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Abstract. In the present paper we define some classes of double lacunary
sequence spaces over n-normed spaces by means of a Musielak- Orlicz
function. We study some relevant algebraic and topological properties.
Further some inclusion relation among the classes are also examined.

1 Introduction and preliminaries

The initial work on double sequences is found in Bromwich [4]. Out of the
definitions of convergence commonly employed for double series, only that due
to Pringsheim permits a series to converge conditionally. Therefore, in spite of
any disadvantages which it may possess, this definition is better adapted than
others for the study of many problems in double sequences and series. Chief
among the reasons why the theory of double sequences, under the Pringsheim
definition of convergence, presents difficulties not encountered in the theory
of simple sequences is the fact that a double sequence {xij} may converge
without xj; being a bounded function of i and j. Thus it is not surprising that
many authors in dealing with the convergence of double sequences should have
restricted themselves to the class of bounded sequences, or in dealing with the
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summability of double series, to the class of series for which the function whose
limit is the sum of the series is a bounded function of 1 and j. Without such
a restriction, peculiar things may sometimes happen; for example, a double
power series may converge with partial sum {S;;} unbounded at a place exterior
to its associated circles of convergence. Nevertheless there are problems in the
theory of double sequences and series where this restriction of boundedness
as it has been applied is considerably more stringent than need be. After
Bromwich, the study of double sequences was initiated by Hardy [11], Moricz
[26], Moricz and Rhoades [19], Tripathy ([35], [36]), Basarir and Sonalcan [2]
and many others. Hardy [11] introduced the notion of regular convergence for
double sequences. Quite recently, Zeltser [38] in her Ph.D thesis has essentially
studied both the theory of topological double sequence spaces and the theory
of summability of double sequences.

In order to extend the notion of convergence of sequences, statistical con-
vergence was introduced by Schoenberg [34] and the idea depends on the
notion of density [31] of subset of N. Mursaleen and Edely [23] have recently
introduced the statistical convergence and Cauchy convergence for double se-
quences and given the relation between statistical convergent and strongly Ce-
saro summable double sequences. Nextly, Mursaleen [21] and Mursaleen and
Edely [24] have defined the almost strong regularity of matrices for double se-
quences and applied these matrices to establish a core theorem and introduced
the M-core for double sequences and determined those four dimensional ma-
trices transforming every bounded double sequences x = (xmmn) into one whose
core is a subset of the M-core of x. More recently, Altay and Basar [1] have
defined the spaces BS, BS(t), CSp, CSpp, CS; and BY of double sequences con-
sisting of all double series whose sequence of partial sums are in the spaces My,
Mu(t), Cp, Cop, Cr and Ly, respectively and also examined some properties of
these sequence spaces and determined the a-duals of the spaces BS, BV, CSyy
and the (v)-duals of the spaces CSpp and CS; of double series. Now, recently
Basar and Sever [3] have introduced the Banach space L4 of double sequences
corresponding to the well known space {4 of single sequences and examined
some properties of the space L£4. By the convergence of a double sequence we
mean the convergence in the Pringsheim sense i.e. a double sequence x = (xy1)
has Pringsheim limit L (denoted by P —limx = L) provided that given € > 0
there exists n € N such that [x}; —L| < € whenever k,1 > n see [27]. We shall
write more briefly as P-convergent. The double sequence x = (xy) is bounded
if there exists a positive number M such that |xx| < M for all k and 1.

The notion of difference sequence spaces was introduced by Kizmaz [12], who
studied the difference sequence spaces loo(A), ¢(A) and co(A). The notion was
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further generalized by Et. and Colak [5] by introducing the spaces lo(A™),
c(A™) and cy(A™). Let w be the space of all complex or real sequences x = (xy)
and let m, s be non-negative integers, then for Z = l,, ¢, co we have sequence
spaces

Z(A™) ={x = (xx) e w: (A™x) € Z},

where A™x = (A™xy) = (A™ 'x, — A™ x41) and APx = xi for all k € N,
which is equivalent to the following binomial representation

Amxk = Z(*”V < T\I}l > Xk+v-

v=0

Taking m = 1, we get the spaces which were introduced and studied by Kizmaz
[12].

An orlicz function M : [0,00) — [0,00) is a continuous, non-decreasing and
convex function such that M(0) =0, M(x) > 0 for x > 0 and M(x) — oo as
X — 00.

Lindenstrauss and Tzafriri [14] used the idea of Orlicz function to define the
following sequence space,

()‘M:{XEW:ZMCX;') < 00, forsomep>0}

k=1

which is called as an Orlicz sequence space. Also ¢y is a Banach space with

the norm
. = x|
Il =infp>0:Y M[—=—]<T}.
k=1 P

Also, it was shown in [14] that every Orlicz sequence space {y contains a sub-
space isomorphic to &,(p > 1). The A,- condition is equivalent to M(Lx) <
LM(x), for all L with 0 < L < 1. An Orlicz function M can always be repre-
sented in the following integral form

where 1 is known as the kernel of M, is right differentiable for t > 0,1(0) =
0,n(t) > 0, n is non-decreasing and n(t) — oo as t — oo.
Let X be a linear metric space. A function p : X — R is called paranorm, if

1. p(x) >0 for all x € X,
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2. p(—x) =p(x) for all x € X,
3. px+y) < p(x) +ply) for all x,y € X,

4. if (An) is a sequence of scalars with A, — A as 1 — oo and (x,) is a
sequence of vectors with p(xn —x) — 0 as n — oo, then p(Ayxn —Ax) —
0 asn — 0.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and
the pair (X,p) is called a total paranormed space. It is well known that the
metric of any linear metric space is given by some total paranorm (see [37],
Theorem 10.4.2, pp. 183). For more details about sequence spaces see ([17],
[22], [25], [28], [29], [30], [32], [33]) and reference therein.

Let £, c and ¢y denotes the sequence spaces of bounded, convergent and null
sequences x = (xy) respectively. A sequence x = (xx) € €, is said to be almost
convergent if all Banach limits of x = (xi) coincide. In [13], it was shown that

] n
c= {X = (x)): lim — Zxk+s exists, uniformly in s}.

n—oo 1N
k=1
In ([15], [16]) Maddox defined strongly almost convergent sequences. Recall
that a sequence x = (xi) is strongly almost convergent if there is a number L
such that

n

nh_}ngo o ; [xkrs — LI =0, uniformly in s.
By a lacunary sequence 0 = (i), r = 0,1,2,---, where iy = 0, we shall mean

an increasing sequence of non-negative integers g, = (i, —i,1) — o0 (r —
00). The intervals determined by 0 are denoted by I, = (i,_1,1:] and the
ratio i,/i,_1 will be denoted by n,. The space of lacunary strongly convergent
sequences Ng was defined by Freedman [6] as follows:

1
Ng =< x = (xx) : lim —Z|xk—l_|:0 for some L ;.
e 91‘ kel

The double sequence 0,5 = {(k, s)} is called double lacunary if there exist
two increasing sequences of integers such that

ko=0,gr =k — ki1 2 00 as r — o0

and
lb=0,g,=1l,—1l,_1 =00 as s — oo.
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Let krs = krls, grs = grgs and 0, is determined by I, s = {(k,1) : k,—1 <k <
ke &l <U< L) g = &5, G = = and grs = G,

The concept of 2-normed spaces was initially developed by Géahler [7] in the
mid of 1960’s, while that of n-normed spaces one can see in Misiak [20]. Since
then, many others have studied this concept and obtained various results, see
Gunawan ([8],[9]) and Gunawan and Mashadi [10]. Let n € N and X be a
linear space over the field R of reals of dimension d, where d > n > 2. A real

valued function ||-,--- , -] on X™ satisfying the following four conditions:
1. Ix1,%2, -+ yxnll = 0 if and only if x1,%x2,- -+, X, are linearly dependent
in X;
2. |Ix1,%2, "+ ,Xnl|| is invariant under permutation;
3. loxyyx2y -+ yxnll = || [[x1,%2, -+ yxn|| for any o € R, and
4o +x" %2,y xall <Xy -y xmll 4 I Xy - xall
is called a n-norm on X, and the pair (X, ||, - ,-]|) is called a n-normed space

over the field R.
For example, we may take X = R™ being equipped with the Euclidean n-norm

[[X1,%2, -+ yXnllg = the volume of the n-dimensional parallelopiped spanned
by the vectors x1,%x2, -+ ,Xn which may be given explicitly by the formula
X1, %2, - -y xnlle = [det(x)],
where x; = (Xi1,Xi2, - ,Xin) € R™ for each 1 = 1,2,--- ,n. Let (X, [|-,---,-I])
be a n-normed space of dimension d > n > 2 and {aj,ay,- -, an} be linearly
independent set in X. Then the following function |-, - - - , -|jec on X™! defined
by
||X1)X2) T )Xn—1Hoo = maX{HXhXb' e )Xn—haiH =12 ,TL}

defines an (n — 1)-norm on X with respect to {a, az, -, an}.
A sequence (xx) in a n-normed space (X,||-,--- ,-||) is said to converge to some
LeXif

lim |[xx —L,z1,--- yzn1]| =0 for every z1, - ,zq 1 € X.

k—o0
A sequence (x;) in a n-normed space (X, |-, ---,-||) is said to be Cauchy if

lim [fxx —Xp, 21, ,zZn-1ll =0 for every zj,---,zn_1 € X.

k,p—o0
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If every Cauchy sequence in X converges to some L € X, then X is said to be
complete with respect to the n-norm. Any complete n-normed space is said
to be n-Banach space.

Let (X,||---,-]|) be a real n-normed space and w(n — X) denotes the space
of X-valued sequences. Let p = (px;1) be any bounded sequence of positive
real numbers, d = (dy,1) be any sequence of strictly positive real numbers and
M = (M) be a sequence of Orlicz functions. In this paper we define the
following sequence spaces:

e, My pydy [y, 119(A™) = {x = (xi1) € w(n—X) :
1 dy  A™ —L Pk,
lim Z [Mk,l<H VA X Ly Lz, ’Zn—1H>} K1 _o,
T)$—00 Qp g Kl « o]
uniformly in w and v, zj,---,z,_1 € X, for some L and p > O},
[, Myp,d, [l IS (A™) = {x = (xx1) € wn—X) :

1 di 1 A™ Pk,
lim Z [Mk’l(“w)zh...’%_d’)} kl:O,

T\$—00 (g leL
y ,S

uniformly in uw and v, zj, - ,zq1 € X and p >0} and
[, M,y dy [y, 15 (A™) = {x = (xi) € win —X) :
ATTI
sup —— [M“ﬂ(HW

s Ors

Pk,1
,Z],"',anf]‘D] < 0,
KLEL 5

uniformly in w and v, z7,---,z,_1 € X and p > O}.

When M(x) = x, we get

2 pydy 1y, 110(A™) = {x = (xi1) € win—X) :
- 1 di tA™ Xty — L Pit
lim — H yZ1y v Zn—1 H) =0,
T,$—00 (Jr g k1L . P
uniformly in uw and v, zi,--+,zq—1 € X for some L and p > 0},
Py dy -5 110 (A™) = {x = (1) € wn—X) :
. 1 di 1 A™x Pt
lim Hw)zh...,zﬁu) —0,
T$—00 Jr g p

k,lEIr,s

uniformly in w and v, z7,---,zq_1 € X and p > O}
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and
2Py dy Il 118 (A™) = {x = (xi1) € win—X) :
o O (B ) <o
uniformly in uw and v, z1,---,z,1 € Xand p >0 }

If we take p = (pk1) = 1 and d = (dy1) = 1 for all k, 1 then we get

(2 Myl TP (A™) = {x = (xi1) € w(n —X)
1 A™ L
lim Z [MkJ(H Xk, v JZ1y s Zned H)} =0,
T,$—00 Qr g KL « P
uniformly in w and v, z7,---,zq_1 € X, for some L and p > 0},
€2 Myl 18 (A™) = {x = (xi1) € win —X) :
Am
Nl W )
T,$—00 Qg KL « P
uniformly in uw and v, zj, -+ ,zq1 € X and p >0} and
[CZ>M> [l sl ]go(Am) = {X = (Xk,l) ewn—X):
1 A™
sup |:Mkl<HM)Z1)"' )L\le)] < 00,
s Ors k1€« P
uniformly in w and v, zj,---,zq1 € X and p > 0}.

The following inequality will be used throughout the paper. Let p = (py1) be
a double sequence of positive real numbers with 0 < py; < suppyx1 = H and

g]

let K = max{1,2"=1}. Then for the factorable sequences {ak,1} and {by 1} in the
complex plane, we have

lakL + b /Pt < K(fag[Por + (b [Pet). (1)

The aim of this paper is to introduce some new type of lacunary double se-
quence spaces defined by a sequence of Orlicz function M = (My,) over n-
normed spaces and to establish some topological properties and some inclusion
relation between above defined sequence spaces.
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2 Main results

Theorem 1 Let M = (My1) be a sequence of Orlicz functions, p = (px,1) be
a bounded sequence of positive real numbers and d = (dy1) be a sequence of
strictly positive real numbers. Then the sequence spaces [c2, M, p,d, ||-,--- ,-|1°
(Am)y [C2»M>p> d) H) T H](e) (Am) and [ CZ,M)’P) d» Ha e )H ]go(Am) are
linear spaces over the field of real numbers R.

Proof. Let x = (Xk,l))y = (yk,l) € [CZ)M)p) dy [yl ]8(Am) and «, 3 € R.
Then there exist positive numbers p; and p; such that

. 1 A A X Ly Pkl
Jim oo 3 M )T 0
’ Irs kel P

)

uniformly in w and v, and

A A™ Yk Ly Pkl
M ([[F= 0 sz ) [ =0
klelr s P2

lim
T,$00 (r g
uniformly in u and v.

Let p3 = max(2|«|p1, 2|B[p2). Since M = (M) is non-decreasing and con-
vex function so by using inequality (1), we have

1 di 1 A™ Pk,
e [Mk,l (H k,l (O(Xk-i-u,H—V + Byk+u,1+v) yZ1y* " yZn—1 H)] -
I 1 letr, P3

1 di L XA™ (X, 14v)
= [Mk,l(H : A la yZ1y " )%—1”
gr,s Klelys P3
d A™ Pl
N H K13 (yk+u,1+v))2hm )Zn_]’m
P3
1 1 dk lAm(Xk 1 ) Pk,1
<K o M (| P50z sz )
Irs ylen, < P
1 1 A I A™ (Ykeru ) Pl
K M (]| )]
+ Ire klEZI o |V 07 yZ1y yZn—1

1 di, 1 A™ P,
< K— Z [Mkvl(H k,l (Xk+u,l+v),z1"“ >Zn—1H>} K1
Irs Klel s P1

1 dy (A™ P,
LK Z [Mk,l(H kL (yk+u,1+v))2hm ,ZTHH)] kL
Or,s KIET P2
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— 0 as T — 00,8 — 0o uniformly in u and v.

Thus, we have ax + By € [ ¢, M,p,d, |-, ,-[1§(A™). Hence [c?, M,p,d,
[y - ,-||]8(Am) is a linear space. Similarly, we can prove that [c%, M,p,d,
oy -+ -IN%(A™) and [c¢?, M, p,d,]l---- |12 (A™) are linear spaces. O

Theorem 2 Suppose M = (My1) is a sequence of Orlicz functions, p = (pi,1)
be a bounded sequence of positive real numbers and d = (dy1) be a sequence of
strictly positive real numbers, then [c?, M,p,d, |-, ,-[1S(A™) is a topological
linear space paranormed by

1

rs 1 di A™ P\
g(x) = inf ppTF . Z {Mk,l(uwyzh'“ ’Zn_]H)} ot
Irs KlEl L

<1l,rseN},

where H = max(1,sup px,1) < oo.

k,

Proof. Clearly g(x) >0 for x = (xx1) € 2, M,p,d, |- ,-II]g(Am). Since
My 1(0) =0, we get g(0) = 0. Again, if g(x) =0, then

1

e 1 di AT P\ ™
mf{p%« S [t (e ) )
rs Klely P

gm,seN}:o.

This implies that for a given € > 0, there exists some pc(0 < pe < €) such
that

1

1 di 1 A™x P )
) [Mk,l(Hwyzb”'vZﬂ—lHﬂ <1,
Iy len.. Pe

Thus,

1

H

1 dy 1 A™x Pl
(O T —

Irs K€l s
1

1 di 1 A™x )
<(oh 3 Pl e )
€

rs K€l s
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for each 7, s,u and v. Suppose that xi 1 # 0 for each k, 1 € N. This implies that
A A™ Xt 7 O, for each k, 1,1, v € N. Let € — 0, then ‘ Gl A e e

yZ1y "y

Zn—1 H — 00. It follows that

1
1 di 1 A™x Pr )
(L 5 pofms ) e

rs Klelr s

which is a contradiction. Therefore, di1A™Xy v 14v = 0 for each k,l,u and v
and thus x; = 0 for each k,1 € N. Let p; > 0 and p, > 0 be such that

1
1 dy 1 A™x P\
< Z [Mk,l(H—k‘l p]kﬂ’Hv,Zh'“ y Zn—1 H)} ) <1

Irys Klely,

and

1
1 d 1AmX 1 Pl "
( ) {mew,zh...,%qu)} ) <1
rs klely s P2

for each r,s,u and v. Let p = p; + p2. Then, by Minkowski’s inequality, we
have

1
1 dy 1 A™(x + P\
Z [Mk,l <H o ( TS yk+U»1+V) yZ1y "y Zn—1 H)]
Or,s K€L s Y

1

o (e e S

Or,s k1oL pP1 + P2
P1 At A™ X L
B e |
o e e p1
dy  A™ PN o
i Plerzpsz‘l(H - ;Jszru’Hv’Z]"“ ’Z“_]‘D] )H
1
<< P1 ) 1 Z [Mkl(Hdk,lAkaJru,l+v 2 2 ]H)]pk,l H
P12 Ors KIeTs ) P1 y~1y y Zn—
1
+( P2 ) 1 Z [Mkl(Hdk,lAmyk+u,l+\) 2z 1H)i|pk,l H
p1+ P2 gr,sk161 ’ P2 T T

<1
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Since p’s are non-negative, so we have

glx+y) =inf {p"H"

( 1 Z |:Mk’I<Hdk,lAm(Xk+u,l+\;+yk+u,l+v)’z1)‘__ )Zn]‘mpk,l) H

Irys Klely P

<1, nms,u,veN

) Prs 1 di 1A™x Pk,
< inf p]H . Z [Mk,l (Hw)zh... ,anHﬂ
Ors KleL. P1

<1, r,s,u,veN}

ba (1 d AT .
+inf < p, " (— Z [Mk’l(“w)zh e Zno H)Q]Pk,1> H
Ors K1« P2

)

o=

I

<1, rsu,ve N}.

Therefore,
glx+y) < g(x) +9gly).

Finally, we prove that the scalar multiplication is continuous. Let A be any
complex number. By definition,

T, 1 di 1 A™A P\
g(Ax) = inf § p"H" : > [Mm(” 2 PRI )%—1”)} o
Or,s K1l s P

<T1,rsu,v GN}.

Then

1

. Pr.s 1 di 1 A™x Pk, H
g(Ax) = inf {(IAID) :( > M| 2 )] )

Ir,s Kleh.s
<T1,rsu,ve N},

where t = ﬁ. Since |A[Pms < max(1,|A[S"PPrs ), we have

g9(Ax) < max(1, [AFHPPrs)
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. prs [ 1 it A™ X Ly )T’k‘l
1nf{tH ( Z [Mk,l(“fazh”')ZnJH

rs k1€l

<1,rsuve N}.

So, the fact that scalar multiplication is continuous follows from the above
inequality. This completes the proof of the theorem. O

Proposition 1 Let M = (My1) be a sequence of Orlicz functions. If sup[My
k1

(x)]Pet < oo for all fized x > 0, then [ ¢, M, p,d, |- -+ -l ]8(Am) C [Ci,/\/l,p,
d, [l -1, (A™).

Proof. Let x = (xy1) € [ M, p,dy -yl ]g(Am), then there exists some
positive py such that

lim
T,$—00 Jr g

A A X Ly Pkl
[MkJ(H : : yZ1y o >Z11—1H>:| :0>
k,lEIr,s P

uniformly in u and v. Define p = 2p;. Since M = (M) is non-decreasing and
convex, by using inequality (1), we have

1 dk lAka 1 Px,1
sup Z [Mk,l(H—’ LY gy ,Zn—1)m
s grs K€L P

Ak I A™ w1y — L+ L Pk,1
= sup [Mm(‘ ’ Tt yZ1y >Zn—1H)}
s Ors Klely.s P
1 1 dk 1Aka l+v — L Px,1
SKSUpi Z [EMk,l(H : i Lis yZly " ,Zn,]‘D]
s Grs KT« P1
1 L Pi,1
+ Ksup [EMkJ(H*)Zb“' ,anm
s Yrs KIET « P1
1 dp 1 A™x —L Px,
< KSUP* Z |:Mk,1<‘ kL b yZly 7Z"r1—1H)i| o
s Jrs KD« P1
L Px,1
+Ksup |:Mk,l<H7)Z1)"' 7Zn—1H)i| < 0.
s Ors KIED o P1

Hence x = (xi1) € [Cz,/\/l,p,d,H',"' >'||]go- U
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Theorem 3 Let 0 < infpy; =h < py1 < suppyr = H < 00 and M = (My,),
M = (M{gl) be two sequences of Orlicz functions satisfying Ay—condition,
then we have

() 2, My pydy Iy -G (A™) C [e2, Moo My py 4y I1y -+, -lI§ (A™),
(ii) [2, My pyd, -+, 19(A™) C [B Mo MY p,d, -+ - 19(A™) and
(iii) [CZ)MI)p)d)H')"' )H]go(Am) - [C)M o,/\/l/)p)d)H-,--- >||]20(Am)
Proof. Let x = (xi1) € [c?, M',p,d, [l ,-[1§(Am). Then we have
. it A™ Xk Ly ‘ Pkt
/ it/ ety —
r,gll)noo Or,s Z [Mk’l<H P » 215 » Fnt D:| O,

IATTE

uniformly in u and v.
Let € > 0 and choose & with 0 <& < 1 such that My (t) < e for 0 <t <.
Let

di I A™ Xy

; ,z1,---,zn_1H) for all k,1€ N,

!/
Ykt v = My (H

We can write

1

1
Z M (Ui )P = — Z Mic (Y1 )IPR

Jrs Klels Jrs KT s,
Yrtru,l+v<s

Z [Mk,l (y k+u,l+v )]pk‘l .

Ors o
Yk+u,14+v<5

Since M = (My,1) satisfying A;-condition, we have

Z [Mic 1 (Yt )IPR

k€l s,
Yk+u, 1+v<s

1
< My (1] Y Mgy 5
s klels, ( )
yk+u,1+‘v§6

1
< My (2" — Z ML (Y, 10 )10

7,8
kel s,
Yk+u, l+v<s

Or,s
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For yy4u,14v > 0, we have

Y+, l+v Y+, l+v
[P EETREEVES s <1+ 5

Since M = (My,1) is non-decreasing and convex, it follows that

1 1 2
Mt (Y ty) < Mk,1<1 + %) < EMk,l(z) + 2“@,1(%)-

Since (My 1) satisfies A;-condition, we can write

1 u 1 u
Myt Yk ) < ET%%MM(Z) + ET%%MKL(Z)
_ TUk+g‘l+v My (2).

Hence,

D Miuyisuun)IPe!
Or,s

k,lEIr,Sy
Yrtru,l+v<s

< max (1, (W)H) ] Z [(Yrru )17

Ir,s k,lel s,
Yitu,l+v<s

from equations (2) and (3), we have
X = (Xk,l) € [CZ)M o Ml»P» d) H) te a”](e)(Am)

This completes the proof of (i).
Similarly, we can prove that

[ M pyd,lly - 00(A™) € [ Ay Mo M pydy Il -+ I119(A™)
and

[CZ)MI)p)d)H')’ T )H ]go(Am) C [CZ)M OM/)p)d>H’)"' )H ]go(Am)
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Corollary 1 Let 0 < infpy; =h < pyi <suppyxi = H < 0o and M = (My 1)
be a sequence of Orlicz functions satisfying A;-condition, then we have

[C2>P)d»||',"' )H](e)(Am) C [CZ)M)p)d)H')"' )H](G)(Am)

and
[Czap)d)H')' T ,||]20(Am) C [CZ>M>P>d,||‘>"' >|H20(Am).

Proof. Taking M’(x) = x in the above theorem, we get the required result.[]

Theorem 4 Let M = (My1) be a sequence of Orlicz functions. Then the fol-
lowing statements are equivalent:

(1) [C2>p> da ||) Ty ||]20(Am) C [Cz)Mapa d) ||) Y ||]20(Am))
(11) [Czapa d) ||a ) ||](6)(Am) C [Cz’ M)p) d) ||) Ty ||]20(Am) and
(iii) sup [Mk,l(;)]r’k»l <o (t,p>0).

Irys k1€l s
Proof. (i) = (ii) The proof is obvious in view of the fact that

[CZ,P,qu‘)"' )H ]g(Am) C [Czyp)d)H')"' >||]20(Am)

(ii) :>(ﬁi) Let [C2>p> d) H) Ty |H8(Am) C [Cz) M)p) d) ||> Ty ||]C9>0(Am) Sup—
pose that (iii) does not hold. Then for some t, there exists p > 0 such that

sup
s Ors

Z [Mk,l(;)]pk‘l =00

klelr s

and therefore we can find a subinterval I, i) of the set of interval I s such

that '1

1 > [Mk,L(]?)rk’l >, i=1,2. (4)

g‘r,s(j) kalelr,s(j)

Define the sequence x = (xx,1) by

j_]> kal € Ir,s(j)

di 1 A™x = for all wandv € N.
k,l k+u,l4+v { O, k,L ¢ Irys(j)

Then x = (xx,;1) € [¢2,p,d, [, - ,-[1§(A™) but by equation (4),
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X = (xk,1) & (2, M,p,d, |-, 1% (A™), which contradicts (ii). Hence (iii)
must hold.

(ii)) = (i) Let (iil) hold and x = (xi) € [, py d, [l -+, 1% (A™). Suppose
that

x = (xx1) & e, Mypydy [y oyl 18 (A™).

Then

1 dk 1Amxk 1 Pk,1
sup > [Mk,l(H’—W,Zh e »%—1”)} =o0.  (5)
ns Ins e P

Let t = |lditA™Xiqa l4vy 215 - -y Zn—1l| for each k, 1 and fixed u, v, then by

equations (5)
1 t
sup Z [Mk,l(*)] = 00,
ns Grs k1€l P

which contradicts (iii). Hence (i) must hold. O

Theorem 5 Let 1 < py1 <suppyt < oo and M = (My1) be a sequence of
Orlicz functions. Then the following statements are equivalent:

(i) [Cza M)p) d) H) T H](G)(Am) C [Cz)p) d) ||) S} ||]8(Am)>

(11) [C2>M)P; da ||) Ty H](e)(Am) - [C2>P> d) ||v Ty ||]20(Am) and
cey £\ 1Pk

(iii) l‘rI,lsf o kleZI [Mk,L(B)} >0 (t,p>0).

Proof. (i) = (ii) It is trivial.
(ii) = (iii) Let (ii) hold. Suppose that (iii) does not hold. Then

nf Y [Mk,l(;)rk"zo (t,p > 0),

S Grs K,l€L s

so we can find a subinterval I, ;) of the set of interval L; s such that

] 3y [Mu(;)rk’kj‘,j:1,z,... (6)

gr,s(j) KlEL o5

Define the sequence x = (xx,1) by

m _ j) k)l € Ir,s(j)
dkylA Xk+u,l+v = { 0, k1 g I‘r,s(j for all w andv € N.
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Thus by equation (6), x = (xi1) € [¢?, M, p, d, [l -+, [I§(A™), but x = (xi1) &

[, p,d, -1 1% (A™), which contradicts (ii). Hence (iii) must hold.
(ili) = (i) Let (iii) hold and suppose that x = (xx) € [, Myp,d, -yl ]8
(A™), i.e

1 dy 1 A™ Pk,
11m Z [Mk’]'(“w’Z]) )ZTI.—]H>:| k,l :0)

T,S—00 gr,s Kle s p
) >

(7)
uniformly in u and v, for some p > 0.

Again, suppose that x = (xy1) & [cp,dy -yl }S(Am). Then, for some

number € >0 and a subinterval I, ; of the set of interval I.s, we have

Ak I A™ Xk 1y ZTy -+, Zn—1ll > € for all k € N and some u > uy,v > vo.
Then, from the properties of the Orlicz function, we can write

A I A™ Xt Pi,1 Px,1
Mk,l(”%)ﬁf“»%%“) >Mk1<p)

and consequently by (7)

i, LY [va(S)]™ =

T$—00 (g Kieh.
) y

which contradicts (iii). Hence (i) must hold. O

Proposition 2 Let 0 <py1 < qx, for all k,1 €N and (%L{) be bounded.
Then,

[CZ?M) q, d> ||) T ||]6(Am) C [Cz) pr» d) H» Ty H]B(Am)
Proof. Let x € [¢Z, M, q, d, |-+, -[1°(A™). Write
di 1 A™x —L qx,1
t = [Mk’l(H ol k;u’lﬂ Y21yt ,anH)}

and Hklzztl for all k,1 € N. Then 0 < w; <1 for k,1 € N. Take 0 < p <
i, for k, 1 e 'N. Define the sequences (ax1) and (by;) as follows: For ty | > 1,
let a1 =ty and bk,l =0 and for t < 1, let agl = 0 and bk,l =ty 1- Then
clearly for all k,1 € N, we have

i Hk 1 }'Lk 1 ,'Lk 1
tel = a1 + by, el = qpr Fbt
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Now it follows that ali”i‘ < agy <ty and bukl < b*L Therefore,

1 1
Z tE’kl‘lzi Z (aEkll"’—bukl)

Irys k1€l s Irs K,l€L s
-2 by

gT S K lel s R AT

Now for each k and 1,

>ooh- Y () ()

Irys kL€l s kL€l s
1 AN 1 \1-1 75 o
: (k,glr,s [(gmbm) ] > <k,§1r,s |:<gr,s) } >

n
1
Irs k1€l

and so .
1
Z tuk l < Z tk,l + ( bk,l)
Irss 1 TS . Irs Klelr Irs Klelr
Hence x = (xi1) € [ 2, M, p,d, |-, 19(A™).

Theorem 6 (a) If 0 <infpyi < px1 <1 for all k, 1 € N, then

[, Myp,d, -y 18(A™) € [ M, d,y |-, -[119(A™).

(b) If 1 < py1 < suppy < 00, for all k,1 € N. Then

(2, M, d, [+, 19(A™) C [e?, M, p, d, ||+, -[19(A™).
Proof. (a) Let x = (xx1) € [¢%, M, p,d, -+, 1%(A™), then
di 1 A™x v—L Pt
lim [Mk>l<H kol by yZ1y """y Zn—1 H)} =0.
T§—00 gp g o

AT
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Since 0 < inf py) < pi, < 1. This implies that

m

lim S [Mk,l(Hdk’lA"““»”“_L,z1,...)Zn]‘m

T,$—00 Qg = P
] )

. 1 di 1 A™x —L Pt
< lim Z [Mk,l(H - b yZ1ly**t y Zn—1 H)} .

1,500 Gy g Kleh e P
) y

1 A™ —L
Therefore, lim Z [Mk’l(H it A Xt Lo JZ1y ey Znd H)} =0.

T\$—00 (g k1€l o P
This shows that x = (xx1) € [c2, M, d, |l ,[1°(A™):
Therefore,
[Cz) M)p) d’ ||a Ty ||]6(Am) C [Cza Ma d) ||) T || ]B(Am)-

This completes the proof.

(b) Let pyy > 1 for each k,l and suppy; < co. Let x = (xx1) € [c?, M, d,
Iy -+, -I1°(A™). Then for each € > 0 there exists a positive integer N such
that

m _
lim 1 [Mm(Hdk’lA Xkt v — L

T,$—00 Qg P

yZ1y e »Zn—1D:| =0<1.
K€L ¢

Since 1 < py1 < suppy, < 0o, we have

: 1 A A™ X4 — L Pkl
lim — Z [Mk,l(H : : yZ1y" " )Zn—lH)}
T\$—00 (Jr g KL « p

1 m _
< lim Z [MkJ(Hdk,LA Xkt l4v L,z1,---,zn_1m

1,800 g Klel P

=0<1.
Therefore x = (xk,l) S [C2> MfP» d, H) B H]B(Am) U
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