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Abstract. Let G, be a regular n-gon with unit circumradius, and m =
L5, n= \_“qu Let the edges and diagonals of G;, be en1 < -+ < enm.
We compute the coeflicients of the polynomial
)

(x—efﬂ)~~~(x—enu.

They appear to form a well-known integer sequence, and we study certain
related sequences, too. We also compute the coefficients of the polynomial

2 2
(X_Sn])”'(x_snm))
where
2i—1m
Sni :cotT, i=1,...,m.

We interpret s, as the sum of all individual edges and diagonals of G;,
divided by n. We also discuss the interpretation of sn2,...,Snm, and
present a conjecture on expressing Sniy---.,Snm USINE €n1y...,€am.
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1 Introduction

Throughout, G;, is a regular n-gon with unit circumradius, and

w3 w1

Long time ago Kepler observed [2] that the squares of the edge and diagonals
of Gy are the zeros of the polynomial x3 — 7x? + 14x — 7. This raises a general
question: Are the squares of (the lengths of) the edge and diagonals of Gy,
excluding the diameter, the zeros of a monic polynomial of degree p with
integer coefficients?

Yes, they are. This follows from Savio’s and Suruyanarayan’s [6] results,
which, however, do not give the polynomial explicitly. We will do it in Sec-
tion 2. A natural further question concerns the edge and diagonals themselves,
instead of their squares. They are not zeros of a polynomial described above,
but we will in Section 3 see that the squared sum of all individual edges and
diagonals is the largest zero of a monic polynomial of degree m with inte-
ger coefficients. We will study geometric interpretation of the square roots
of the other zeros in Section 4. In Section 5, we will present a conjecture on
expressing these square roots as simple linear combinations of the edge and di-
agonals. We will in Section 6 notify that the coefficients of the first-mentioned
polynomial form an OEIS [4] sequence, and also study OEIS sequences corre-
sponding to certain related polynomials. Finally, we will complete our paper
with conclusions and further questions in Section 7.

2 Squared chords

Let (the lengths of) the edge and diagonals of Gn be eq; < -+ < epm. Call
them (the lengths of) the chords. Then

. km
enxk =2sin—, k=1,...,m.
n

Our problem is to find the coefficients an,x and by of the polynomials

An(x) = (x — efx+2,1) e (x = eﬁ+2,m) =
x™ + am,mflxmi] + -+ amix + amo, (1)

where n is even, and

2 2

Bm(x) = (X - en]) T (X - enm) = Xm + bm,m—1xm_1

4+ 4 bux + bmo, (2)
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where n is odd. We solve it in two theorems. Mustonen [3] found them exper-
imentally and sketched their proofs.

Let tridiag,, (x,y) denote the symmetric tridiagonal m x m matrix with all
main diagonal entries x and first super- and subdiagonal entries y. For m > 2,
define

A, = tridiag,,(2,1)

and
B, is as A, but the (m, m) entry equals 3.

Also define Ay = (2) and By = (3). Denote by spec the (multi)set of eigenval-
ues.

Lemma 1 For allm>1,

. k7t
spec A, = {4smzn+2 ‘k: 1,...,m} :{631+2,1)“')6121+2,m}> (3)
k
spec By, = {4sinz§ ’k: 1,...,m} ={e2;,...,e2 1
Proof. See [1, 5, 6]. O

Theorem 1 In (1),

Proof. Denoting

our claim is that

for all m > 1. Expanding det (xI,, — A) along the last row, we have
Ami1(x) = (x = 2)An(x) — Am-1(x)

for all m > 2. Since
Pi(x) =x—2=A(x)
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and
Pa(x) = x* —4x + 3 = Ay(x),

the claim (5) follows by showing that

Pmg1(x) = (x = 2)Pm(x) = P (%) (6)

for all m > 2. Mustonen [3] did it by using Mathematica. We will do the
computations algebraically in the appendix. O

The formula (4) yields amm = 1, consistently with the coefficient of x™
in (1). It also allows to define app = 1. The polynomial

Ami (x) = (x —4)An(x) = XmH + (Xm+1,mxm + o+ R 11X+ K10 (7)

2
has en+2,m+

e (MK m+ 14k
g = (O () s LTY)). 0

(We define (}) =0if k <0.)

1 =4 as the additional zero. By (4),

Theorem 2 In (2),

G 2m+T1/m+k _ m+1+k m+k
— (—1 m—k —(—1 m—k .
bmi = (=D (2k+1> (=1) << 2k 1 >+<2k+1>> )
Proof. The second equation follows from trivial computation. To show the
first, denote

m—1
2m+1/m+k
m m k k
=x"+) (- (2k+ 1)

k=0

and claim that
Qm(x) = Bm(x) (10)
for all m > 1. Expanding det (xI,, — Bi), we have
B (x) = (x =3)An(x) — Am_1(x)

for all m > 2. Since
Qi1(x) =x—3 =B;(x)



182 S. Mustonen, P. Haukkanen, J. Merikoski

and
Q2(x) = X2 —5x+5 = By(x),

the claim (10) follows by showing that

Qm1(x) = (x = 3)Pm(x) = P (x) (11)

for all m > 2. Mustonen [3] did also this by using Mathematica, and we will
do the computations algebraically in the appendix. O

For k = m, the first expression in (9) is undefined but the second is defined.
(We define (}) =0 if n < k.) It gives byym = 1, the coefficient of x™ in (2). It
also allows to define bgy = 1.

Corollary 1 The sum of all individual squared chords of Gy is n%. Their
product is n'™.

Proof. By Theorems 1 and 2 (or by [7, Egs. (20) and (24)]), we obtain

2 2
€m1 + t emmo1 = —Am-1m—2 = 2(m—1),
2 2
€m11 T T myim = ~Pmm1 =2m+ 1,
and
2 2
€m1 " €mm—t = (=1) " am_10 =m,
2 2 m
€mi1,1 " €mitm = (—1)"bmo =2m + 1.

Denoting by X, the sum and by Tl the product of all individual squared
chords of G, we therefore have

Tom =2m-2(m—1)+m-4=(2m)?,
Yomi1 = 2m+1)2m+1) = 2m+ 1)?,

and

Mom = M2™4™ = 2m)*™, Tyt = (2m + 1),
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3 Sum of chords

The sum of all individual chords of G, is
Sn =nsp,
where
Sn=¢énl + -+ enm1 +%enm:en1 4+ F enmt +1

if n is even, and
Sn =¢én1+ -+ enm

if n is odd, is the sum of different (lengths of) chords but the diameter is
halved.

Theorem 3 For alln > 3,
Sn = cot i.
n

Proof. We have [7, Eq. (21)]

k7t T
in — = cot —. 12
Z sin —— = cot 5 (12)
k=1
If n is even, this implies
m—1 1 m—1 k7t 2m—1 -
sn—ZZSm——}—E-Z: sin— + 1+ Z sin — =
k=1 k=1 k=m+1
el e s
sin — = cot —
2n
k=1

If n is odd, then

sn—ZZSm— Zsm——i— Z Sm— Zsm— %

k=m+1

g

Is sy a zero of a monic polynomial of degree m with integer coefficients? Yes
for sy =cot g =1+ V/2; it is a zero of x2 —2x—1. On the other hand, it is easy

to see that s5 = cot {5 = V5 + 2+/5 is not a zero of such a polynomial. But
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s% =5+2v/5is a zero of x* —10x + 5, and the other zero is 5 —2v/5 = cot? %.
Also si = 3+ 2+/2 has this property: it is a zero of x> — 6x + 1, and the other
zero is 3 — 2v/2 = cot? ‘%ﬂ

Generally, denoting

2i—1)m

P i=1,...,m,

Sni = cot
this motivates us to study for even n the coeflicients of the polynomial
U (x) = (x — 51211) e (x— Sﬁm) =x"+ um,mflxmi] + o+ Um1X + U, (13)

and for odd n those of

1

Vin(x) = (x = 831) - (x = s2) = X™ + Vinm 1X™ 4 - Vi X 4 Vino. (14)

We will see that they all are integers. The largest zero is s%L = sfﬂ.

Mustonen [3] found the following theorem experimentally and also presented
its proof. Yaglom and Yaglom [9, Egs. (7) and (8)] formulated (16) differently.

Theorem 4 In (13),

i = (—1)1‘(21). (15)

In (14),

Proof. We have [10]

Y ro(—1 )k(;c) cot™Zk ¢

cotnt = . (17)
Y ko= M* () coth 2T
Denote
2i—1m
ti:T, 1:1,...,m.

Since cotnt; =0, (17) yields

i n

Z( 1)k <2k) cot™ %K ¢, = 0. (18)
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First assume n even. The polynomial

= i(—] ym—k (;{) xk

k=0
is monic and has degree m. For alli=1,...,m,
= 2m = 2m
— —k 2k __ 1 2m-—21
=2 0" <2k>s“i =2 (1 <2m—21> Sl
k=0 1=0
m m n
Z < > S Z(—Ul(m) cot™ 2 t; =0
1= 1=0

by (18). Hence
U (x) = (x —837) -+ (x — si) = Um(x),

and (15) follows.

Second, assume n odd. The polynomial

9L ()¢

k=0

is monic and has degree m. For alli=1,...,m,

R 2m+1 - o Zm+1 m-2l _
=) (=™ <2k+1> =D 1)<2m—21+1>sm -

k=0 1=0

m m
2m+1 2m+1 _
—1 1 2m+1 21 2m+1-21
SmZ( R <2m 21+1)Sm Sni lZ < )Sni
m
1=

< > cot" 2 =0,

r‘—l

Tl.

and (16) follows. O
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Corollary 2 The number 5121 is the largest zero of the polynomial

—1

X™ A Uy xX™ 4 4 Uy X 4 U™

if n is even, and that of
x™ + vm’mqnxm*] + v n™ X 4 vpen™

if N is odd.

4 Interpreting snm_yx+1, k=1,..., L“qu, n odd

The zeros of An(x) and By, (x) describe the squared chords of Gomyz and
Gomuy1, respectively, excluding the diameter. The largest zero of U, (x), s%nﬂ =
S%m, and that of Vi, (x), S%m = s%m 41, describe the squared sum of chords
but halving the diameter. In other words, the sum of all individual chords
of Gy is divided by n and the result is squared.

What about the other zeros?

Let the vertices of G, be Pgy,...,Pn_1, where Py = (cosk—”,sm—) Then
enx = PoPx = Zsm , k=1,...,m. Since PoPy,_x = PoPy, we define enn_\ =
enka = 1

Fix n and denote ex = eny for brevity. Assume that 3k < n;ie., k < 3.

Then the line segments PoP2y and Py P,y intersect; let Qy be their intersection
point and denote xx = PoQy. Because AQxPoPyx ~ AQyPakPn_k, we have
Xk €k

€2k — Xk €3k

Hence
exern 2 sin KT gin ZKT”
Xk = T = 3@ =

€k €3k sin —l— sin

2 sin X7 gipn 2k Zk” sin %” sin Zan ; k7t
= =tan —.

2km 2k7r k7t s 2km kmt
sin( =% — ) +sin(57F + ) sin =T cos T n

If n is odd, then

km T k7t B 2(m—k)+1]x
tan? = cot (z— 2m+1) = cot
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Thus spm-—k+1 = PoQx, k=1,..., L“T_]J In other words, the L“T_]J smallest
zeros of Vin(x) are the squared line segments PoQy, k =1,..., {nT*]J Musto-
nen [3] found this experimentally. The largest zero is already interpreted, but
the interpretation of the rest of zeros remains open. For some experimental
observations, see [3]. Interpretation of the zeros of U, (x), except the largest,
remains open, too.

5 Expressing Sniy...,Snm USINg €n1y...,€nm
Mustonen’s [3] experiments make conjecture that, given n, there are numbers
AY € (0,41}, i,k =1,...,m, such that

Sni = )\21) enl +--- + AEBm—] €n,m—1 + )\1(111)11er/1m) i= 1> R

where
if n is even,

el — 7€nm : :
nm enm  if nis odd.

In other words,

cot % =2 [7\&1) sin - R }\Sfm_] sin % + en7\1(111)n sin =,
where
0. — % if n is even,
" 1 if nis odd.
This is true by (12) when i =1 (sp1 = s, )\SR — = )\1(11121 — 1) but remains

generally open.

For example, let n = 15. Denoting sy = sj5) and e, = ej5y for brevity, we
have [3, p. 17]

s1= e+ e+ e+ e+ e+ e+ ey

Sy = es3+ €6

$3 = €5

Sg= e1— e+ e— e+ es— eg+ ey
S5 = —e3 + €s

S¢= e1— e+ e+ e;— es+ eg— ey
S7= e+ e— e3— e+ es+ eg— ey
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We study the zero coefficients in general. If and only if d = ged(n, 2i—1) > 1,
then G, ”inherits” the chord
2i— 1=
2n

from Gq4. Then the chords of G4 are enough to express sni, and the coefficients
of the remaining chords are zero. Indeed, in our example,

Sni = cot

$2 =S152 = ts—ﬂ— tE—Z('EJr'Zj)
2 = 8152 = cot 35 = cot 75 = 2( sin 7 +sin ),

t57'( trt 7 & T
$3 =S5 = cot =— = cot — = 2 sin —
3 15,3 30 G 3

= —cotq—ﬁ—cots—ﬁ—Z(—" E—i—s' 2—7[)
§5 = 8155 = 30 0 bln5 mn 5 )

showing that s3 is ”inherited” from Gj3, and s; and s5 from Gs.
So we conjecture additionally that if and only if n is a prime or a power
of 2, then each 7\1(11])< € {£1}. Mustonen [3] gives also other experimental results

and conjectures about the structure of the three-dimensional array (?\S]){), and
presents an efficient algorithm to compute these numbers.

6 Connections with OEIS sequences

The (lexicographically ordered) sequence (amy) is A053122 in OEIS. Its first
six terms are agp =1, ajo=—2, a1 =1, ap =3, a1 =—4, ap = 1.
The OEIS sequence A132460 consists of the numbers

to=1 n=012...,
tnk:(_”k((n_k) + (“_k_1>), n=23..., k=1,...,m

k k—1
The first six terms of its subsequence corresponding to odd values of n are
tio =1=bo, t30 =1 =11, t31 = =3 = bip, tso = 1 = b2y, t51 = —5 = by,

t5) =5 = byp. In general, by = tomi1,m—x-
Also the characteristic polynomials of certain other tridiagonal matrices
have connections with OEIS sequences. We study two of them.

Let tridiag(a, b, c) denote the tridiagonal matrix with main diagonal, sub-
diagonal and superdiagonal entries those of vectors a, b and c, respectively,
and denote x® =x, ..., x, k copies. For m > 3, define

C, = tridiag ((2™), ((=1)™2),-2), (=2, (1))
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a-(4 7)) a-o

For m > 1, consider the polynomial

and

Cm(x) = det (XIm - Cm) =x"+ Cm,m—1xm_] + -+ X+ Cmo

and define Co(x) = 1, cpo = ¢mm = 1. The sequence A140882 consists of
the numbers (—1)™cmk. Since Co(x) = 1, Ci(x) = x — 2, Ca(x) = x* — 4x,
C3(x) = x> — 6x% + 8x, its first ten terms are 1,2,—1,0,—4,1,0,—8,6,—1, as
listed in [4].

We have xAj(x) = x2 —4x = Cy(x) and xA,(x) = x> — 6x2 + 8x = C3(x),
and generally

Crns1 (%) = XAm(x) (19)

for all m > 1. This can be proved similarly to the proofs of Theorems 1 and 2.
By (8), a formula for A140882 is then obtained. By (19), (7) and (3),

kmt
2m—2

Spech:specAm,ZU{O,él}:{4sin2 k:O,...,m—1}

for m > 3.
Finally, the sequence A136672 motivates us to study the polynomial
Frat (%) = (x — 2)Am (%) = x™ + friqmX™ + -+ + F11% + fngr0 - (20)
and its connections with the matrix Dy, defined by
Dy, = tridiag((2™), (=1)™%,0), (=1)™1))
if m > 3, and
D,— (2 D; = (2)
2 = O 2 ) 1= N

By Theorem 1,

_ m-+k m+1+k
e = (17 k+](<2k1> +2< 2K+ 1 >)' 1)

For m > 1, consider the polynomial

D (x) = det (xI, — D) = x™ + dm,m_mm_] + -+ dpx + dmo



190 S. Mustonen, P. Haukkanen, J. Merikoski

and define Dy(x) = 1, dgo = dmm = 1. The sequence A136672 consists of the
numbers (—1)™dmk. We have Do(x) =1, Di(x) =x — 2, D (x) = x* —4x + 4,
D3(x) = x3>—6x?+11x—6. So its first ten terms are 1,2, —1,4,—4,1,6,—11,6,—1,
as listed in [4].

Since Fi(x) = x —2 = Dj(x), Fa(x) = x¥* —4x +4 = D,(x), and F3(x) =
x3 —6x2 4+ 11x — 6 = D3(x), it seems that

Dy (%) = Fin(x) (22)

for all m > 1. This can be proved similarly to the previous proofs. By (21), a
formula for A136672 follows. By (22), (20) and (3),

k
spec Dy, = spec A1 U{2} = {4sinzﬁ ‘k:L...,m—]}U{Z}

for m > 2.

7 Conclusions and further questions

The squared chords of G, excluding the diameter, are the zeros of a monic
polynomial of degree u with integer coefficients. Including the diameter, the
degree is m.

The squared sum of all individual chords is the largest zero of a monic
polynomial of degree m with integer coefficients. An equivalent fact is that
the squared sum of all different (lengths of) chords but the diameter is halved,
is a zero of such a polynomial. The zeros of this polynomial seem to be linear
combinations of the chords with all coefficients 0 or £1.

Lemma 1, stating that efﬂ, ceny e,zw are the eigenvalues of a tridiagonal ma-

trix with integer entries, follows from certain properties of the Chebychev
polynomials. So squared chords have interesting connections with these top-
ics. But what about sil,...,sﬁm? Are also they the eigenvalues of such a
tridiagonal matrix? This question remains open.

The coefficients of the polynomial (x — efﬂ) s (x — eﬁu) form an OEIS se-

quence, and so do also those of certain related polynomials. What about the

coefficients of (x — sfﬂ) -+ (x—s2,,)? Do also they form such a sequence? This

question remains open, too.
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Appendix: Proofs of (6) and (11)

Proof of (6)
(x = 2)Pm(x) = Pt (x)
m m—1
+1+k m+ k
—(x—2 1)k m k _qym-1-k k
(x )kZ( ) ( 2K +1 >X k:O( ) 2K+1)"
m—1 m
m1 mok M+ T4+K\ 1y mok (M T+
— 1 2 —1
X +k:0( ) ( 2k +1 §( ) 2k +1

= 2k — 1 = 2k +1
—1
7m (7])m+1—k m+k k
= 2k 41

m

+
N
3
t
N
N
/_3
-+
~~_
|
7N
~_
N~

m—1
_ o m+] m malk (M+2+K\ g
—x (2m + 2)x +§( 1) ( i1 + (=)™ (m +2)
m+1
- 2k +1 mATLE



192 S. Mustonen, P. Haukkanen, J. Merikoski

Proof of (11)

(x = 3)Pm(x) = Pm_1(x)

2m 2m+1
— ... = m+1_ m
- x (<2m—1>+3<2m+1>)x

m—1

mil—x [ (Mm+k m+1+k m+k .
+;(_]) ) <(2k—1>+3< 2k + 1 >_<2k+1>)"

m+1 m+1 m
() (5)

m—1
:Xm+1_(2m+3)xm+z(_1)

k=1

+ (=)™ (2m + 3)

2m+1)4+1/m+1+%
m”JrZ ksl 2m )+l < )Xk:Qm-H(X)

mal—k 2m+3 /m+T1+k\
m—k+1 2k +1

m+1—k 2k +1
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