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Abstract. In this paper we define the =-functional and the ω-entropy
functional for the conformal Ricci flow and see how they evolve according
to time.

1 Introduction

In 1982 R. Hamilton introduced Ricci flow as a deformation of Riemannian
metric [3], [4]. After him many scientists gave attention on it and in 2003–2004
G. Perelman [1], [2] used it to prove Poincaré conjecture. Meanwhile in 2004
A. E. Fischer introduced the concept of conformal Ricci flow equation which
is given by

∂g

∂t
+ 2

(
S+

g

n

)
= −pg

R(g) = −1.
(1)

Here p is a scalar non dynamical field. As conformal Ricci flow equation is
analogous to the Navier-Stokes equation of fluid mechanics, the scalar field p
is also called conformal pressure field.
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The name conformal Ricci flow was introduced because of the role that
conformal geometry plays in constraining the scalar curvature and because
these equations are the vector field sum of a conformal flow equation and
a Ricci flow equation. For the classical Ricci flow equation and the confor-
mal Ricci flow equation, the volume and scalar curvature behave somewhat
oppositely. In classical Ricci flow equation, the volume is preserved, that is
vol(M,g) = 1, but for non-static flows the scalar is not preserved, whereas for
conformal Ricci flow equation the scalar curvature R(g) is kept constant to −1
and for non-static flows the volume varies. Comparing the classical and con-
formal Ricci flow equations, we observe that the constraint equation changes
from vol(M,g) = 1 for the classical Ricci flow to R(g) = −1 for the conformal
Ricci flow with the concomitant change of the configuration space from M1 to
M−1. Since M1 is a codimension-1 submanifold of M whereas M−1 is a codi-
mension C∞(M,<) submanifold of M, M−1 is a much smaller configuration
space than M1. In the view point of geometry having a smaller configuration
space is potentially better.

From the lecture note of P. Topping [5], we have been introduced the concept
of the =-functional and Perelman’s ω entropy functional for Ricci flow. In our
paper we have defined the =-functional and ω-entropy functional regarding
conformal Ricci flow and have shown how they evolve with respect to time t.

2 The =-functional for the conformal Ricci flow

Let M be a fixed closed manifold, g is a Riemannian metric and f is a function
defined on M to the set of real numbers <.

Then the =-functional on pair (g, f) is defined as

=(g, f) =

∫ (
−1+ |∇f|2

)
e−fdV. (2)

Now we establish how the =-functional changes according to time under con-
formal Ricci flow.

Theorem 1 In conformal Ricci flow, the rate of change of =-functional with
respect of time is given by

d

dt
=(g, f) =

∫ [
−2Ric(∇f,∇f) −

(
2

n
+ p

)
g(∇f,∇f) − 2∂f

∂t
(∆f− |∇f|2)

+ (−1+ |∇f|2)
(
−
∂f

∂t
+
1

2
tr
∂g

∂t

)]
e−fdV,
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where =(g, f) =
∫
(−1+ |∇f|2)e−fdV.

Proof.

∂

∂t
|∇f|2 = ∂

∂t
g(∇f,∇f) = ∂g

∂t
(∇f,∇f) + 2g

(
∇∂f
∂t
,∇f

)
. (3)

So using proposition 2.3.12 of [5] we can write

d

dt
=(g, f) =

∫ [
∂g

∂t
(∇f,∇f) + 2g

(
∇∂f
∂t
,∇f

)]
e−fdV

+

∫
(−1+ |∇f|2)

[
−
∂f

∂t
+
1

2
tr
∂g

∂t

]
e−fdV.

(4)

Using integration by parts of equation (3), we get∫
2g

(
∇∂f
∂t
,∇f

)
e−fdV = −2

∫
∂f

∂t
(∆f− |∇f|2)e−fdV. (5)

Now putting (5) in (4), we get

d

dt
=(g, f) =

∫ [
∂g

∂t
(∇f,∇f) − ∂f

∂t
(∆f− |∇f|2)

+(−1+ |∇f|2)
(
−
∂f

∂t
+
1

2
tr
∂g

∂t

)]
e−fdV.

(6)

Using (1) in (6), we get the following result for conformal Ricci flow, as

d

dt
=(g, f) =

∫ [
− 2Ric(∇f,∇f) −

(
2

n
+ p

)
g(∇f,∇f)

− 2
∂f

∂t
(∆f− |∇f|2) + (−1+ |∇f|2)

(
−
∂f

∂t
+
1

2
tr
∂g

∂t

)]
e−fdV.

(7)

Hence the proof. �

3 ω-entropy functional for the conformal Ricci flow

Let M be a closed manifold, g is a Riemannian metric on M and f is a smooth
function defined from M to the set of real numbers <. We define ω-entropy
functional as

ω(g, f, τ) =

∫ [
τ
(
−1+ |∇f|2

)
+ f− n

]
udV, (8)
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where τ > 0 is a scale parameter and u is defined as u(t) = e−f(t);
∫
M udV = 1.

We would also like to define heat operator acting on the function f : M ×
[0, τ] −→ < by ♦ := ∂

∂t − ∆ and also, ♦∗ := − ∂
∂t − ∆− 1, conjugate to ♦.

We choose u, such that ♦∗u = 0.
Now we prove the following theorem.

Theorem 2 If g, f, τ evolve according to

∂g

∂t
= −2Ric−

(
2

n
+ p

)
g (9)

∂τ

∂t
= −1 (10)

∂f

∂t
= −∆f+ |∇f|2 + 1+ n

2τ
(11)

and the function v defined as v = [τ(2∆f− |∇f|2−1)+ f−n]u, then the rate of
change of ω-entropy functional for conformal Ricci flow is dω

dt = −
∫
M♦

∗v,
where

♦∗v = 2u(∆f− |∇f|2 − 1) − un

2τ
− v− uτ[4 < Ric,Hessf >

+

(
2

n
+ p

)
g(∇f,∇f) − 2g(∇|∇f|2,∇f) + 4g(∇(∆f),∇f) + 2|Hessf|2].

Proof.
♦∗v = ♦∗

( v
u
u
)
=
v

u
♦∗u+ u♦∗

( v
u

)
.

We have defined previously that ♦∗u = 0, so

♦∗v = u♦∗
( v
u

)
♦∗v = u♦∗[τ(2∇f− |∇f|2 − 1) + f− n].

We shall use the conjugate of heat operator, as defined earlier as ♦∗ =
−
(
∂
∂t + ∆+ 1

)
. Therefore ♦∗v = −u

(
∂
∂t + ∆+ 1

)
[τ(2∆f− |∇f|2−1)+f−n] ⇒

u−1♦∗v = −
(
∂
∂t + ∆

)
[τ(2∆f−|∇f|2−1)]−

(
∂
∂t + ∆

)
f−[τ(2∆f−|∇f|2−1)+f−n]

using equation (10), we have

u−1♦∗v = (2∆f− |∇f|2 − 1) − τ
(
∂

∂t
+ ∆

)
(2∆f− |∇f|2 − 1)

−
∂f

∂t
− ∆f−

v

u
.

(12)
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Now using the equality ∂
∂t(2∆f− |∇f|2−1) = 2 ∂∂t(∆f)−

∂
∂t |∇f|

2 and the propo-
sition 2.5.6 of [5], we have

∂

∂t
(2∆f−|∇f|2−1) = 2∆∂f

∂t
+4 < Ric,Hessf > −

∂g

∂t
(∇f,∇f)−2g

(
∂

∂t
∇f,∇f

)
.

Now using the conformal Ricci flow equation (1), we have

∂

∂t
(2∆f− |∇f|2 − 1) = 2∆∂f

∂t
+ 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∂

∂t
∇f,∇f

)
.

(13)

Using (11) in (13), we get

∂

∂t
(2∆f− |∇f|2 − 1) = 2∆

(
−∆f+ |∇f|2 + 1+ n

2τ

)
+ 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∂

∂t
∇f,∇f

)
.

(14)

Now let us compute

∆(2∆f− |∇f|2 − 1) = 2∆2f− ∆|∇f|2. (15)

Using (14) and (15) in (12) we obtain after a brief calculation

u−1♦∗v = (2∆f− |∇f|2 − 1) − τ
[
− 2∆2f+ 2∆|∇f|2

+ 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∂

∂t
∇f,∇f

)
+ 2∆2f− ∆|∇f|2] − ∂f

∂t
− ∆f−

v

u

= ∆f− |∇f|2 − 1− τ[∆|∇f|2 + 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∂

∂t
∇f,∇f

)]
−
∂f

∂t
−
v

u
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= ∆f− |∇f|2 − 1− τ
[
∆|∇f|2 + 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∂

∂t
∇f,∇f

)]
+ ∆f− |∇f|2 − 1− n

2τ
−
v

u

= 2(∆f− |∇f|2 − 1) − n

2τ
−
v

u
− τ

[
∆|∇f|2 + 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∂

∂t
∇f,∇f

)]

u−1♦∗v = 2(∆f− |∇f|2 − 1) − n

2τ
−

[
τ(2∆f− |∇f|2 − 1) + f− n] − τ[∆|∇f|2

+ 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∂

∂t
∇f,∇f

)]

u−1♦∗v = 2(∆f− |∇f|2 − 1) − n

2τ
− f+ n− τ

[
2∆f− |∇f|2 − 1+ ∆|∇f|2

+ 4 < Ric,Hessf > +2Ric(∇f,∇f)

+

(
2

n
+ p

)
g(∇f,∇f) − 2g

(
∇∂f
∂t
,∇f

)] (16)

using (11), we get

u−1♦∗v = 2
(
∆f− |∇f|2 − 1

)
−
n

2τ
− f+ n− τ

[
2∆f− |∇f|2 − 1+ ∆|∇f|2

+ 4 < Ric,Hessf > +2Ric(∇f,∇f) +
(
2

n
+ p

)
g(∇f,∇f)

− 2g
(
∇
(
−∆f+ |∇f|2 + n

2τ
+ 1
)
,∇f

)]
.

(17)

We can rewrite (17) in the following way

u−1♦∗v = 2(∆f− |∇f|2 − 1) − n

2τ
− f+ n− τ[2∆f− |∇f|2 − 1

+ 4 < Ric,Hessf > +

(
2

n
+ p

)
g(∇f,∇f)

− 2g(∇|∇f|2,∇f) + 4g(∇(∆f),∇f)]
+ τ[−∆|∇f|2 − 2Ric(∇f,∇f) + 2g(∇(∆f),∇f)]

(18)
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and using Bochner formula in (18) and simplifying, we get

u−1♦∗v = 2(∆f− |∇f|2 − 1) − n

2τ
− f+ n− τ[2∆f− |∇f|2 − 1

+ 4 < Ric,Hessf > +(
2

n
+ p)g(∇f,∇f) − 2g(∇|∇f|2,∇f)

+ 4g(∇(∆f),∇f)] − 2τ|Hessf|2

u−1♦∗v = 2(∆f− |∇f|2 − 1) − n

2τ
− [τ(2∆f− |∇f|2 − 1) + f− n]

− τ[4 < Ric,Hessf > +

(
2

n
+ p

)
g(∇f,∇f) − 2g(∇|∇f|2,∇f)

+ 4g(∇(∆f),∇f)] − 2τ|Hessf|2

i.e.

u−1♦∗v = 2(∆f− |∇f|2 − 1) − n

2τ
−
v

u
− τ[4 < Ric,Hessf >

+

(
2

n
+

)
g(∇f,∇f) − 2g(∇|∇f|2,∇f)

+ 4g(∇(∆f),∇f)] − 2τ|Hessf|2.

(19)

So finally we have

♦∗v = 2u(∆f− |∇f|2 − 1) − un

2τ
− v− uτ[4 < Ric,Hessf >

+

(
2

n
+ p

)
g(∇f,∇f) − 2g(∇|∇f|2,∇f)

+ 4g(∇(∆f),∇f) + 2|Hessf|2].

(20)

Now using remark 8.2.7 of [5], we get

dω

dt
= −

∫
M

♦∗v.

So the evolution of ω with respect to time can be found by this integration.
�
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