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Abstract. In this paper we study the convexity and concavity prop-
erties of generalized trigonometric and hyperbolic functions in case of
Logarithmic mean.

1 Introduction

Recently, the study of the generalized trigonometric and generalized hyperbolic
functions has got huge attention of numerous authors, and has appeared the
huge number of papers involving the equalities and inequalities and basis prop-
erties of these function, e.g. see [7, 8, 9, 6, 10, 13, 14, 18, 23] and the references
therein. These generalized trigonometric and generalized hyperbolic functions
p-functions depending on the parameter p > 1 were introduced by Lindqvist
[19] in 1995. These functions coincides with the usual functions for p = 2.
Thereafter Takesheu took one further step and generalized these function for
two parameters p, q > 1, so-called (p, q)-functions. In [8], some convexity and
concavity properties of p-functions were studied. Thereafter those results were
extended in [5] for two parameters in the sense of Power mean inequality. In
this paper we study the convexity and concavity property of p-function with
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136 Generalized trigonometric and hyperbolic functions

respect Logarithmic mean. Before we formulate our main result we will define
generalized trigonometric and hyperbolic functions customarily.

The eigenfunction sinp of the so-called one-dimensional p-Laplacian problem
[12]

−∆pu = −
(
|u ′|p−2u ′

) ′
= λ|u|p−2u, u(0) = u(1) = 0, p > 1,

is the inverse function of F : (0, 1) → (
0,
πp
2

)
, defined as

F(x) = arcsinp(x) =

∫x
0

(1− tp)−
1
pdt,

where

πp = 2arcsinp(1) =
2

p

∫ 1
0

(1− s)−1/ps1/p−1ds =
2

p
B

(
1−

1

p
,
1

p

)
=

2π

p sin
(
π
p

) ,
here B(., .) denotes the classical beta function.

The function arcsinp is called the generalized inverse sine function, and
coincides with usual inverse sine function for p = 2. Similarly, the other
generalized inverse trigonometric and hyperbolic functions arccosp : (0, 1) →
(0, πp/2) , arctanp: (0, 1) → (0, bp), arcsinhp: (0, 1) → (0, cp), arctanhp: (0, 1) →
(0,∞), where

bp =
1

2p

(
ψ

(
1+ p

2p

)
−ψ

(
1

2p

))
= 2−

1
p F

(
1

p
,
1

p
; 1+

1

p
;
1

2

)
,

cp =

(
1

2

) 1
p

F

(
1,
1

p
; 1+

1

p
,
1

2

)
,

are defined as follows

arccosp(x) =

∫ (1−xp) 1p
0

(1− tp)−
1
pdt, arctanp(x) =

∫x
0

(1+ tp)−1dt,

arcsinhp(x) =

∫x
0

(1+ tp)−
1
pdt, arctanhp(x) =

∫x
0

(1− tp)−1dt,

where F(a, b; c; z) is Gaussian hypergeometric function [1].
The generalized cosine function is defined by

d

dx
sinp(x) = cosp(x), x ∈ [0, πp/2] .
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It follows from the definition that

cosp(x) = (1− (sinp(x))
p)1/p ,

and
| cosp(x)|

p + | sinp(x)|
p = 1, x ∈ R. (1)

Clearly we get
d

dx
cosp(x) = − cosp(x)

2−p sinp(x)
p−1.

The generalized tangent function tanp is defined by

tanp(x) =
sinp(x)

cosp(x)
,

and applying (1) we get

d

dx
tanp(x) = 1+ tanp(x)

p.

For x ∈ (0,∞), the inverse of generalized hyperbolic sine function sinhp(x)
is defined by

arcsinhp(x) =

∫x
0

(1+ tp)−1/pdt,

and generalized hyperbolic cosine and tangent functions are defined by

coshp(x) =
d

dx
sinhp(x), tanhp(x) =

sinhp(x)

coshp(x)
,

respectively. It follows from the definitions that

| coshp(x)|
p − | sinhp(x)|

p = 1. (2)

From above definition and (2) we get the following derivative formulas,

d

dx
coshp(x) = coshp(x)

2−p sinhp(x)
p−1,

d

dx
tanhp(x) = 1− | tanhp(x)|

p.

Note that these generalized trigonometric and hyperbolic functions coincide
with usual functions for p = 2.

For two distinct positive real numbers x and y, the Arithmetic mean, Geo-
metric mean, Logarithmic mean, Harmonic mean and the Power mean of order
p ∈ R are respectively defined by

A(x, y) =
x+ y

2
, G(x, y) =

√
xy,
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L(x, y) =
x− y

log(x) − log(y)
, x 6= y,

H(x, y) =
1

A(1/x, 1/y)
,

and

Mt =


(
xt + yt

2

)1/t
, t 6= 0,

√
xy, t = 0 .

Let f : I → (0,∞) be continuous, where I is a sub-interval of (0,∞). Let
M and N be the means defined above, the we call that the function f is MN-
convex (concave) if

f(M(x, y)) ≤ (≥)N(f(x), f(y)) for all x, y ∈ I .

Recently, Generalized convexity/concavity with respect to general mean val-
ues has been studied by Anderson et al. in [2]. We recall one of their results
as follows

Lemma 1 [2, Theorem 2.4] Let I be an open sub-interval of (0,∞) and let
f : I → (0,∞) be differentiable. Then f is HH-convex (concave) on I if and
only if x2f ′(x)/f(x)2 is increasing (decreasing).

In [4], Baricz studied that if the functions f is differentiable, then it is
(a, b)-convex (concave) on I if and only if x1−af ′(x)/f(x)1−b is increasing (de-
creasing).

It is important to mention that (1, 1)-convexity means the AA-convexity,
(1, 0)-convexity means theAG-convexity, and (0, 0)-convexity meansGG-convexity.

Motivated by the results given in [2, 4], we contribute to the topic by giving
the following result.

Theorem 1 Let f : I→ (0,∞) be a continuous and I ⊆ (0,∞), then

1. L(f(x), f(y)) ≥ (≤)f(L(x, y)),

2. L(f(x), f(y)) ≥ (≤)f(A(x, y)),

if f is increasing and log-convex (concave).

Theorem 2 For x, y ∈ (0, πp/2), the following inequalities

1. L(sinp(x), sinp(y)) ≤ sinp(L(x, y)), p > 1,
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2. L(cosp(x), cosp(y)) ≤ cosp(L(x, y)), p ≥ 2.

Theorem 3 For p > 1, we have

1. L(1/ sinp(x), 1/ sinp(y)) ≥ 1/ sinp(A(x, y)), x, y ∈ (0, πp/2),

2. L(1/ cosp(x), 1/ cosp(y)) ≥ 1/ cosp(L(x, y)), x, y ∈ (0, πp/2),

3. L(tanhp(x), tanhp(y)) ≤ tanhp(A(x, y)), x, y ∈ (0,∞),

4. L(arcsinhp(x), arcsinhp(y)) ≤ arcsinhp(A(x, y)), x, y ∈ (0, 1),

5. L(arctanp(x), arctanp(y)) ≤ arctanp(A(x, y)), x, y ∈ (0, 1).

2 Preliminaries and Proofs

We give the following lemmas which will be used in the proof of our main
result.

Lemma 2 [22] Let f, g : [a, b] → R be integrable functions, both increasing
or both decreasing. Furthermore, let p : [a, b] → R be a positive, integrable
function. Then∫b

a

p(x)f(x)dx

∫b
a

p(x)g(x)dx ≤
∫b
a

p(x)dx

∫b
a

p(x)f(x)g(x)dx. (3)

If one of the functions f or g is non-increasing and the other non-decreasing,
then the inequality in (3) is reversed.

Lemma 3 [17] If f(x) is continuous and convex function on [a, b], and ϕ(x)
is continuous on [a, b], then

f

(
1

b− a

∫b
a

ϕ(x)dx

)
≤ 1

b− a

∫b
a

f (ϕ(x))dx. (4)

If function f(x) is continuous and concave on [a, b], then the inequality in (4)
reverses.

Lemma 4 [3] For two distinct positive real numbers a, b, we have L < A.

Lemma 5 For p > 1, the function sinp(x) is HH-concave on (0, πp/2).
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Proof. Let f(x) = f1(x)f2(x), x ∈ (0, πp/2), where f1(x) = 1/ sin(x) and
f2(x) = x2 cosp(x)/ sinp(x). Clearly, f1 is decreasing, so it is enough to prove
that f2 is decreasing, then the proof follows from Lemma 1. We get

f ′2(x) =
sinp(x)(cosp(x) − x cosp(x)

2−p sinp(x)
p−1) − x cosp(x)

2

sinp(x)2

=
cosp(x)

2((1− x tanp(x)
p−1) tanp(x) − x)

sinp(x)2
= f3(x)

cosp(x)
2

sinp(x)2
,

where f3(x) = tanp(x) − x tanp(x)
p − 1. Again, one has

f ′3(x) = p tanp(x)
p−1(1+ tanp(x)

p)x < 0.

Thus, f3 is decreasing and g(x) < g(0) = 0. This implies that f ′2 < 0, hence
f2 is strictly decreasing, the product of two decreasing functions is decreasing.
This implies the proof. �

Proof of Theorem 1. We get

L(f(x), f(y)) =

∫f(x)
f(y) 1dt∫f(x)
f(y)

1
tdt

=

∫x
y f

′(u)du∫x
y
f ′(u)
f(u) du

. (5)

It is assumed that the function f(x) is increasing and log f is convex, this

implies that f ′(x)
f(x) is increasing. Letting p(x) = 1, f(x) = f(u) and g(x) =

f ′(u)/f(u) in Lemma 2, we get∫x
y

1du

∫x
y

f ′(u)du ≥
∫x
y

f ′(u)

f(u)
du

∫x
y

f(u)du.

This is equivalent to

L(f(x), f(y)) =

∫x
y f

′(u)du∫x
y
f ′(u)
f(u) du

≥
∫x
y f(u)du∫x
y 1du

.

By Lemmas 3 and 4, and keeping in mind that log-convexity of f implies the
convexity of f, we get

L(f(x), f(y)) ≥ f

(∫x
y udu

x− y

)
= f

(
x+ y

2

)
≥ f (L(x, y)) .

The proof of converse follows similarly. If we repeat the lines of proof of part
(1), and use the concavity of the function, and Lemmas 3 & 4 then we arrive
at the proof of part (2).
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Proof of Theorem 2. It is easy to see that the function sinp(x) is increasing
and log-concave. So the proof of part (1) follows easily from Theorem 1. We
also offer another proof as follows:

It can be observed easily that

L (sinp(x), sinp(y)) =

∫x
y cosp(u)du∫sinp(x)
sinp(y)

1
tdt

=

∫x
y cospudu∫x
y

cospu
sinp(u)

du
,

and

sinp (L (x, y)) = sinp

(
x− y

log x
y

)
= sinp

( ∫x
y 1du∫x
y
1
udu

)
.

Clearly, cosp(u) and sinp(1/u), utilizing Chebyshev inequality, we have∫x
y

cosp(u)du

∫x
y

sinp(1/u)du ≤
∫x
y

1du

∫x
y

cospusinp
1

u
du.

So, we get ∫x
y

cospudu

∫x
y

sinp(1/u)du <

∫x
y

1du

∫x
y

cosp(u)

sinp(u)
du.

Where we apply simple inequality sinp
(
1
u

)
< 1

sinp(u)
. In order to prove inequal-

ity (1), we only prove∫x
y 1du∫x

y sinp(1/u)du
≤ sinp

( ∫x
y 1du∫x

y sinp(1/u)du

)
.

Consider a partition T of the interval [y, x] into n equal length sub-interval
by means of points y = x0 < x1 < · · · < xn = x and ∆xi =

x−y
n . Picking an

arbitrary point ξi ∈ [xi−1, xi] and using Lemma 1.2, we have

n
n∑
i=1

sinp
1
ξi

≤ sinp

 n
n∑
i=1

1
ξi


⇔

x− y

lim
n→∞

(
x−y
n

n∑
i=1

sinp
1
ξi

) ≤ sinp

 x− y

lim
n→∞

(
x−y
n

n∑
i=1

1
ξi

)
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⇔ ∫x
y 1du∫x

y sinp(1/u)du
≤ sinp

( ∫x
y 1du∫x

y sinp(1/u)du

)
.

This completes the proof.
For (2), clearly cosp(x) is decreasing and tanp(x)

p−1 is increasing. One has

(cosp(x))
′′ = cosp(x) tanp(x)

p−2 (1− p+ (2− p) tanp(x)
p) < 0,

this implies that cosp(x) is concave on (0, πp/2).
Using Tchebyshef inequality, we have∫x

y

1du

∫x
y

cosp(u) tanp(u)
p−1du ≤

∫x
y

cosp(u)du

∫x
y

tanp(u)
p−1du,

which is equivalent to∫x
y cosp(u) tanp(u)

p−1du∫x
y tanp(u)p−1du

≤
∫x
y cosp(u)du∫x

y 1du
. (6)

Substituting t = cosp(u) in (6), we get

L(cosp(x), cosp(y)) =

∫cosp(x)
cosp(y)

1dt∫cosp(x)
cosp(y)

1
tdt

=

∫x
y cosp(u) tanp(u)

p−1du∫x
y tanp(u)p−1du

≤
∫x
y cosp(u)du∫x

y 1du
.

Using Lemma 3 and concavity of cosp(x), we obtain

L(cosp(x), cosp y) ≤ cosp

(∫x
y udu

x− y

)
= cosp

(
x+ y

2

)
≤ cosp (L(x, y)) .

Proof of Theorem 3. Let g1(x) = 1/ cosp(x), x ∈ (0, πp/2) and g2(x) =
tanhp(x), x > 0. We get

(log(g1(x)))
′′ = (p− 1) tanp(x)

p−2(1+ tanp(x)
p) > 0,

and

(log(g2(x)))
′′ =

1− tanhp(x)
p

tanhp(x)2
((1− p) tanhp(x)

p − 1) < 0.

This implies that g1 and g2 are log-convex, clearly both functions are increas-
ing, and log-convexity implies the convexity, so g1 and g2 are convex functions.
Now the proof follows easily from Theorem 1. The rest of proof follows simi-
larly.
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Corollary 1 For p > 1, we have

1. L(tanp(x), tanp(y)) ≥ tanp(L(x, y)), x, y ∈ (sp, πp/2), where sp is the
unique root of the equation tanp(x) = 1/(p− 1)

1/p,

2. L(arctanhp(x), arctanhp(y)) ≥ arctanhp(L(x, y)), x, y ∈ (rp, 1), where
rp is the unique root of the equation xp−1arctanhp(y) = 1/p.

Proof. Write f1(x) = tanp(x). We get(
f ′1(x)

f(x)

)′
=

(
1+ tanpp(x)

tanp(x)

)′
=
1+ tanpp(x)

tan2p(x)

[
(p− 1) tanpp(x) − 1

]
> 0

on
(
sp,

πp
2

)
. This implies that f1 is log-convex, clearly f1 is increasing, and the

proof follows easily from Theorem 1. The proof of part (2) follows similarly. �
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