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Abstract. In this paper, we study three-step iteration process for Ciric-
quasi contractive operator and establish strong convergence theorems for
above mentioned operator and schemes in the setting of CAT(0) spaces.
Our result extends and generalizes some previous work from the existing
literature (see, e.g., [4, 30] and some others).

1 Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if every
geodesic triangle in X is at least as ’thin’ as its comparison triangle in the
Euclidean plane. It is well known that any complete, simply connected Rie-
mannian manifold having non-positive sectional curvature is a CAT(0) space.
For a thorough discussion of these spaces and of the fundamental role they
play in geometry, we refer the reader to Bridson and Haefliger [8].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [22,
23]). He showed that every nonexpansive (single-valued) mapping defined on
a bounded closed convex subset of a complete CAT(0) space always has a fixed
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point. Since, then the fixed point theory for various mappings and iteration
schemes in a CAT(0) space has been rapidly developed and a lot of papers
appeared (see, [3, 11, 13, 14, 20, 21, 24, 25, 27, 31, 32]). It is worth mentioning
that the results in CAT(0) spaces can be applied to any CAT(k) space with
k ≤ 0 since any CAT(k) space is a CAT(k ′) space for every k ′ ≥ k (see,e.g.,
[8]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X
such that c(0) = x, c(l) = y, and let d(c(t), c(t ′)) = |t− t ′| for all t, t ′ ∈ [0, l].
In particular, c is an isometry, and d(x, y) = l. The image α of c is called a
geodesic (or metric) segment joining x and y. We say X is (i) a geodesic space
if any two points of X are joined by a geodesic and (ii) uniquely geodesic if
there is exactly one geodesic joining x and y for each x, y ∈ X, which we will
denoted by [x, y], called the segment joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points in X (the vertices of 4) and a geodesic segment between each
pair of vertices (the edges of 4). A comparison triangle for geodesic triangle
4(x1, x2, x3) in (X, d) is a triangle4(x1, x2, x3) := 4(x1, x2, x3) in R2 such that
dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [8]).

CAT(0) space

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles
of appropriate size satisfy the following CAT(0) comparison axiom.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and
all comparison points x, y ∈ 4,

d(x, y) ≤ dR2(x, y). (1)

Complete CAT(0) spaces are often called Hadamard spaces (see [19]). If x, y1, y2
are points of a CAT(0) space and y0 is the mid point of the segment [y1, y2]
which we will denote by (y1 ⊕ y2)/2, then the CAT(0) inequality implies

d2
(
x,
y1 ⊕ y2
2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2) −

1

4
d2(y1, y2). (2)

The inequality (2) is the (CN) inequality of Bruhat and Tits [9].
Let us recall that a geodesic metric space is a CAT(0) space if and only if

it satisfies the (CN) inequality (see [[8], p.163]). Moreover, if X is a CAT(0)
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metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point
αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y), (3)

for any z ∈ X and [x, y] = {αx⊕ (1− α)y : α ∈ [0, 1]}.
A subset C of a CAT(0) space X is convex if for any x, y ∈ C, we have

[x, y] ⊂ C.

Algorithm 1. The sequence {xn} defined by x1 ∈ C and

xn+1 = anTxn + (1− an)xn, n ≥ 1, (4)

where {an}
∞
n=1 is a sequence in (0,1) is called a Mann iterative sequence (see

[26]).

Algorithm 2. The sequence {xn} defined by x1 ∈ C and

yn = bnTxn + (1− bn)xn,

xn+1 = anTyn + (1− an)xn, n ≥ 1, (5)

where {an}
∞
n=1 and {bn}

∞
n=1 are appropriate sequences in [0,1] is called an

Ishikawa iterative sequence (see [17]).

Algorithm 3. The sequence {xn} defined by x1 ∈ C and

zn = cnTxn + (1− cn)xn,

yn = bnTzn + (1− bn)xn,

xn+1 = anTyn + (1− an)xn, n ≥ 1, (6)

where {an}
∞
n=1, {bn}

∞
n=1, {cn}

∞
n=1 are appropriate sequences in (0,1) is called

Noor iterative sequence (see [28]).

Algorithm 4. The sequence {xn} defined by x1 ∈ C and

yn = bnTxn + (1− bn)xn,

xn+1 = anTyn + (1− an)Txn, n ≥ 1, (7)

where {an}
∞
n=1 and {bn}

∞
n=1 are appropriate sequences in (0,1) is called S-

iterative sequence (see [2]).
Recently, Abbas and Nazir [1] introduced the following iterative process:
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Algorithm 5. The sequence {xn} defined by x1 ∈ C and

xn+1 = (1− an)Tyn + anTzn,

yn = (1− bn)Txn + bnTzn,

zn = (1− cn)xn + cnTxn, n ≥ 1 (8)

where {an}, {bn} and {cn} are sequences in (0, 1). They showed that this process
converges faster than the Agarwal et al. [2].

Very recently, Thakur et al. [33] introduced the following iterative process:

Algorithm 6. The sequence {xn} defined by x1 ∈ C and

xn+1 = (1− an)Txn + anTyn,

yn = (1− bn)zn + bnTzn,

zn = (1− cn)xn + cnTxn, n ≥ 1 (9)

where {an}, {bn} and {cn} are sequences in (0, 1). They showed that this process
converges faster than all of the Picard, the Mann, the Ishikawa, the Noor, the
Agarwal et al. and the Abbas et al. processes for contractions in the sense of
Berinde [5] and in support gave analytic proof by a numerical example.

We now modify (9) in a CAT(0) space as follows.
Let C be a nonempty closed convex subset of a complete CAT(0) space

X and T : C → C be a mapping. Suppose that {xn} is a sequence generated
iteratively by

xn+1 = (1− an)Txn ⊕ anTyn,
yn = (1− bn)zn ⊕ bnTzn,
zn = (1− cn)xn ⊕ cnTxn, n ≥ 1 (10)

where {an}, {bn} and {cn} are sequences in (0, 1).
If we put cn = 0 for all n ≥ 1, then (10) reduces to the following iteration

process

xn+1 = (1− an)Txn ⊕ anTyn,
yn = (1− bn)xn ⊕ bnTxn, (11)

where {an} and {bn} are sequences in (0, 1) is called modified S-iteration pro-
cess.

We recall the following.
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Let (X, d) be a metric space and T : X → X be a mapping. A mapping
T : X→ X is called an a-contraction if

d(Tx, Ty) ≤ ad(x, y), (12)

where a ∈ (0, 1) and for all x, y ∈ X.

The mapping T is called Kannan mapping [18] if there exists b ∈ (0, 12) such
that

d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)], (13)

for all x, y ∈ X.
The mapping T is called Chatterjea mapping [12] if there exists c ∈ (0, 12)

such that

d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)], (14)

for all x, y ∈ X.
In 1972, combining these three definitions, Zamfirescu [34] proved the fol-

lowing important result.

Theorem Z. Let (X, d) be a complete metric space and T : X→ X a mapping
for which there exists the real number a, b and c satisfying a ∈ (0, 1), b, c ∈
(0, 12) such that for any pair x, y ∈ X, at least one of the following conditions
holds:
(z1) d(Tx, Ty) ≤ ad(x, y),

(z2) d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)],

(z3) d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)].

Then T has a unique fixed point p and the Picard iteration {xn}
∞
n=0 defined

by xn+1 = Txn, n = 0, 1, 2, . . . converges to p for any arbitrary but fixed
x0 ∈ X.

The conditions (z1) − (z3) can be written in the following equivalent form

d(Tx, Ty) ≤ h max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,

d(x, Ty) + d(y, Tx)

2

}
(15)
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for all x, y ∈ X and 0 < h < 1, has been obtained by Ciric [10] in 1974.
A mapping satisfying (15) is called Ciric quasi-contraction. It is obvious that

each of the conditions (z1) − (z3) implies (15).
An operator T satisfying the contractive conditions (z1)−(z3) in the theorem

Z is called Z-operator.
In 2000, Berinde [4] introduced a new class of operators on a normed space

E satisfying
‖Tx− Ty‖ ≤ δ‖x− y‖+ L‖Tx− x‖, (∗)

for any x, y ∈ E, 0 ≤ δ < 1 and L ≥ 0.
He proved that this class is wider than the class of Zamfirescu operators

and used the Mann iteration process to approximate fixed points of this class
of operators in a normed space given in the form of following theorem.

Theorem B. Let C be a nonempty closed convex subset of a normed space
E. Let T : C→ C be an operator satisfying (∗). Let {xn}

∞
n=0 be defined by: for

x1 = x ∈ C, the sequence {xn}
∞
n=0 given by (5) where {an} is a sequence in [0,1].

If F(T) 6= ∅ and
∑∞
n=1 an =∞, then {xn}

∞
n=0 converges strongly to the unique

fixed point of T .
In this paper, inspired and motivated by [33, 34], we study an iteration

process (10) and establish strong convergence theorems to approximate the
fixed point for Ciric quasi contractive operator in the framework of CAT(0)
spaces.

We need the following useful lemmas to prove our main result in this paper.

Lemma 1 (See [27]) Let X be a CAT(0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such

that
d(x, z) = t d(x, y) and d(y, z) = (1− t)d(x, y). (A)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (A).
(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Lemma 2 (See [6]) Let {pn}
∞
n=0, {qn}

∞
n=0, {rn}

∞
n=0 be sequences of nonnegative

numbers satisfying the following condition:

pn+1 ≤ (1− sn)pn + qn + rn, ∀n ≥ 0,

where {sn}
∞
n=0 ⊂ [0, 1]. If

∑∞
n=0 sn = ∞, limn→∞ qn = O(sn) and

∑∞
n=0 rn <∞, then limn→∞ pn = 0.
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2 Strong convergence theorems in CAT(0) Space

In this section, we establish strong convergence result of iteration process
(10) to approximate a fixed point for Ciric quasi contractive operator in the
framework of CAT(0) spaces.

Theorem 1 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C → C be an operator satisfying the condition (15). Let
{xn} be defined by the iteration scheme (10). If

∑∞
n=1 anbn = ∞, then {xn}

converges strongly to the unique fixed point of T .

Proof. By Theorem Z, we know that T has a unique fixed point in C, say u.
Consider x, y ∈ C. Since T is a operator satisfying (15), then if

d(Tx, Ty) ≤ h

2
[d(x, Tx) + d(y, Ty)]

≤ h

2
[d(x, Tx) + d(y, x) + d(x, Tx) + d(Tx, Ty)],

implies (
1−

h

2

)
d(Tx, Ty) ≤ h

2
d(x, y) + hd(x, Tx),

which yields (using the fact that 0 < h < 1)

d(Tx, Ty) ≤
( h/2

1− h/2

)
d(x, y) +

( h

1− h/2

)
d(x, Tx). (16)

If

d(Tx, Ty) ≤ h

2
[d(x, Ty) + d(y, Tx)]

≤ h

2
[d(x, Tx) + d(Tx, Ty) + d(y, x) + d(x, Tx)],

implies (
1−

h

2

)
d(Tx, Ty) ≤ h

2
d(x, y) + hd(x, Tx),

which also yields (using the fact that 0 < h < 1)

d(Tx, Ty) ≤
( h/2

1− h/2

)
d(x, y) +

( h

1− h/2

)
d(x, Tx). (17)

Denote

L1 = max
{
h,

h/2

1− h/2

}
= h,
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L2 = max
{ h

1− h/2
,

h

1− h/2

}
=

h

1− h/2
.

Thus, in all cases,

d(Tx, Ty) ≤ L1 d(x, y) + L2 d(x, Tx)

= hd(x, y) +
( h

1− h/2

)
d(x, Tx)

(18)

holds for all x, y ∈ C.
Also from (15) with y = u = Tu, we have

d(Tx, u) ≤ hmax
{
d(x, u),

d(x, Tx)

2
,
d(x, u) + d(u, Tx)

2

}
≤ hmax

{
d(x, u),

d(x, Tx)

2
,
d(x, u) + d(u, Tx)

2

}
≤ hmax

{
d(x, u),

d(x, u) + d(u, Tx)

2
,
d(x, u) + d(u, Tx)

2

}
.

(19)

Since for non-negative real numbers a and b, we have

a+ b

2
≤ max{a, b}. (20)

Using (20) in (19), we have

d(Tx, u) ≤ hd(x, u). (21)

Now (21) gives

d(Txn, u) ≤ hd(xn, u) (22)

d(Tyn, u) ≤ hd(yn, u) (23)

and

d(Tzn, u) ≤ hd(zn, u). (24)

Using (10), (21) and Lemma 1(ii), we have

d(zn, u) = d((1− cn)xn ⊕ cnTxn, u)
≤ (1− cn)d(xn, u) + cnd(Txn, u)

≤ (1− cn)d(xn, u) + cnhd(xn, u)

= [1− (1− h)cn]d(xn, u).

(25)
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Again using (10), (24), (25) and Lemma 1(ii), we have

d(yn, u) = d((1− bn)zn ⊕ bnTzn, u)
≤ (1− bn)d(zn, u) + bnd(Tzn, u)

≤ (1− bn)d(zn, u) + bnhd(zn, u)

= [(1− (1− h)bn)]d(zn, u)

≤ [(1− (1− h)bn)][(1− (1− h)cn)]d(xn, u)

≤ [1− (1− h)bn]d(xn, u).

(26)

Now using (10), (22), (23), (26) and Lemma 1(ii), we have

d(xn+1, u) = d((1− an)Txn ⊕ anTyn, u)
≤ (1− an)d(Txn, u) + and(Tyn, u)

≤ (1− an)hd(xn, u) + anhd(yn, u)

≤ (1− an)hd(xn, u) + anh[1− (1− h)bn]d(xn, u)

= [(1− an)h+ anh(1− (1− h)bn)]d(xn, u)

= h[1− (1− h)anbn]d(xn, u)

≤ [1− (1− h)anbn]d(xn, u)

= (1− gn)d(xn, u)

(27)

where gn = (1 − h)anbn, since 0 < h < 1 and by assumption of the theorem∑∞
n=1 anbn =∞, it follows that

∑∞
n=1 gn =∞, therefore by Lemma 2, we get

that limn→∞ d(xn, u) = 0. Thus {xn} converges strongly to a fixed point of T .

To show uniqueness of the fixed point u, assume that w1, w2 ∈ F(T) and
w1 6= w2.

Applying (15) and using the fact that 0 < h < 1, we obtain

d(w1, w2) = d(Tw1, Tw2)

≤ hmax
{
d(w1, w2),

d(w1, Tw1) + d(w2, Tw2)

2
,

d(w1, Tw2) + d(w2, Tw1)

2

}
= hmax

{
d(w1, w2),

d(w1, w1) + d(w2, w2)

2
,

d(w1, w2) + d(w2, w1)

2

}



98 G. S. Saluja

= hmax
{
d(w1, w2), 0, d(w1, w2)

}
≤ hd(w1, w2)

< d(w1, w2), since 0 < h < 1,

which is a contradiction. Therefore w1 = w2. Thus {xn} converges strongly to
the unique fixed point of T . This completes the proof. �

Theorem 2 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C → C be an operator satisfying the condition (15). Let
{xn} be defined by the iteration scheme (11). If

∑∞
n=1 anbn = ∞, then {xn}

converges strongly to the unique fixed point of T .

Proof. The proof of Theorem 2 immediately follows from Theorem 1 by taking
cn = 0 for all n ≥ 1. This completes the proof. �

The contraction condition (12) makes T continuous function on X while this
is not the case with contractive conditions (13), (14) and (18).

The contractive conditions (13) and (14) both included in the class of Zam-
firescu operators and so their convergence theorems for iteration process (10)
are obtained in Theorem 1 in the setting of CAT(0) space.

Remark 1 Our result extends the corresponding result of [30] to the case of
three-step iteration process (10) and from uniformly convex Banach space to
the setting of CAT(0) spaces.

Remark 2 Theorem 1 also extends Theorem B to the case of three-step iter-
ation process (10) and from normed space to the setting of CAT(0) spaces.

3 Application to contraction of integral type

Theorem 3 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ h
∫max

{
d(x,y),

d(x,Tx)+d(y,Ty)
2

,
d(x,Ty)+d(y,Tx)

2

}
0

µ(t)dt (28)

for all x, y ∈ X and 0 < h < 1, where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .
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Proof. The proof of Theorem 3 follows from Theorem 1 by taking µ(t) = 1

over [0,+∞) since the contractive condition of integral type transforms into a
general contractive condition (15) not involving integrals. This completes the
proof. �

Example 1 Let X = {0, 1, 2, 3, 4, 5} and d be the usual metric of reals. Let
T : X→ X be given by {

T(x) = 5, if x = 0

= 3, otherwise.

Again let µ : [0,+∞)→ [0,+∞) be given by µ(t) = 1 for all t ∈ [0,+∞). Then
µ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is summable
(i.e. with finite integral) on each compact subset of [0,+∞), nonnegative, and
such that for each ε > 0,

∫ε
0 µ(t)dt > 0.

Let us take x = 0, y = 1. Then from condition (28), we have

2 =

∫d(Tx,Ty)
0

µ(t)dt ≤ h

∫max

{
d(x,y),

d(x,Tx)+d(y,Ty)
2

,
d(x,Ty)+d(y,Tx)

2

}
0

µ(t)dt

= h max
{
1,
7

2
,
7

2

}
which implies h ≥ 4

7 . Now if we take 0 < h < 1, then condition (28) is satisfied
and 3 is of course a unique fixed point of T .

The following corollaries are special cases of Theorem 3.

Corollary 1 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ h

∫d(x,y)
0

µ(t)dt (29)

for all x, y ∈ X and h ∈ (0, 1), where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .
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Condition (29) is called Branciari [7] contractive condition of integral type.

Putting µ(t) = 1 in the condition (29), we get Banach contraction condition.

Proof. The proof of corollary 1 immediately follows from Theorem 1 by taking
µ(t) = 1 over [0,+∞) and

max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
= d(x, y)

since the contractive condition of integral type transforms into a general con-
tractive condition (12) not involving integrals. This completes the proof. �

Corollary 2 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ b

∫ [d(x,Tx)+d(y,Ty)]
0

µ(t)dt (30)

for all x, y ∈ X and b ∈ (0, 12), where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .

Condition (30) is called Kannan contractive condition [18] of integral type.

Putting µ(t) = 1 in the condition (30), we get Kannan contraction condition.

Proof. The proof of corollary 2 immediately follows from Theorem 1 by taking
µ(t) = 1 over [0,+∞) and

max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
=
d(x, Tx) + d(y, Ty)

2

since the contractive condition of integral type transforms into a general con-
tractive condition (13) not involving integrals. This completes the proof. �

Corollary 3 Let C be a nonempty closed convex subset of a complete CAT(0)
space X and let T : C→ C be an operator satisfying the following condition:∫d(Tx,Ty)

0

µ(t)dt ≤ c

∫ [d(x,Ty)+d(y,Tx)]
0

µ(t)dt (31)
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for all x, y ∈ X and c ∈ (0, 12), where µ : [0,+∞) → [0,+∞) is a Lebesgue-
integrable mapping which is summable (i.e. with finite integral) on each com-
pact subset of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt >

0. Let {xn} be defined by the iteration process (10). If
∑∞
n=1 anbn = ∞, then

{xn} converges strongly to the unique fixed point of T .

Condition (31) is called Chatterjae contractive condition [12] of integral
type.

Putting µ(t) = 1 in the condition (31), we get Chatterjae contraction con-
dition.

Proof. The proof of corollary 3 immediately follows from Theorem 1 by taking
µ(t) = 1 over [0,+∞) and

max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2

}
=
d(x, Ty) + d(y, Tx)

2

since the contractive condition of integral type transforms into a general con-
tractive condition (14) not involving integrals. This completes the proof. �

Now, we give the examples in support of above corollaries.

Example 2 Let X be the real line with the usual metric d and suppose C =
[0, 1]. Define T : C → C by T(x) = x+1

2 for all x ∈ C. Obviously T is self-
mapping with a unique fixed point 1. Again let µ : [0,+∞) → [0,+∞) be
given by µ(t) = 1 for all t ∈ [0,+∞). Then µ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable (i.e. with finite integral) on
each compact subset of [0,+∞), nonnegative, and such that for each ε > 0,∫ε
0 µ(t)dt > 0.

If x, y ∈ [0, 1], then we have

d(Tx, Ty) =
∣∣∣x− y
2

∣∣∣.
Let us take x = 0, y = 1. Then from condition (29), we have

1

2
=

∫d(Tx,Ty)
0

µ(t)dt ≤ h.1 = h

∫d(x,y)
0

µ(t)dt

which implies h ≥ 1
2 . Now if we take 0 < h < 1, then condition (29) is satisfied

and 1 is of course a unique fixed point of T .
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Example 3 Let X be the real line with the usual metric d and suppose C =
[0, 1]. Define T : C → C by T(x) = x

4 for all x ∈ C. Obviously T is self-
mapping with a unique fixed point 0. Again let µ : [0,+∞) → [0,+∞) be
given by µ(t) = 1 for all t ∈ [0,+∞). Then µ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable (i.e. with finite integral) on
each compact subset of [0,+∞), nonnegative, and such that for each ε > 0,∫ε
0 µ(t)dt > 0.

If x, y ∈ [0, 1], then we have

d(Tx, Ty) =
∣∣∣x− y
4

∣∣∣.
Let us take x = 0, y = 1. Then from condition (30), we have

1

4
=

∫d(Tx,Ty)
0

µ(t)dt ≤ b.
3

4
= b

∫ [d(x,Tx)+d(y,Ty)]
0

µ(t)dt

which implies b ≥ 1
3 . Now if we take 0 < b < 1

2 , then condition (30) is satisfied
and 0 is of course a unique fixed point of T .

Example 4 Let X be the real line with the usual metric d and suppose C =
[0, 1]. Define T : C→ C by T(x) = x

4 for all x ∈ C. Obviously T is self-mapping
with a unique fixed point 0. Again let µ : [0,+∞)→ [0,+∞) be given by µ(t) =
1 for all t ∈ [0,+∞). Then µ : [0,+∞) → [0,+∞) is a Lebesgue-integrable
mapping which is summable (i.e. with finite integral) on each compact subset
of [0,+∞), nonnegative, and such that for each ε > 0,

∫ε
0 µ(t)dt > 0.

If x, y ∈ [0, 1], then we have

d(Tx, Ty) =
∣∣∣x− y
4

∣∣∣.
Let us take x = 0, y = 1. Then from condition (31), we have

1

4
=

∫d(Tx,Ty)
0

µ(t)dt ≤ c · 5
4
= c

∫ [d(x,Ty)+d(y,Tx)]
0

µ(t)dt

which implies c ≥ 1
5 . Now if we take 0 < c < 1

2 , then condition (31) is satisfied
and 0 is of course a unique fixed point of T .
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4 Conclusion

The Ciric quasi contractive operator [10] is more general than Banach contrac-
tion, Kannan contraction, Chatterjea contraction and Zamfirescu operators.
Thus the results obtained in this paper are improvement and generalization of
several known results from the existing literature (see, e.g., [4, 30] and some
others).
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