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On the weighted integral inequalities for
convex function

Abstract. In this paper, we establish several weighted inequalities for
some differantiable mappings that are connected with the celebrated
Hermite-Hadamard-Fejér type and Ostrowski type integral inequalities.
The results presented here would provide extensions of those given in
earlier works.
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1 Introduction
The following result is known in the literature as Ostrowski’s inequality [10]:

Theorem 1 Let f : [a,b]— R be a differentiable mapping on (a,b) whose

derivative f : (a,b)— R is bounded on (a,b), i.e., f'lloc = sup [f'(t)] < oo.
te(a,b)

Then, the inequality:

1 (x— %b)z

- 5= Jf(t)dt E [4 " (b_a)z] b-affl, @

holds for all x € [a,b]. The constant % 1s the best possible.
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Inequality (1) has wide applications in numerical analysis and in the the-
ory of some special means; estimating error bounds for some special means,
some mid-point, trapezoid and Simpson rules and quadrature rules, etc. Hence
inequality (1) has attracted considerable attention and interest from mathe-
maticans and researchers. Due to this, over the years, the interested reader is
also refered to ([1]-]7],[12]-[17]) for integral inequalities in several independent
variables. In addition, the current approach of obtaining the bounds, for a par-
ticular quadrature rule, have depended on the use of Peano kernel. The general
approach in the past has involved the assumption of bounded derivatives of
degree greater than one.

If f : [a, b] — Ris differentiable on [a, b] with the first derivative f’ integrable
on [a, b], then Montgomery identity holds:

b b
f(x) = v a Jf(t)dt + J P(x,t)f'(t)dt, (2)
a a
where P(x,t) is the Peano kernel defined by

t—a

b’ a<t<x
P(x,t) =

t—b

T x<t<hb.

Definition 1 The function f : [a,b] C R — R, is said to be convex if the
inequality
f(Ax 4+ (1 = A)y) < Af(x) + (1 = A)f(y)

holds for all x,y € [a,b] and A € [0,1]. We say that f is concave if (—f) is

CONVET.

The following inequality is well known in the literature as the Hermite-
Hadamard integral inequality (see, [11]):

a+b 1 (° f(a) + f(b)
((47) = ot e T

5 < — f(x)dx < (3)

holds, where f : I C R — R is a convex function on the interval I of real
numbers and a,b € [ with a < b.

The most well-known inequalities related to the integral mean of a convex
function are the Hermite-Hadamard inequalities or its weighted versions, the
so-called Hermite-Hadamard-Fejér inequalities (see, [18]-[22]). In [8], Fejér gave
a weighted generalization of the inequality (3) as the following:

a
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Theorem 2 Let f:[a,b] — R, be a convex function, then the inequality

b b b
f(a;b>J w(x)dxgb]aJ f(x)w(x)dx < WJ w(x)dx (4)

holds, where w : [a, b] — R is nonnegative, integrable, and symmetric regarding

__ atb
X = 7 -

In [18], some inequalities of Hermite-Hadamard-Fejér type for differentiable
convex mappings were proved using the following lemma.

Lemma 1 Let f: [° C R — R be a differentiable mapping on 1°, a,b € I°
with a < b, and w: [a,b] — [0,00) be a differentiable mapping. If f' € Lla, b],
then the following equality holds:

] Jb f(x)w(x)dx — Lf <a+b>

b—al, b—a

1
=(b—a) L k(t)f (ta+ (1 —t)b)dt

for each t € [0, 1], where
fo w(as+ (1—s)b)ds, te[0,7)
k(t) =
jt w(as+ (1 —s)b)ds, te[3, 1.

The main result in [18] is as follows:

Theorem 3 Let f:1° C R — R be a differentiable mapping on I°, a,b € I°
with a < b, and w: [a,b] — [0, 00) be a differentiable mapping and symmetric
to ‘%’b. If |f'| is convex on [a,b], then the following inequality holds:

b b
‘blaLf( Jw(x )dx—blf<a42rb>Lw(x)dx
(6)

: b 2 2 If'(a)] + If'(b)|
= ((b—a)ZL;bW(") (x—a) —(b—x)}dx> <2>

In this article, using functions whose derivatives absolute values are convex,
we obtained new inequalities of Fejer-Hermite-Hadamard type and Ostrowski
type. The results presented here would provide extensions of those given in
earlier works.
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2 Main results

We will establish some new results connected with the left-hand side of (4)
and Ostrowski type inequalities used the following Lemma. Now, we give the
following new Lemma for our results:

Lemma 2 Let f: I° C R — R be a differentiable mapping on 1°, a,b € I°
with a < b and let w : [a,b] — R. If f,w € L[a,b], then, for all x € [a,b],
the following equality holds:

x [/t « b /b &
J(Jw ) )dtJ(Jw(s)ds) f/(t)dt

t

Lol

X o1 b /b a1
— ocj (Jw(s)ds) w(t)f(t)dt — ocJ (Jw(s)ds) w(t)f(t)dt.

X

Proof. By integration by parts, we have the following equalities:

an
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Subtracting (8) from (9), we obtain (7)

x /t x— b /b o1
— Jw(s)ds w(t)f(t)dt — ocJ Jw(s)ds w(t)f(t)dt
a \a x \t
This completes the proof. O

Corollary 1 Under the same assumptions as in Lemma 2, if we put o« = 1,
then the following identity holds:

(10)

Remark 1 If we take w(s) = 1 in (10), the idendity (10) reduces to the
identity (2).

Definition 2 Let f € Lyla,bl. The Riemann-Liowville integrals J§ f and J§_f
of order o« > 0 with a > 0 are defined by

I 0 =

r (x—t)* T f(t)dt, x>a

a

and

o 1 b oa—1
Jo-10) = 7rog J (t—x)* T f(t)dt, x<b

respectively. Here, T'(«) is the Gamma function and ]g+f(x) = ]g,f(x) = f(x).



On the weighted integral inequalities 199

Corollary 2 Under the same assumptions as in Lemma 2, if we put w(s) =1,
then the following equality holds:

[(x = a)* 4 (b —x)*f(x) = T(oc+ 1)J3-f(a) — T(ec 4 1)J 3+ f(b) (11)
X b
= J(t —a)%f (t)dt — J (b —t)*f (t)dt.

Corollary 3 Under the same assumptions of Corollary 2 with x = “TH’, the
idendity (11) becomes to the following identity

f(a—i—b) Mo+T1) []?cib)f(a)‘i‘]?a;b)ﬁ(b)}

2 ) 2%b—a)
1 + /
=T J (t—a)*f (t)dt — J (b—t)*f (t)dt

2

Now, by using the above lemma, we prove our main theorems:

Theorem 4 Let f:1° C R — R be a differentiable mapping on 1°, a,b € I°
with a < b and let w : [a,b] — R be continuous on [a,b]. If [f'| is convex on
[a, b], then the following inequality holds:

o b &

Iw(s)ds + Jw(s)ds f(x)

x /t —1 b /b =1
—ocJ Jw(s)ds w(t)f(t)dt — ocJ Jw(s)ds w(t)f(t)dt
a a X t
< [w] ad,00 ((b —a)(x —a)*t! C(x—= a)“*z) (@)
b—a o+ 1 ox+2
W00 (x — a)*t2 Wl b100 (b —x)%2

[T (b)[+ If (a)l

b—a o+ 2 b—a ox+2

& _ _ o+1 . o+2
N |V‘I’)||[a,x},oo <(b a)(b —x)** _(b—x + >|f/(b)|
—a

o+ 1 o+ 2



200 M. Z. Sarikaya, S. Erden

Wllfabieo [((b—a)(x—a)*  (b—x)*2—(x—a)*2\
= b—a {( o+ 1 + o+ 2 )|f(a)|
N <(b _ a)(b fx)“_H N (Xf a)oc+2 _ (b X)oc+2> |f/(b)|}

o+ 1 x+2

where o« > 0 and |[wl|(q ) o = sup w(t)].
o te[a,b]

Proof. We take absolute value of both sizes of (7), we find that

(e« ]

b 04
Jw(s)ds ) If (t)|dt

X b
< HWHE’;,X],OOJ(t— a)® f'(t)] dt + Wl e | (0= IF (t)dt
[ b
’ —t t—a
= Hw||f;X]YOOJ(t— Q) |y —a+ o —_b)|dt
a

 b—1t t—a
f(b_aa—i—b_ab)'dt

[x,bl,00

b
+ w] j (b— 1)

Since Ifll is convex on [a.b], it follows that
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X
b—t |, t—a,
< 04 _ 04 ’
< Wl | 1= @ [ £ [0+ g2 0] at
a
b
t—a,
+ku[xb,ooj 07 g (@l ot o]
Hax]oo X—G)“+] (X—G)OH—Z ’ (X_a)oc+2 /
— f —If (b
{( cx+1 a2 )' (l+—=73 H)'}
HWH o b— cx+2 b— b — x)ot! b — x)*t+2 ,
bbloo [ ( a)‘Jr (b—a)(b—x)*" (b—x]) i (b))
oc—i—Z a+1 x+2
”WH 0o ot b—x)%2 _ (x — q)*2\
[a,b], —a) +( x) (x —a) i ()]
cx—i—] x+2
o+1 —a oa+2 b—x o+2 ,
< ( —x) ( ) ( ) )If(b)l}-
x+2
Hence, the proof of theorem is completed. O

Corollary 4 Under the same assumptions as in Theorem 4, if we take w(s) =
1, then the following inequality holds:

l(x —a)* + (b = x)*Tf(x) = T(ec+ 1) [Ji-fla) + Jg F(b)]]
1 (b—a)(x—a)*  (b—x)* — (x—a)*t2\
_ DAY= _oa)at2 DAY 25
+<(b a)(b—x)** n (x —a)*" — (b —x)*" )lf’(b)l}.

o+ 1 ox+2

Remark 2 If we take x = %b in (12), we get

a+b 2o+ 1) [y N
() - F o ey 10+ Ty 10|

a7 (@] [ )

which is proved by Sarikaya and Yildirim in [19].
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Corollary 5 Under the same assumptions as in Theorem 4, if we take x =1,
then the following inequality holds:

b b
) -

_ S = (x—aB
llab {(b a)(x — a)? ( x) 3(x a))f(a)l

+<(b—a)(b—><)2+(X—a)3g(b—><)3> / }

[wl
= b-

: (o)

Corollary 6 Under the same assumptions of Corollary 5 with x = %2 we

2
get
b
(a a
< (b — ) [Wlliq b).00 \f’(a)\ + f’(b)]
- 4 2 '

Remark 3 If we take w(s) =1 in (13), we have

f(a;b>—bljf(t)dt < (b;a) (f/(a):f/(b)g

which is proved by Kwrmacu in [9].

%
2
NS
o
w
\_/
-+
N
o)
N+
o
~
%
z
=
=
=t
o
—+

(13)

Corollary 7 Under the same assumptions as in Theorem 4, if we put |f (a)] =
If' (b)] in (10), then the following inequality holds:

() <]

x /t o1 b /b a1
—ocJ (Jw(s)ds) w(t)f(t)dt — ocJ (Jw(s)ds) w(t)f(t)dt
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()] IIwl

(@) 1l 00 . | Nbhoo
X—a
a+1 x+1
@) 1w 100

o+ 1

_ X)oc—H

{(X_ a)* £ (b _X)cxﬂ}

Theorem 5 Let f:1° C R — R be a differentiable mapping on 1°, a,b € I°
with a <b and let w : [a,b] = R be continuous on [a,b]. If |f'|9 is convex on
[a,bl, q > 1, then the following inequality holds:

X o b o x [/t x—1
{(Jw(s)ds) + (Jw(s)ds) ] f(x) — ocJ (Jw(s)ds) w(t)f(t)dt

b o—1 ) |
(JW(S)dS) w(t)f(t)dt| < ||WH[Q,XL?O ((X —a) p+1 > 5
(b—a)a xp + 1

1
, a2 el
@+ B ) 4

(b— a)%
_ )ap+] % —%x)2 , —a)? = (x—a)? , %
W% 1,00 (x — )%+ v (b—a)—(b—x)?% .
- (b—a)e ap + 1 ( 2 o)

(X_a)z , % (b—x)“pH %
R If (b)||q> +(o¢p+1)

2 2 %
(wzﬂﬂﬂmw+”_“)_“_“)Www>

2

where o > 0, % + % =1, and [W|| (g .00 = S}lp] w(t)|.
tela,b
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Proof. We take absolute value of (7). Using Holder’s inequality, we find that

(e e

IN

IN
e - - %
R — P

X 1 N 1
P q
< |lw[® It — al* dt If (t)]9dt
[a,x],00
a a

b P b
+ ”WH&,b},oo (J |b — t|‘xp dt) (J /
X X

Since ’f/ (1) ‘

=
—
=
s
o
-+
v
o=

is convex on [a, b]

T p—t
<

b)

f,( b—t a4 t—a
b—a b—a
From (15), it follows that

(e <]

X t o—1
—ocl (lw(s)ds) w(t)f(t)dt — «

R
—/
2
N
o
w
~_

153
L
z
=
P}
=
o
*
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||W||ffl,x},oo (x — a)*P ! v (b—a)z—(b—XJZ/
- (b—a)d ( oap+1 ) 2 e

LI f/(b)‘q); + Pl <(b il )%
(b—a)d xp + 1
2 2 2 % o
(w;mlﬂmﬁ+w_a);w_a)(ww> Sﬁﬂg@?
(b—a)a

_ocp+1% _2__2/ _2/ %
{<(Xocpal1 ) <(b U e B 'f(b)|q>

e\ 2, AP (x—a)? a
+<(bocpx—)k1 ) <(b ZX) |f(a)|q+(b 2 Z(X 2 |f(b)q> }

which completes the proof. O

Corollary 8 Under the same assumptions as in Theorem /, if we put w(s) =
1, then the following inequality holds:

I[(x —a)*+ (b—x)% f(x) = T(a+ 1) [JF f(a) + J3& f(b)]] <

(x— )™\ " [ (b—a)P—(b—x) . (x—a)? ., \7
{ <<xp+1> ( 7 If (a)]9+ 7 If (b)]4 (16)

_ocp+1% %), _2__2/ %
+<(bcxpx%)—1 ) <(b S (e P 0 |f(b)q> }

Remark 4 If we take x = %52 in (16), we have

a+b 27 (o +1) [, .
H 2 >‘ (b—a)® {I(a;b)f(a)+l(a;b)+f(b)ﬂ

. _(b-q) <3|f’(a)|q +|f’(b)|q>3‘ <|f’(a)|q +3f’(b)|q>3*
4(ap +1)7 4 4

which is proved by Sarikaya and Yildirim in [19].
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Corollary 9 Let the conditions of Theorem 5 hold. If we take o =1 in (14),
then the following inequality holds:

b b [wll
(JW ) _Jw(t)f(t)dt < w
‘ a (b—a)d

a)Pt! (b—a)—(b—x)* (x—a)? ., s
{( p+1 ) ( 5 I (@)l 4+ = —If (b)]f

(b—x)P*! (b—x)?|, 9 (b—a)—(x—a) a
+( — ) ( = |f @] + : I (b)[9

Corollary 10 Under the same assumptions of Corollary 9 with x = %b, we
get

b b 2

(b—a)’|jw 0o
Jw(s)ds f<a+b> —Jw(t)f(t)dt < | Hab]
2 2+
4 4 27Ta(p+ 1)
(17)

{<3f’(a)q+f’(b)q>3 (f’(a)wsf’(b)q);}
2 + 2 )

Remark 5 If we take w(s) =1 in (17), we have
b 1 i
a+
f — f(t)dt
< 2 > boa ) Ve
a

BCETY <3|f’(a)|q +|f’(b)|q>3‘ (|f’(a)q +3|f’(b)|q>3
S 1 3 +
27 ap+ 1w 2 2

which is proved by Kwrmacu in [9].
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