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Abstr%bet ® be an self-map of(tbpen unit disk D in
the compléx plane. Su @p induces theough’composition a linear

composition operatorx — fod. We are ested in the combination
of Cg with the diff tion operator at is in the operator DCy :

f— ¢’ (fo etween we ergman spaces and weighted
Banach spaces of omorphic fu

o

1 Introduction 0

Let D denote the open un@k in the complex plane. For an analytic self-map
® of D the classical 5?%03@‘ jon operator Cy is given by

Q Co : H(D) = H(D), f fo b,

where H otes the set of all analytic functions on D. Combining this
with diff tion we obtain the operator

DCy: H(D) = H(D), f— ¢’ - (f' o d).
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Composition operators occur naturally in various problems and therefore have
been widely investigated. An overview of results in the class%setting of the

Hardy spaces as well as an introduction to composition o rs is given in

the excellent monographs by Cowen and MacCluer (cf. nd Shapiro (cf.

13)).

Next, let us explain the setting in which we are% ested. Bounded and

continuous functions v : D —]0, co[ are called w r such a weight v we

define @.

HY == {f € H(D); [|f]|, == z)[f(z)| < oo}

Since, endowed with the weighted su II-|lv, this is a Banach space, we say

that HJ® is a weighted Banach space of holomorphigsunctions. These spaces

arise naturally in several prob, elated to e. @)le}c analysis, spectral

theory, Fourier analysis, pau&h ifferential lution eq ns. Con-
[4]. Weight nach space lomorphic

crete examples may be fofin
functions have been s{ deeply in [3 @also in &@)
The weighted B & space 1s d Q@ be the \'N ion of all analytic

functions f uch that

p

Ayp :={f € H(D ||f ii @ <ooh1<p<oo
where dA(z denote%]e normah réa measure. The investigation of
Bergman spaces has quite a lon h hlstory An excellent introduction

to Bergman spaces is given in
In this article we characteri ndedness and compactness of operators
DCy : Ayp — HYY in te the involved self-map ¢ and the weights v

s &

We studg€ d spaces generated by the following class of weights. Let v

2 Basics

be a holowoghic function on D that does not vanish and is strictly positive on
[0, T[. Mored¥er, we assume that lim,_,; v(r) = 0. Then we define the weight v
in the following way

v(z) := v(|z?) for every z € D. (1)

Examples include all the famous and popular weights, such as



Composition followed by differentiation between ... 109

1. the standard weights v(z) = (1 —|z|2)%, o > 1,

2. the logarithmic weights v(z) = (1 —log(1 —|z|*))®, B >&

1

3. the exponential weights v(z) =e 0-129% > 1@

For a fixed point a € DD, we introduce a functio 6

va(z) := v(az) for eve@e

Since v is holomorphic on I, so is the fu n Vq. Moreover, in particular, we
will often assume that there is a co >0 such that
2
X )
In the sequel we analyze role Condlt plays in the %conditions
on weights. Lusky (c studled wei 1sfy1ng the ing conditions
(L1) and (L2) (ren after the aut@ hich are de s follows

(L1) inf%>0a 11msup4%i)<1 for some j € N.
neN v n—oo V(] )
Xoth conditi

Actually, weights which
in the sense of Shleld& illiams (
nected with condition £2) in the fo

\\V(ZJ
<1 3
@1 T ET ®)
then (L2) is equivalent WQ( ), if we assume that |[v(z)| > v(|z|]) for every

z € D. To show thi rst assume that (L2) holds. Hence we can find
j € N such that

v(1 —27"7)
@ 1—2" < 1 for every n € N,

Next, we@e D and a € D. Then we can find n € N such that

) and (L2) are normal weights
” Obviously, condition (2) is con-
g way. If we change (2) as follows

Izl >1—2""7 and |az| < 1 —27™.

Now,
v(z) < v(1 —277)
lv(az)l = v(1—=27")

< 1 for every n € N.
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Finally

sup sup

v(z) <1 $\
aeD zeD |Va(z)| Q
Conversely, we suppose that (3) is satisfied. We takegy=T, fix n € N and
select
(1—2M)
SN
(1— 21
We obtain
(1 —2_” ]) v(z) 0 v(z)

< <.
|V aEID ze]D) |Va( )i

Thus, under some additional ass tlons ) is a version of (L2). Cal-
culations show that the stan elghts as, he logarltﬁ welghts

satisfy condition (2 Wh1le onential we o not fulfill tion (
Finally, we need some I'lC data of t i dlsk A Ver&r ant tool
when dealing Wlth s such as d bove is th ed pseudohy-
perbolic metric glv %

where 0q(z) 2 =, &Q the Mob:us (tbsformatlon which inter-

changes a and 0.
3 Results 6 . %QQ

Lemma 1 Let v(z) = f(|z]) for z € D, where f € H(D) is a function
whose Taylor series (at 0) ha egative coefficients. We assume addition-

ally that v satisfies condit'Q . Then there is a constant C > 0 such that
1 f
&” < Cv - H ”V,'P 5 T
v(0)» (1 —[zl2)pv(z)?
Proof. Recg\,] weight v as defined above may be written as
= max{|g(Az)[;|A] = 1} for every z € D.

We will write ga(z) := g(Az) for every z € D. Next, fix A € C with [A] = 1.
Moreover, let & € D be an arbitrary point. We consider the map

Tan t AD = AP, Ty rf(2) = f(04(2))0%(2)7 gr(0a(2)) 7.



Composition followed by differentiation between ... 111

Then a change of variables yields
T fllS, = J v(Z)If(Ga(Z))IPIGQ(Z)IZIQA(%(Z@(Z)
D

V(Z) /
< jD |f(ca(z))|m|oa(z%®z)

< o | iftoa)vioBi2)R A
D Jp
< c[ vl )|P®§d—cnfuv
D
Now put hy(z) = Ty (z) for ev D. By the ggean value property we
obtain &

)l 0 ﬁ)\ P AR < C!lf\ﬂfg\
Hence % @
0)] o ocI2 )[galee N&% 19,
Since A Was@sary we obtai Q
@ oy CHfII

Thus, “
IE;OL)I <Cr e 3 T
e — la?)Pv(o) 7
Since o« was arbitrary, the CM@OWS. O

Lemma 2 Let v(z) = f(@or every z € D, where T € H(D) is a function
whose Taylor series 0) has nonnegative coefficients. We assume addition-
ally that v satzsﬁE dition 2. Then for every f € AY there is C, > 0 such

that
K& Collfllvip max{ 1; . 12 ; } o(z, )
(1—1zF)rv(z)r (1 —[w]2)rv(w)r

for every z,w € D.

Proof. The proof is completely analogous to the proof given in [17]. Hence we
omit it here. O
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Lemma 3 Let v(z) = f(|z]) for every z € D, where f € H(D) is a function
whose Taylor series (at 0) has nonnegative coefficients. We gssume addition-
ally that v satisfies condition (2). Then for f € HP and z &

v(0)7 (1 |z|2 v%@

Proof. By Lemma 2 we have that @

If'(z)] <

M
|f()_f( )|§ 2 2 1 fV,
z w v(O) { 1—|Z|2 p@@ _|W|2 PV p} ” “ P
Now @
f(z+h) — f(z) )
‘ | (’}" ) Q o.)
M (o
< — max (z+ 7, 2)|[fllvp
v(0)rh
M S Q }
v(0)7|h (1 —|z@p z4h)v @z Pv(z)v
z+h—z . @
1—(z+h)z ’p6 Q
_ imax{ 1 Q@ 1 }
v(0)7 1— |2+ hp) Z}Q 5 (1= |2 Pv(z)7
N
o e Q
Finally, let h ten zéro and obtain
M
@ /( )| S 1 2 1 f wp-
\Q i v(0)r (1 —IZI2)”5v(Z)EH b
O

Proposition 1 Letv(z) = f(|z|) for every z € D, wehre f € H(D) is a function
whose Taylor series (at 0) has nonnegative coefficients. We assume addition-
ally that v satisfies condition (2). Then DCy : A, — HY is bounded if and
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only if

. w(z)le’(2)
D 142 1
€D (1—1d(z)2) " rv(db(z))P

Proof. First, we assume that (4) is satisfied. Appl&emma 1 we obtain

( Jb'(2)] .
) v (2)r

< 00. 6\ (4)

DC w= !/ / C
IDCyflln = supw(z)¢ (2)If'(o(z @-

Hence DCy : Ay p — H;y must be b&
Conversely, let a € D be arbitrar there exists £ in the unit ball of H®
such that [fq(a)lP NOWéb

for

K. Moreover

Q‘g w(z)pl(z) f eryzE]D)

Next, we assume that the a sequence ( éﬂ) such that |¢p(zn)] — 1 and

M n for every n € N.
(1= b (Z)P) ‘+pv\
Thus consider now gn(z) : w for every n € N as defined above. Obvi-
S

ously (gn)n is contalned in ed unit ball of A, , and

¢> w(znw’(éﬂgR(M _ W)zl >n

Hencel\gau",p—f%@ ) dA(z S@Dv JIfa(z {Q@ 2)P dA(z
QO

V(d(zn))? (1= [b(za)2) 5

for every n € ?@h is a contradiction. O

Proposi@ Let v(z) = 1(|z]), z € D, where f € H(D) is a function whose
Taylor serié¥ (at 0) has nonnegative coefficients. Moreover, we assume that v
satisfies (2). Then the operator DCy : A} — HS® is compact if and only if

: wiz)l’(2)

1m sup -
-1 (1[92 P v(b(z)
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Proof. Let (fy)n be a bounded sequence in A, that converges to zero uni-
formly on the compact subsets of D. Let M := sup,, ||fn|v,p €,00. Given ¢ >0
there is v > 0 such that if |p(z)| > 0, then 6\

w(z)ld/(2)] e
(1—lp(2))+7 (d)(z))%_@@

On the other hand, since f; — 0 uniformly on <}, there is anng € N
such that if [p(z)] < r and n > ng, then d(2))llp’(2)] < 5. Now, an
application of Lemma 3 yields

iggW(Z)lfn(dD( z))lld’(z &\Q% £ (b ()’ (2)]
u Il |
@ S p>rW026®) d) (z)

() < = + su wiz NT] (z < €.
& @‘1 6(2)2) 7 A=)
Thus, the claim ‘@u ®
Conversely, % se that D -‘&; — HY is(%r&t and that there are

T |=

5> 0 and (z D with |¢( 1 such that

5 .
P
Since |b(zn)| — 1 thﬁexis‘c natur %ers o(n) with limn, e x(n) = 0o

such that |¢p(zy)|¥™ > % for ever .
Next, for every n € N we CO% e function
fn(z

H—
)04 ()27,
where fi € H su@&at IfR]ly < 1 and [fn(d(zn))P = m Then we

obtain
@W > w(zn)ld' (zn)lIf) (D (zn))]

> (
(

Y

This is a contradiction. O
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