(z)) DM W.g(z)
ptla / ’
z W =2 r(z)+2r'(z) = R(2)r(z)+2r'(2).
DM’+17G\IJCQ(2) Dpzrl,alpcg(z)
(15)
Therefore from (13) and (10), we obtain
A,m !
z (D,H-l,af(z)) _ R(2)r(z) +2r'(2) +er(z) r(2) zr'(2)
Dy 49(2) R(z) +c R() +c

From (12), (14) and (15), we conclude that

2r'(2)

QRS T

=< qk,a(z).
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In order to apply Lemma 2, Let £ =0 and B(z) = %, we note that
. k+ 3
R{B 0 if -
{B(2)} >0if ¢ > PR

Then we conclude that 7(z) < Qg «(2) and so the proof is complete. A similar
argument yields. O

—(k+a)
Theorem 8 Let ¢ > T

If DY f(2) € UQC(K, o, B), then D)y \Wo(f(2)) € UQC(K, a, B).

Similarly by using (4) and (5) we obtain the following results. Since the proof
of the results is similar to the proof of Theorems 1-8, it will be omitted.

Theorem 9 Let f(z) € A
If D)\+1 mf(Z) e UST(k, ), then D;};Zlf(z) e UST (k, ).

Theorem 10 Let f(z) € A
If D/\+1 M f(z) e UCV (k,a), then Dﬁ:gbf(z) € UCV (k, ).

Theorem 11 Let f(z) € A
If D™ f(2) € UCC(k, v, B), then Dya'f(2) € UCC(k, a, f).

Theorem 12 Let f(z) € A
If DALY £(2) € UQC(k, o, B), then Dy f(z) € UQC (K, a, ).

Theorem 13 Let f(z) € A

1f D™ () € UST(k, ), and R{a} =g, then Dy f(2) € UST (k. o).

Theorem 14 Let f(z) € A
If Dy f(2) € UCV (, @), then D) f(2) € UCV (k, a).

Theorem 15 Let f(z) € A
If Dyt f(z) € UCC(k,a, B), and R{a} > “EE) then Dy f(2) €
UCC(k a, B).

Theorem 16 Let f(z) € A
If Dy f(2) € UQC(k, v, B), then Dya f(2) € UQC(k, av, ).

—(k+a)
Theorem 17 Let ¢ > kHO‘ )

If DY f(2) € UST(k, ), then Dy W (f(z)) € UST(k, ).
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Theorem 18 Let ¢ > %

If DY f(2) € UCV (k, ), then Dy (f(z)) € UCV (k,a).

Theorem 19 Let ¢ > —F+a)

k+1

If DY f(2) € UCC(k, a), then DyaW.(f(z)) € UCC(k, ).

Theorem 20 Let ¢ > k)

k+1

If DY f(2) € UQC(k, o, B), then Dy W, (f(2)) € UQC(k, v, 3).
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