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Abstract. Let a and b be integers with 0 ≤ a ≤ b. An (a, b)-graph is
such digraph D in which any two vertices are connected at least a and
at most b arcs. The imbalance a(v) of a vertex v in an (a, b)-graph D is
defined as a(v) = d

+

(v)−d
−

(v), where d
+

(v) is the outdegree and d
−

(v)
is the indegree of v. The imbalance sequence A of D is formed by listing
the imbalances in nondecreasing order. A sequence of integers is (a, b)-
realizable, if there exists an (a, b)-graph D whose imbalance sequence is
A. In this case D is called a realization of A. An (a, b)-realization D of A

is connection minimal if does not exist (a, b ′)-realization of D with b ′ <

b. A digraph D is cycle minimal if it is a connected digraph which is either
acyclic or has exactly one oriented cycle whose removal disconnects D.
In this paper we present algorithms which construct connection minimal
and cycle minimal realizations having a given imbalance sequence A.

1 Introduction

Let a, b and n be nonnegative integers with 0 ≤ a ≤ b and n ≥ 1. An (a, b)-
graph is a digraph D in which any two vertices are connected at least a and
at most b arcs. If d−(v) denotes the outdegree and d+(v) denotes of vertex v

in an (a, b)-graph D then the imbalance [14] of v is defined as

a(v) = d
+
(v) − d

−
(v).
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Since loops have no influence on the imbalances therefore for the simplicity
we suppose everywhere in this paper that the investigated graphs are loopless.

The imbalance sequence of D is formed by listing its imbalances in nonde-
creasing order (although imbalances can be listed in nonincreasing order as
well). The set of distinct imbalances of a digraph is called its imbalance set.
Mostly the literature on imbalance sequences is concerned with obtaining nec-
essary and sufficient conditions for a sequence of integers to be an imbalance
sequence of different digraphs [9, 10, 11, 14, 18, 19, 20, 21], although there are
papers on the imbalance sets too [15, 16, 17, 19].

If D is an (a, b)-digraph and A is its imbalance sequence then D is a real-
ization of A. If we wish to find a realization of A in any set of directed graphs
then

n∑

i=1

ai = 0 (1)

is a natural necessary condition. If we allow parallel arcs then this simple
condition is sufficient to find a realization. If parallel arcs are not allowed
then the simple examle A = [−3, 3] shows that (1) is not sufficient to find a
realization.

Mubayi et al. [14] characterized imbalance sequences of simple digraphs
(digraphs without loops and parallel arcs [2, 9, 25]) proving the following
necessary and sufficient condition. We remark that simple digraphs are such
(0, 2)-graphs which do not contain loops and parallel arcs.

Theorem 1 (Mubayi, Will, West, 2001 [14]) A nondecreasing sequence A =

[a1, . . . , an] of integers is the imbalance sequence of a simple digraph iff

k∑

i=1

ai ≤ k(n − k) (2)

for 1 ≤ k ≤ n with equality when k = n.

Proof. See [14]. ¤
Mubayi et al. [14] provided a Havel-Hakimi type [3, 4, 7, 8] greedy algorithm

Greedy for constructing a simple realization.
The pseudocode of Greedy follows the conventions used in [1].
The input data of Greedy are n: the number of elements A (n ≥ 2);

A = (a1, . . . , an): a nondecreasing sequence of integers satisfying (2). Its out-
put is M: the n × n sized incidence matrix of a simple directed graph D
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whose imbalance sequence is A. The working variables are the cycle variables
i, j, k, l, x and y.

Greedy(n,A)

01 for i ← 1 to n // line 01–03: initialization of M

02 for j ← 1 to n

03 Mij ← 0

04 i = 1 // line 04–10: computation of M

05 while ai > 0

06 Let k = ai, j1 < · · · < jk, further let aj1 , . . . , ajk be
the k smallest elements among ai+1, . . . , an, where
ax smaller ay means that ax < ay or ax = ay and x < y

07 for l ← 1 to k

08 al ← al + 1

09 Mi,al
← 1

10 i ← i + 1

11 return M // line 11: return of the result

The running time of Greedy is Θ(n2) since the lines 1–3 require Θ(n2) time,
the while cycle executes O(n) times and in the cycle line 06 and line 07 require
O(n) time.

Kleitman and Wang in 1973 [12] proposed a new version of Havel-Hakimi al-
gorithm, where instead of the recursive choosing the largest remaining element
of the investigated degree sequence it is permitted to choose arbitrary element.
Mubayi et al. [14] point out an interesting difference between the directed and
undirected graphs. Let us consider the imbalance sequence A = [−3, 1, 1, 3] of
a transitive tournament. Deleting the element 1 and adding 1 to the small-
est imbalance leaves us trying to realize [−2,−1, 3], which has no realization
among the simple digraphs although it has among the (0, 2)-graphs.

Let α(D) denote the number of edges of D. It is easy to see the following
assertion.

Lemma 1 If a directed graph D is a realization of a sequence A = [a1, . . . , an]

then

α(D) ≥ 1

2

n∑

i=1

|ai|. (3)

Proof. Any realization has to contain at least so many outgoing arcs as the
sum of the positive elements of A. Since S is realizable for the corresponding
set, according to (1) the sum of the absolute values of the negative elements
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of A equals to the sum of the positive elements, therefore we have to divide
the sum in (3) by 2. ¤

A realization D of A is called arc minimal (for a given set of digraphs) if
A has no realization (in the given set) containing less arcs than D. Mubayi et
al. [14] proved the following characterization of Greedy.

Lemma 2 (Mubayi et al., 2001 [14]) If A is realizable for the simple graphs
then the realization generated by Greedy contains the minimal number of
arcs.

Proof. See in [14]. ¤
Lemma 1 and Lemma 2 imply the following assertion.

Theorem 2 If A is realizable for simple digraphs then the realization gen-
erated by Greedy is arc minimal and the number of arcs contained by the
realization is given by the lower bound (3).

Wang [22] gave an asymptotic formula for the number of labeled simple
realizations of an imbalance sequence.

In this paper we deal with the more general problem of (a, b)-graphs. The
following recent paper characterizes the imbalance sequences of (0, b)-graphs.

Theorem 3 (Pirzada, Naikoo, Samee, Iványi, 2010 [19]) A nondecreasing se-
quence A = [a1, . . . , an] of integers is the imbalance sequence of a (0, b)-graph
iff

k∑

i=1

ai ≤ bk(n − k) (4)

for 1 ≤ k ≤ n with equality when k = n.

Proof. See [19]. ¤
We say that a realization D is cycle minimal if D is connected and does

not contain a nonempty set of arcs S such that deleting S keeps the digraph
connected but preserves imbalances of all vertices. Obviously such a set S, if it
exists, must add 0 to the imbalances of vertices incident to it and hence must
be a union of oriented cycles. Thus a cycle minimal digraph is either acyclic
or has exactly one oriented cycle whose removal disconnects the digraph. For
the sake of brevity we shall use the phrase minimal realization to refer a cycle
minimal realization of A. We denote the set of all minimal realizations of A

by M(A).
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A realization D of A is called connection minimal (for a given set of directed
graphs) if the maximal number of arcs γ(D) connecting two different vertices
of D is minimal.

The aim of this paper is to construct a connection and a cycle minimal
digraph D having a prescribed imbalance sequence A. At first we determine
the minimal b which allows to reconstruct the given A. Then we apply a
series of arithmetic operations called contractions to the imbalance sequence
A. This gives us a chain C(A) of imbalance sequences. Then by the recursive
transformations of C(A) we get a required D.

The structure of the paper is as follows. After the introductory Section 1 in
Section 2 we present an algorithm which determines the minimal number of
arcs which are necessary between the neighboring vertices to realize a given
imbalance sequence then in Section 3 we define a contraction operation and
show that the contraction of an imbalance sequence produces another imbal-
ance sequence. Finally in Section 4 we present an algorithm which constructs
a connection minimal realization of an imbalance sequence.

2 Computation of the minimal r

According to (1) the sum of elements of any imbalance sequence equals to zero.
Let us suppose that according to (1) the sum of the elements of a potential
imbalance sequence P = [p1, . . . , pn] is zero and b = max(−a1, an). Then
it is easy to construct such (0, b)-digraph D whose imbalance sequence is
A connecting the vertices having positive imbalance with the vertices having
negative imbalance using the prescribed number of arcs. It is a natural question
the value bmin(P) defined as the minimal value of b sufficient for a potential
imbalance sequence P to be the imbalance sequence of some (0, b)-graph.

bmin(P) has the following natural bounds.

Lemma 3 If A = [a1, . . . , an] is an imbalance sequence, then
⌈

an − a1

n

⌉
≤ bmin ≤ min(−a1, an). (5)

The following algorithm Bmin computes bmin(A) for a sequence A = [a1, . . . ,

an] satisfying (4). Bmin is based on Theorem 3, on the bounds given by Lemma
3 and on the logarithmic search algorithm described by D. E. Knuth [13, page
410] and is similar to algorithm MinF-MaxG [6, Section 4.2].

Input. n: the number of elements A (n ≥ 2);
A = [a1, . . . , an]: a nondecreasing sequence of integers satisfying (4).
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Output. bmin(A): the smallest sufficient value of b.
Working variables. k: cycle variable;

l: current value of the lower bound of bmin(A);
u: current value of the upper bound of bmin(A);
S: the current sum of the first k elements of A.

Bmin(n,A)

01 l ← dan − a1e // line 01–02: initialization of l and u

02 u ← min(an, −ai)

03 while l < u // line 03–14: computation of the minimal necessary b

04 b ← b l+u
2 c

05 S = S ← 0

06 for k ← 1 to n − 1

07 S ← S + ai

08 if S < bk(n − k)

09 l ← r

10 if l == r + 1

11 bmin ← l + 1

12 return b

13 go to 03
14 u ← b

15 bmin ← l // line 15–16: return of the computed minimal b

16 return bmin

The next assertion characterizes Bmin.

Lemma 4 Algorithm Bmin computes bmin for a sequence A = [a1, . . . , an]

satisfying (4) in Θ(n log n) time.

Proof. Bmin computes bmin on the base of Theorem 3 therefore it is correct.
Running time of Bmin is Θ(n log n) since the while cycle executes Θ(log n)

times and the for cycle in it requires Θ(n) time. ¤

3 Contraction of an imbalance sequence

Let D be a digraph having n vertices and m arcs. Throughout we assume
that the vertices of D are labeled v1, . . . , vn according to their imbalances
in nondecreasing order while the arcs of D are labeled e1, . . . , em arbitrarily.
Let A = [a1, . . . , an] = [an1, . . . , ann] be the imbalance sequence of D, where
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ai = ani is the imbalance of vertex vi = vni. We define an arithmetic operation,
called contraction on A as follows.

Let n ≥ 2, an imbalance sequence A = [a1, . . . , an] and an ordered pair
(ai, aj) with 1 ≤ i, j ≤ n and i 6= j be given. Then the contraction of (ai, aj)

means that we delete ai and aj from A, add a new element a ′i = ai + aj and
sort nonincreasingly the received sequence using Counting-Sort [1] so that
the indices of the elements are updated and the updated index of ai + aj is
denoted by ki. The new sequence is denoted by A/(i, j).

Note that j < i is permitted. We refer to A/(i, j) as a minor of A. Our ter-
minology is inspired by the concept of minor and edge contraction from graph
theory [23, 24]. The proof of Theorem 5 explains our choice of terminology.

An imbalance sequence A is a (0, b)-imbalance sequence if at least one of
its realizations is a (0, b)-graph. We also observe that if b ′ > b then a (0, b)-
imbalance sequence is also a (0, b ′)-imbalance sequence.

The next assertion allows us to construct imbalance sequences and their
realizations recursively. It also establishes a relation between the arithmetic
operation of contraction discussed above and the edge contraction operation
of graphs.

Theorem 4 If A is a (0, b)-imbalance sequence, then all its minors are (0, 2b)-
imbalance sequences.

Proof. Let A be the imbalance sequence of a (0, b)-graph. Suppose that B =

A/(p, q) and let ap and aq be both negative with ap ≤ aq. Then bl = ap +aq

so that bl < ap. Thus, for all k ≤ q, we have

k∑

i=1

bi ≥
k∑

i=1

bi + (q − k)aq, (since all these elements are negative)

≥
q∑

i=1

ai, (since A is a nondecreasing sequence).

Therefore
k∑

i=1

bi ≥
q∑

i=1

ai − (q − k)aq

≥
k∑

i=1

ai ≥ bk(k − n), (since A is an imbalance sequence)

≥ (2b)k(k − n + 1) (since n ≥ k + 2),
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For q < k ≤ n − 1, we have

k∑

i=1

bi =

k∑

i=1

ai

≥ bk(k − n), (since A is an imbalance sequence)
≥ (2b)k(k − n + 1)

for n ≥ k = 2 and equality holds when k = n − 1. Thus in either case B is an
imbalance sequence of a (0, 2b)-graph by Theorem 3.

By symmetry, we have that Theorem 4 holds if ap and aq are both positive.
Now suppose that ap ≤ 0 and aq ≥ 0 with |ap| ≥ |aq|. If bl = ap +aq, then

bl ≤ 0. For all k ≤ p, we have

k∑

i=1

bi ≥
k∑

i=1

ai ≥ bk(k − n), (since A is an imbalance sequence)

≥ (2b)k(k − n + 1), (since n ≥ k + 2).

For all p < k ≤ l, we have

k∑

i=1

bi ≥
k∑

i=1

ai − ap ≥
k∑

i=1

ai

≥ bk(k − n), (since A is an imbalance sequence)
≥ (2b)k(k − n + 1), (since n ≥ k + 2).

For all k > l, we have

k∑

i=1

bi ≥
k∑

i=1

ai + aq ≥
k∑

i=1

ai

≥ bk(k − n), (since A is an imbalance sequence)
≥ (2b)k(k − n + 1).

The last inequality holds if n ≥ k = 2, with equality when k = n − 1. Thus
once again B is an imbalance sequence of a (0, b)-graph by Theorem 3. By
symmetry, Theorem 4 holds if |ap| ≤ |aq|. ¤

Suppose that D ′ is a cycle minimal realization of A/(1, n). Then the follow-
ing algorithm algorithm Vertex constructs D ′′, a cycle minimal realization
of A.
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Input parameters of Vertex are n ≥ 2: the number of elements of A; b ≥ 1:
the connection parameter of D ′; A = [a1, . . . , an]: the imbalance sequence;
A ′ = A/(1, n) = [a ′1, . . . , a ′n−1]; k: index of the element a ′1 = a1 + an in the
minor A ′; D ′: a (0, b)-graph, which is a cycle minimal realization of A/(1, n)

(D ′ is given by an (n − 1)× (n − 1) sized incidence matrix X = [xi,j]).
The output of Vertex is D ′′: a (0, q)-graph, which is a cycle minimal

realization of A, where q = max(1, b, an).

Vertex(n,A, k,X )
01 read n // line 01–04: read of the input data
02 for i ← 1 to n − 1

03 for j ← 1 to n − 1

04 read xij

05 for i ← 1 to n − 1 // line 05–08: add an isolated vertex to D ′

06 xin ← 0

07 for i ← 1 to n

08 xni ← 0

09 if a1 = 0 and an = 0 // line 09–12: if all a’s are equal to zero
10 for i ← 1 to n

11 xi,i+1 ← 1 // line 12: i + 1 is taken mod n

12 return X
13 xnk ← an // line 13: if a1 < 0

14 return X // line 14: return the incidence matrix of D ′′

We now show that Vertex gives a cycle minimal realization of A.

Theorem 5 The realization D ′′ obtained by Vertex is a cycle minimal
(0, max(b, 1, an))-graph. The running time of Vertex is Θ(n2).

Proof. If a1 = an = 0, then D ′′ is constructed in lines 09–12 and contains
exactly one cycle and is a 1-digraph. If we remove this cycle then remain
isolated vertices that is a not connected graph.

If a1 < 0, then due to Theorem 3 an > 0. In this case D ′′ is constructed
in line 14 connecting the isolated vertex v ′n with the contracted vertex v ′k.
So D ′′ contains a cycle only if the cycle minimal D ′ contained a cycle, and
removing this cycle changes D ′′ to a not connected graph. In this case D ′′ is
a max r, an-graph.

So D ′′ is a (0, q)-graph, where q = max(b, 1, an).
The double cycle in lines 02–04 requires Θ(n2) time, and the remaining part

of the program requires only O(n) time, so the running time of Vertex is
Θ(n2). ¤
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4 Construction of a cycle minimal realization

A chain of an imbalance sequence A = An = [an1, . . . , ann] is a sequence
of imbalance sequences C(An) = [An, An−1, . . . , A1] with An = A and
Ai−1(A) being a minor of Ai(A) for every 1 ≤ i ≤ n − 1. The simple chain
S(A) of an imbalance sequence A is the sequence of imbalance sequences
[An, An−1, . . . , A1] with An = A and Ai−1 = [ai−1,1, . . . , ai−1,i−1] being the
minor of Ai = [ai,1, . . . , ai,i] received by the contraction of the first and last
element of Ai. It is worth to remark that the simple chain of an imbalance
sequence is unique.

Chain is an algorithm for constructing the simple recursion chain C(A) of
A.

The input data of Chain are n ≥ 2: the length of an imbalance sequence
A = [an1, . . . , ann]; an imbalance sequence A. The output of Chain is C: the
simple chain of A. Working variable is the cycle variable i.

Chain(n,An)

01 read n // line 01–03: read of the input data
02 for i ← 1 to n

03 read ani

04 for i ← n downto 2 // line 04–05: construction of C
05 delete the first and last elements of Ai, add a new element

ai1 + aii, sort nondecreasingly the received sequence and
denote by ki the index of the new element

06 return C and k // line 06: return of the results

Now, since each contraction in Step 05 of Chain reduces the number of
elements of the corresponding imbalance sequence by 1, the last element A1(A)

of the chain contains exactly one element and so the length of the chain is
equal to the number of elements n of the imbalance sequence A. Thus for
all 1 ≤ i ≤ n the sequence Ai(A) contains i elements. To every chain of an
imbalance sequence A of length n we can associate bijectively a chain of n−1

ordered pairs with i element equal to (j, k), where An−i = An−i+1/(j, k). That
is (vj, vk) is contracted to obtain An−i from An−i+1. This bijection allows us
to represent every chain of imbalance sequences by the sequence of pairs (j, k).

We present a simple algorithm Realization for associating a small cycle
minimal realization D ′′ to any imbalance sequence A.

Input values are n ≥ 2: the number of elements of A; A: an imbalance
sequence; D ′: a cycle minimal (0, b)-graph which is a realization of A/(1, n)



96 S. Pirzada, A. Iványi

and is given by its incidence matrix X.
The output of Realization is D ′′, a (0, q)-graph, which is a cycle minimal

realization of A; k = [k1, . . . , kn−1]: the sequence of the updated indices of the
elements received by contraction. D ′′ is represented by its incidence matrix X,
and q = max(b, 1, an). Working variable is i: cyclic variable.

Realization(n,A)

01 read n // line 01–03: read of the input data
02 for i ← 1 to n

03 read aij

04 Chain(n,A) // line 04: construction the simple chain C(A)

05 x11 ← 0 // line 05: construction of D
′′
1

06 for i ← 2 to n // line 06–07: recursive construction of D ′′
n

07 Vertex(i, Ai, k,X i−1)

08 return D ′′
n and k // line 08: return of the constructed minimal digraph

The next assertion shows that Realization is correct and constructs a
cycle minimal realization of an imbalance sequence in polynomial time.

Theorem 6 Let A be a (0, b)-imbalance sequence having n entries and let
C(A) = [(a1, b1) . . . (an, bn)] be a chain of A. Then there exists a cycle mini-
mal digraph D having n vertices such that D is reconstructible from C and D

is a q = max(r, 1, an)-realization of A. Moreover, this reconstruction requires
O(n2)n time.

Proof. By Vertex, the digraph Dn which is the output of Realization,
is assured to be a cycle minimal realization of A. Now, Vertex constructs
Di from Di−1 in O(n) time and there are n − 1 such constructions. Thus
Realization runs in O(n2) time. ¤

The following example illustrate the work of algorithms Vertex, Chain
and Realization.

Example 1 Let A = [−2, −2,−2,−1, 3, 4]. Figure 1 shows a realization of A,
therefore A is an imbalance sequence.

Figure 1 also shows that this realization is a 1-digraph. Since there are
nonzero imbalances therefore all realizations have to contain arcs so this re-
alization is connection minimal. Since all realization of A has to contain at
least

mmin =

∑n
i=1 ai

2
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arcs, and now mmin = 7, so D is also an arc minimal realization.

Vertex/Vertex v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0
v2 0 0 0 0 0 0
v3 0 0 0 0 0 0
v4 0 0 0 0 0 0
v5 1 1 1 0 0 0
v6 1 1 1 1 0 0

Figure 1: Incidence matrix of a realization of A = [−2, −2, −2,−1, 3, 4]

Now we construct a cycle minimal realization of A using Realization.
After the reading of the input data in lines 01–03 Chain constructs the simple
chain S = [A1, . . . , A6] and k = [k1, k2, k3, k4, k5] = [1, 1, 2, 3, 4], where A6 =

A = [−2, −2,−2,−1, 3, 4], A5 = [−2,−2, −1, 2, 3], A4 = [−2,−1, 1, 2], A3 =

[−1, 0, 1], A2 = [0, 0] and A1 = [0].
After the construction of C Realization sets x11 = 0 in Step 5 and so

it defines X 1, the incidence matrix of D1 consisting of an isolated vertex v1.
Then it constructs D2, . . . , D6 in lines 06–07 calling Vertex recursively: at
first k1 = 1 helps to construct D2 having the incidence matrix X2 which is
shown in Figure 2.

Vertex/Vertex v1 v2

v1 0 1
v2 1 0

Figure 2: Incidence matrix of D2 (X2)

Now using k2 = 1 D3 is constructed. The result is the incidence matrix X3

shown in Figure 3.
The next step is the construction of D4 using k3 = 2. Figure 4 shows X4.
The next step is the construction of D5 using k4 = 3. Figure 5 shows X5.
The final step is the construction of D6 using k5 = 4. Figure 6 shows X6.
It is worth to remark that D6 contains 9 arcs while the realization of A

whose incidence matrix is shown in Figure 6 contains only the necessary 7
arcs and is also a cycle minimal realization of A.

The graph D ′
6 whose incidence matrix X ′6 shown in Figure 7 contains only
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Vertex/Vertex v1 v2 v3

v1 0 1 0
v2 1 0 0
v3 1 0 0

Figure 3: Incidence matrix of D3 (X3)

Vertex/Vertex v1 v2 v3 v4

v1 0 1 0 0
v2 1 0 0 0
v3 1 0 0 0
v4 2 0 0 0

Figure 4: Incidence matrix of D4 (X4)

Vertex/Vertex v1 v2 v3 v4 v5

v1 0 1 0 0 0
v2 1 0 0 0 0
v3 1 0 0 0 0
v4 2 0 0 0 0
v5 3 0 0 0 0

Figure 5: Incidence matrix of D5 (X5)

Vertex/Vertex v1 v2 v3 v4 v5 v6

v1 0 1 0 0 0 0
v2 1 0 0 0 0 0
v3 1 0 0 0 0 0
v4 2 0 0 0 0 0
v5 3 0 0 0 0 0
v6 0 0 0 4 0 0

Figure 6: Incidence matrix of D6 (X6)

7 arcs and is also a cycle minimal realization of A.
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Vertex/Vertex v1 v2 v3 v4 v5 v6

v1 0 0 0 0 0 0
v2 0 0 0 0 0 0
v3 0 0 0 0 0 0
v4 0 0 0 0 0 0
v5 1 1 1 0 0 0
v6 1 1 1 1 0 0

Figure 7: Incidence matrix of D ′
6 (X ′6)
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