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Abstract. The largest exponent of the prime powers function is inves-
tigated on the set of numbers of form one plus squares of primes.

1 Introduction

1.1. Notation. Let, as usual, P, N be the set of primes, positive integers,
respectively. For a prime divisor p of n let v,(n) be defined by p**(W|n. Then
n=T[ln p¥*(™. Let

H(n) = m‘ax vp(n) and h(n)= rnlin Vp(n).
pin pin

We denote by 7t(x) the number of primes p < x and by 7t(x, k, £) the number
of primes p < x,p ={ (mod k).
1.2. Preliminaries. A. Niven proved in [7] that

3 ) =x+ SR ovR) (x o o0 (1)

n<x
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and that

1 d 1
;ZH(n)ms (x — 00), where B:1+é(1—c(k)). (2)

n<x

W. Schwarz and J. Spilker showed in [8] that

> Hm) = M(H)x+0 (2 exp(—yv/iogx))  (x—e0)  (3)
n<x
ZHSH) :M<%)X+O(X3/46Xp(—v logx) (x — 00), (4)
n<x

where vy > 0 is a suitable constant, M(H) = B, M(]ﬁ) are suitable positive
numbers.

D. Suryanayana and Sita Ramachandra Rao [9] proved that the error term
in (3) and (4) can be improved to

O(v/x exp(—y(log x)**(loglog x) /).

They proved furthermore that

Zh(n) — C]X+C2X]/2 +C3X]/3 + C4X1/4 + C5X]/5 + O(X]/G), (5)

n<x

1
Z oy = dyx + dox"? + d3x"3 + dgx'/* + dsx'? + O (x1/9). (6)

n<x

Gu Tongxing and Cao Huizhong announced in [4] that they can improve the
error term in (3) to

O(v/xexp(—c(log x)**(log log x)~'/?)).
I. Kétai and M. V. Subbarao [5] investigated the asymptotic of
Axr) =t € b, x + Y] | Hin) =1}, Y =x2 logx,

and
By(r):i=4{peP,pel,x+ Yl |Hp+1) =1}, Y=x12t¢

for fixed r > 1.
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Namely, they proved that

A =Yl 1) =n() + 01y mls) = i =1 (s=1,2+2)
and y v
Bu(r) = e(r)p ~ +0((ouyz)
where :
e(1) = 1T—— ),
L[)( p(p—U)
and for r > 2
1 1
e(r) = T ) = T—— )
pg)( (p—Up) };[3( (p—Tp ‘)

In [6] we can read some results on (5) assuming the Riemann conjecture.

Our main interest now is to give the asymptotic of the number of those
n < x,n € B, for which H(n) = r uniformly as 1 < r < k(x), where k(x) is as
large as it is possible. We shall investigate it when B = set of shifted primes.
1.3. Auxiliary results.

Lemma 1 (Brun-Titchmarsh inequality). We have

n(x,k,{) < C

Lemma 2 (Siegel-Walfisz theorem). We have

lix
k,0) = — < (14 0(ecvioex
rhxk ) = s (14 0(eVE)
uniformly as (k,0) = 1, k < (logx)*. Here A is arbitrary, ¢ > 0 is a fized
constant.

Lemma 3 ([1]) Let q be an odd prime, D = q™ (n =1,2,---), € > 0 be
an arbitrary small, and M be an arbitrary large positive number. Then the
asymptotic law

7(x, D, 0) = (pl(i]’;) (1 n O((logx)_M>)

holds for D < x33¢ ({,D) =1.
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Lemma 4 ([2]) Let a be an integer, a > 2. If A > 0, then there is a B >0
for which

Z max max |7t(y, qd,r)— tx < X lix—JX du
A madiet yex | 19T T 00qa) | pq)(log )R 2 logu
a< 272 (1og x)~B

(d,q)=1

uniformly for moduli q < x'/3 exp(—(loglogx)3) that are powers of a.
While the implicit constant in < may depend upon a,B is a function of A
alone. B = A + 6 is permissible.

We shall use a special consequence of this assertion:
Corollary. Let a be an integer, a > 2, D = a™ (n =1,2,---), D <
x'/3 exp(—(loglogx)3). Let A > 0 be an arbitrary constant. Then

(x, D, ) = (pl(i]’;) (1 +o((10g1x)A)), (6,D) = 1

Lemma 5 ([3]) Let q =p", p an odd prime, qx%+€ <h <x. Then

h
e+ 16,0 =7, 0,0 = (T+ox()

asx — oo, (4,q)=1.

2 Formulation of the theorems

Let (0 <)U,V be coprime integers, and let Q be the smallest prime for which
U(T+2m)+V=0 (mod Q)

has a solution, that is

o J2 iUy
| smallest prime for which (Q2Uu) =1, if 2{fU+V.

Let
Muy(x | k) = ip < x | H(Up + V) = k.
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Theorem 1 Assume that v(x) — oo arbitrarily slowly. Then, in the interval

r(x) <k < (f—e)lloggé, we have

lix 1
Mu (e 1) = o (1= 6> (14 0g(1)).

Let P(n) = n? + 1. Then 4 { P(n), 31 P(n), 5| P(2), 5| P(3). For every
k there exists 1 < { < %, such that P(Bk) = 0 (mod 5%). The congruence
P(n) = 0 (mod 5%) has exactly two solutions: ¢, and 5% — . It obvious that
(Ek)S) =1

Let

E(x | k) =4fp < x|H(p*+1) =k

Theorem 2 Assume that v(x) — oo arbitrarily slowly. Then, in the interval

r(x) <k< (f — e)igg’g, we have

E(x| k) = SZ—khxﬂ + 0y (1)).

3 Proof of Theorem 1.

It is obvious that

MU V X | k Z |: X qka T‘q,k) - Q(X) qu y Tqk+1 )})
q

where q runs over all those primes for which U(1+2m)+V =0 (mod q) has
a solution, 14y = VU~ (mod %), Tkl = VU™ (mod g*t).
By using Lemma 3 and Lemma 1 we obtain that

Muy (x| ) < @}gk) (1 - (12) (1+ o(w))+
+CZ(;(21)+C Yy %.

qeP qk>vx

It is clear that
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and that : :
S ool
3 /4 )
= (g*) (x/ )
qeP
thus .
ix
Muy(x ) < (1-+04(1) -

On the other hand

My,v(x | k) > [Q(X, Q¥ mox) — Qlx, QkH)TQ,kH)} — ) Q% Q" rqq)-

q9>Q
qeP
The sum on right hand side is less than
h X 00 < ou(1 lix
Qk Z*Jr (x7) < ox( )@

From Lemma 3 our theorem follows.

4 Proof of Theorem 2

We have
E(x| k) =S+ O(T),
where
S=tlp<x: 54p*+1}
and

T=) tp<x: q“Ip°+1}
qeP
q>5
Thus, by using Lemma 1 and k > y(x),
2C11x X Lix
= Z Z 3 = Ox“)ST-

qeP gk>x
q>>5 qeP

Hence we obtain that

E(x k) < %HXU + ox(1)).
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On the other hand

E(x|k)>S— ) #p<x: 5% q“p*+1}

qeP
q>5

By using Lemma 1, the sum on the right can be overestimated by

Clix 1 X 1
+o ) =
k k k K’
s el 5F

which is clearly ox(1)S.
This completes the proof of Theorem 2.

5 Further remarks

By using Lemma 5 we can prove short interval version of Theorem 1 and 2.

Theorem 3 Let 55x3/°T¢ < h < x, k > g(x). Then

h 1

(T4 ox(1)).

Theorem 4 Let Let U,V be coprime integers, U > 0,U 4+ V=odd, Q be the
smallest prime which is not a divisor of 2U. Let k > g(x), Q*x3/°T¢ <h < x.
Then

h 1

@@ as X — OQ.

Mu,v(x +h|k) —Myv(x) = (T +0x(1))
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