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Abstract. In the present investigation, we find estimates on the coef-
ficients |az| and |as| for functions in the function class Sy (A, ¢). The
results presented in this paper improve or generalize the recent work of
Magesh and Yamini [15].

1 Introduction and definitions

Let A denote the class of analytic functions in the unit disk
U={zeC:lz| <1}
that have the form -
flz) =2+ ) anz"™. (1)
n=2

Further, by S we shall denote the class of all functions in A which are univalent
in U.

The Koebe one-quarter theorem [8] states that the image of U under ev-
ery function f from S contains a disk of radius %. Thus every such univalent
function has an inverse f~! which satisfies

1 (f(z) =z, (zel)
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and

).

1w =w —an? + (2a§ — a3) w — (5(1% —b5aa3 + a4) wh.oo,

I

£ (f*1 (W)) =w, (|W| <719 (f) , 10 (f) >

where

A function f (z) € A is said to be bi-univalent in U if both f(z) and f~' (z)
are univalent in U.
If the functions f and g are analytic in U, then f is said to be subordinate
to g, written as
f(z) < g(z), (zel)

if there exists a Schwarz function w (z), analytic in U, with
w(0) =0 and w(z)] <1 (zelU)

such that
f(z) =g(w(z)) (zelU).

Let £ denote the class of bi-univalent functions defined in the unit disk U.
For a brief history and interesting examples in the class Z, (see [20]).

Lewin [14] studied the class of bi-univalent functions, obtaining the bound
1.51 for modulus of the second coefficient |a;|. Subsequently, Brannan and
Clunie [5] conjectured that |a;| < V2 for f € X. Netanyahu [16] showed that
max|ay| = ‘31 if f(z) e L.

Brannan and Taha [4] introduced certain subclasses of the bi-univalent func-
tion class ¥ similar to the familiar subclasses. S* («) and K (&) of starlike and
convex function of order o (0 < o« < 1) respectively (see [16]). Thus, following
Brannan and Taha [4], a function f(z) € A is the class S} () of strongly
bi-starlike functions of order o (0 < &« < 1) if each of the following conditions
is satisfied:

fel,

arg (Z:(S)N <¥ O<a<l,zeld)

and

<ﬂt O<a<l,wel)
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where g is the extension of f~! to U. The classes S5 («) and Ky (o) of bi-starlike
functions of order o and bi-convex functions of order «, corresponding to the
function classes S* () and K (&), were also introduced analogously. For each
of the function classes S () and Ks («), they found non-sharp estimates on
the initial coefficients. Recently, many authors investigated bounds for various
subclasses of bi-univalent functions ([1], [3], [7], [9], [13], [15], [20], [21], [22]).

Not much is known about the bounds on the general coefficient |a,| for n >
4. In the literature, the only a few works determining the general coefficient
bounds |an| for the analytic bi-univalent functions ([2], [6], [10], [11], [12]). The
coefficient estimate problem for each of |a,| ( n € N\{1,2}; N={1,2,3,...})
is still an open problem.

In this paper, by using the method [17] different from that used by other
authors, we obtain bounds for the coefficients |a;| and |az| for the subclasses of
bi-univalent functions considered Magesh and Yamini and get more accurate
estimates than that given in [15].

2 Coefficient estimates

In the following, let ¢ be an analytic function with positive real part in U,
with ¢ (0) = 1 and ¢’ (0) > 0. Also, let ¢ (U) be starlike with respect to 1
and symmetric with respect to the real axis. Thus, ¢ has the Taylor series
expansion

$(z) =1+Biz+ B> + B3z +--- (B1>0). (2)

Suppose that u(z) and v (w) are analytic in the unit disk U with u(0) =
v(0) =0, lu(z)] <1, [v(w)| <1, and suppose that

u(z) :b1z+anz“, v(w) = cw\)—{—chv\)TL (lzl < 1). (3)

n=2 n=2

It is well known that

il <1, [bgl <T—[oof*, leril <1y leal < T—leif. (4)
Next, the equations (2) and (3) lead to
d)(u(z)):]—|—B1b1z+<B1bz+sz%)zz+...’ 2l <1 (5)

and
b (v(w) =1+Bcw+ (B1cz+Bzc%) wiio) <1 (6)
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Definition 1 A function f € X is said to be Sz (A, ), 0 < A < 1, if the
following subordination hold
zf' (z) + (2% — A) 221" (z)

4(AN=A)z+ (2A2 —A) zf (z2) + (2A2 = 3N+ 1) f (2) <o (2)

and
wg' (w) + (2A7 —A) w?g” (w)
4A=A) W+ (2A2 —AN)wg’ (W) + (2A2 =32+ 1) g (w)
where g (w) =7 (w).
Theorem 1 Let f given by (1) be in the class Sy (A, $). Then

< ¢ (w)

B:vB
Jaz| < as
V/(12%4——28%3—%15A24—2A—%1)B$——(14—3%——2A2)282 + (1430 —2A%)° By
(7)
and
B, . . (1+37-222)?
pIpTeERpt i Br < S
las| < | (122428031502 +20+1)B3—(1+37-20) B [Br+2(222+1)B] (8)
202A241) H(12A4—28A3+15A2+27\+1)B%—(1+3A—2A2)ZBZ‘+(1+3>\—z>\2)231] ’
: (1430-222)*
if B > S

Proof. Let f € Sy (A,¢d), 0 < A < 1. Then there are analytic functions
u,v: U — U given by (3) such that
zf' (z) + (20 — A) 22" (2)
AAN=A)z+ (2N —A) zf' (z) + (A2 =32+ 1) f (2)

=¢(u(z)) (9

and
wg' (W) + (2A* = X) w?g” (w)
4N —=A)w+ (2A2 —A)wg’ (W) + (2A2 —3A +1) g (w)
where g (W) = f~! (w). Since
zf' (z) + (20 — A) 221" (2)
4N —=A2)z+ (2A2 —A) zf' (z) + (2A2 —3A + 1) f (2)

=¢(viw)) (10)

- 1—1—(1—1—3?\—2?\2)(122

+[(120 - 288+ 1IN £ 22— 1) (24 2) @] 24
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and
wg’ (w) + (2?\2 —A) w2g” (w)
4AN=A)w+ (2A2 —A)wg’ (W) + (2A2 =32+ 1) g (w)

- 1- (1 +37\—z7\2) aw
+ [(12?\4—28)\3 + 1972 +z>\+3) a2 — (4)\2 +z) a3} Wl
it follows from (5), (6), (9) and (10) that
(1 +3)\—2?\2) a, = Biby, (11)

(m4 28\ + TIAZ 42\ — 1) a + (47\2 +z) a3 = Biby + Byb2,  (12)

and

_ (1 +3A —27\2> a2 = Byor, (13)
(127\4 — 2803+ 19A2 4+ 2A + 3) - (4}@ + 2) a3 = Byey + Bycd.  (14)
From (11) and (13) we obtain
c1 = —bj. (15)
By adding (14) to (12), further computations using (11) to (15) lead to
[z (127\4 —28A3 + 1502 4 2A + 1) B2 2 (1 +3?\—2)\2>ZBZ] a2 = B3 (by +ca).
(16)
(15) and (16), together with (4), give that
ol < B} (1= or).
(17)

'(127\4 — 2803 + 150 + 2 + 1) B2 — (1 +37\—z7\2)232

From (11) and (17) we get
B1vB1

laz| <

(12MA% — 2803 £ 1502 £ 2V + 1) B2 — (1 +3A — 2A2)2 By | + (1 + 32 — 2A2)? B,
1

Next, in order to find the bound on |as|, by subtracting (14) from (12), we
obtain

4(27\2+1) a3 —4 (2>\2+1> a3 =By (b — c2) + B, (b%—c%). (18)
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Then, in view of (4) and (15) , we have
2
2 (2)\2 n 1) B |a3| < [2 (2)\2 + 1) B, — (1 +3>\—2>\2) } |az? + B,

Notice that (7), we get

(1+37-222)°

By . :
22 if Br < "5
las| < | (1224280315024 20+1) B3 — (1+37-2)2) "B, B +2(202+1) B
2(2A211) H(1z>\4—28>\3+15>\2+2>\+1)B%-(l+3>\—2A2)ZBZ‘+(1+3>\—2A2)ZB1] ’
2
. (1+32—2A2)
if B> S

Putting A = 0 in Theorem 1, we have the following corollary.
Corollary 1 Let f given by (1) be in the class S5 (¢). Then

B1v/By

\/|Bf —Bz2| + By

B, 1
21, if By <<
2’ )

las| <
and

SIS0 g gy B 4282 ]
LR i il P T P

2[|Bf — By + By’ 2

The estimates on the coefficients |ay| and |az| of Corollary 1 are improvement
of the estimates obtained in Corollary 2.1 in [19].

Corollary 2 If let

04
q)(z)—(}tz) =1420z+20%2%+... (O<a<l),

then inequalities (7) and (8) become

2
sl < =
\/|20A4 — 4403 + 2502 — 2\ + 1 o+ (1 + 3N — 2A2)°

(19)
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and
2
o . . (1+32—222)
preEs if 0<o= goum—
laz| < ,
[|20A*—44N3 +2502 —2A+1|+4(2A2+1) ] o2 o (143-222)
5Ty L AN << 1.
(2?\2+1)[\20)\4—44?\3+25)\2—2?\+1\oc+(1+37\—2?\2) ] (2A2+1)
(20)

The bounds on |ay| and |a3| given by (19) and (20) are more accurate than
that given in Theorem 2.1 in [15].

We note that for A = 0, the class Sy (A, &) reduces to the class of strongly
bi-starlike functions of order o« (0 < & < 1) and denoted by S% («).
Putting A = 0 in Corollary 2, we have the following corollary.

Corollary 3 Let f given by (1) be in the class S5 («), (0 < <1). Then

2x
| < 21
and :
x; if O<a< 1
laz| < (22)
ﬁ' if —<a<l
a+1’ 4 -

The bounds on |az| given by (22) is more accurate than that given by Remark
2.2 n [17] and Theorem 2.1 in [4].

Remark 1 The bounds on |as| given by (22) is more accurate than that given
in Corollary 2.3 in [18].

Corollary 4 If let

T+ (01 -2a)z

- =142(0—-a)z+2(1—-a)Z2+--- (0<a<1),

¢ (2)

then inequalities (7) and (8) become

2(1—«x
lazl < -

\/‘2(1 — o) (12A% — 28A3 + 15A2 4+ 20+ 1) — (14 32 — 2A2)2| + (1 + 3A — 2A2)?
(23)
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and
2
1o . o H(2A241)—(143A-222)
4T if AT <o <1
2
] < Hz(]—oc)(12A4—23)\3+157\2+z)\+1)—(1+3>\—z>\2) \+4(1—o¢)(z>\2+1)}(1_“)_
B )

(2A24+1) [’2(1foc)(12?\47287\3+157\2+2?\+1 )—(14+3A—2A2)? )+(1+3?\727\2]2]

4(024+1)—(143A-202)

if 0<a< A2N)

(24)
The bounds on |az| and |as| given by (23) and (24) are more accurate than
that given in Theorem 3.1 in [15].

Putting A = 0 in Corollary 4, we have the following corollary.

Corollary 5 Let f given by (1) be in the class S3 (x), (0 < « < 1). Then

2(1 —«)
< U= 25
2= T+ -2« (25)
and
11—« if §<oc<1
) 4_
S 24— e 3 20
— )|l —2af + - .
if 0<a< >,
11— 20 i 0sa<y

The bounds on |az| given by (26) is more accurate than that given by Remark
2.2 in [17] and Theorem 3.1 in [4].

Remark 2 The bounds on |a3| given by (26) is more accurate than that given
in Corollary 3.3 in [18].
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