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Abstract. The purpose of this paper is to determine all maximal
idempotent submonoids and some maximal compatible idempotent sub-
monoids of the monoid of all generalized hypersubstitutions of type τ =
(2).

1 Introduction

In Universal Algebra, identities are used to classify algebras into collections,
called varieties and hyperidentities are use to classify varieties into collections,
called hypervarities. The concept of a hypersubstitution is a tool to study hy-
peridentities and hypervarities. The notion of a hypersubstitution originated
by K. Denecke, D. Lau, R. Pöschel and D. Schweigert [3]. In 2000, S. Leer-
atanavalee and K. Denecke generalized the concepts of a hypersubstitution
and a hyperidentity to the concepts of a generalized hypersubstitution and a
strong hyperidentity, respectively [4]. The set of all generalized hypersubsti-
tutions together with a binary operation and the identity hypersubstitution
forms a monoid. There are several published papers on algebraic properties of
this monoid and its submonoids.
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The concept of regular subsemigroup plays an important role in the the-
ory of semigroup. The concept of an idempotent submonoid is an example
of a regular subsemigroup. In 2013, W. Puninagool and S. Leeratanavalee
studied the natural partial order on the set E(HypG(2)) of all idempotent el-
ements of HypG(2), see [6]. In 2012, the authors studied the natural partial
order on HypG(2), see [7]. In this paper we determine all maximal idempo-
tent submonoids and give some maximal compatible idempotent submonoids
of HypG(2) under this partial order.

2 Generalized hypersubstitutions

Let n ∈ N be a natural number and Xn := {x1, x2, . . . , xn} be an n-element set.
Let {fi | i ∈ I} be a set of ni-ary operation symbols indexed by the set I. We
call the sequence τ = (ni)i∈I of arities of fi, the type. An n-ary term of type τ
is defined inductively by the following.

(i) Every xi ∈ Xn is an n-ary term of type τ.

(ii) If t1, t2, . . . , tni
are n-ary terms of type τ, then fi(t1, t2, . . . , tni

) is an
n-ary term of type τ.

We denote the smallest set which contains x1, . . . , xn and is closed under
finite number of applications of (ii) by Wτ(Xn) and let Wτ(X) :=

⋃∞
n=1Wτ(Xn)

be the set of all terms of type τ.
A mapping σ from {fi | i ∈ I} into Wτ(X) which does not necessarily preserve

the arity is called a generalized hypersubstitution of type τ. The set of all
generalized hypersubstitutions of type τ is denoted by HypG(τ). In general,
to combine two mappings together we use a composition of mappings. But in
this case to combine two generalized hypersubstitutions we need the concept
of a generalized superposition of terms and the extension of a generalized
hypersubstitution which are defined by the following.

Definition 1 A generalized superposition of terms is a mapping
Sm :Wτ(X)

m+1 −→Wτ(X) where

(i) Sm(xj, t1, . . . , tm) := tj, 1 ≤ j ≤ m,

(ii) Sm(xj, t1, . . . , tm) := xj,m < j ∈ N,

(iii) Sm(fi(s1, . . . , sni
), t1, . . . , tm) := fi(S

m(s1, t1, . . . , tm), . . . ,
Sm(sni

, t1, . . . , tm)).
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Definition 2 Let σ ∈ HypG(τ). The extension of σ is a mapping
σ̂ :Wτ(X) −→Wτ(X) where

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary operation
symbol fi where σ̂[tj], 1 ≤ j ≤ ni are already defined.

Proposition 1 ([4]) For arbitrary t, t1, t2, . . . , tn ∈ Wτ(X) and for arbitrary
generalized hypersubstitution σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[S
n(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

The binary operation of two generalized hypersubstitutions σ1, σ2 is defined
by σ1 ◦G σ2 := σ̂1 ◦ σ2 where ◦ denotes the usual composition of mappings. It
turns out that HypG(τ) together with the identity element σid where σid(fi) =
fi(x1, . . . , xni

) is a monoid under ◦G, see [4].

3 All Maximal idempotent submonoids of HypG(2)

We recall first the definition of an idempotent element of a semigroup. Let S
be a semigroup. An element a ∈ S is called idempotent if aa = a. We denote
the set of all idempotent elements of a semigroup S by E(S). Let E(S) 6= ∅.
Define a ≤ b(a, b ∈ E(S)) iff a = ab = ba. Then ≤ is a partial order on
E(S). We call ≤ a natural partial order on E(S). A natural partial order ≤ on
a semigroup S is said to be a compatible if a ≤ b implies ac ≤ bc and ca ≤ cb
for all a, b, c ∈ S. Throughout this paper, let f be a binary operation symbol
of type τ = (2). By σt we denote a generalized hypersubstitution which maps f
to the term t ∈W(2)(X). For t ∈W(2)(X) we introduce the following notation:

(i) leftmost(t) := the first variable (from the left) occurring in t,

(ii) rightmost(t) := the last variable occurring in t,

(iii) var(t) := the set of all variables occurring in t.

Let σt ∈ HypG(2), we denote R1 := {σt | t = f(x1, t
′) where t ′ ∈W(2)(X)

and x2 /∈ var(t ′)}, R2 := {σt | t = f(t ′, x2) where t ′ ∈ W(2)(X) and x1 /∈
var(t ′)}, R3 := {σt | t ∈ {x1, x2, f(x1, x2)}} and R4 := {σt | var(t) ∩ {x1, x2} = ∅}.
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In 2008, W. Puninagool and S. Leeratanavalee [5] proved that:
4⋃
i=1

Ri =

E(HypG(2)).

Example 1 Let σs ∈ R1 and σt ∈ R2 such that s = f(x1, s
′) and t = f(t ′, x2)

where s ′ = f(x4, x1) and t ′ = f(x2, x6). Consider

(σs ◦G σt)(f) = σ̂s[f(f(x2, x6), x2)]

= S2(f(x1, f(x4, x1)), σ̂s[f(x2, x6)], σ̂s[x2])

= S2(f(x1, f(x4, x1), f(x2, f(x4, x2)), x2)

= f(f(x2, f(x4, x2)), f(x4, f(x2, f(x4, x2)))).

So σs ◦G σt /∈
4⋃
i=1

Ri.

By the previous example, we have
4⋃
i=1

Ri is not a subsemigroup of HypG(2).

Let σt ∈ HypG(2), we denote R ′
1 := {σt | t = f(x1, t

′) where t ′ ∈W(2)(X), x2 /∈
var(t ′) and rightmost(t ′) 6= x1} and R ′

2 := {σt | t = f(t ′, x2) where t ′ ∈
W(2)(X), x1 /∈ var(t ′) and leftmost(t ′) 6= x2}.

We denote (MI)HypG(2) = R ′
1 ∪ R ′

2 ∪ R3 ∪ R4, (MI1)HypG(2) = R1 ∪ R3 ∪ R4
and (MI2)HypG(2) = R2 ∪ R3 ∪ R4.

Proposition 2 (MI)HypG(2) is an idempotent submonoid of HypG(2).

Proof. It is clear that (MI)HypG(2) ⊆ HypG(2) and every element in (MI)HypG(2)

is idempotent. Next, we show that (MI)HypG(2) is a submonoid of HypG(2).
Case 1: σt ∈ R ′

1. Then t = f(x1, t
′) where t ′ ∈W(2)(X) such that x2 /∈ var(t ′)

and rightmost(t ′) 6= x1. Let σs ∈ (MI)HypG(2).
Case 1.1: σs ∈ R ′

1. Then s = f(x1, s
′) where x2 /∈ var(s ′) and

rightmost(s ′) 6= x1. Consider

(σt ◦G σs)(f) = σ̂t[f(x1, s
′)]

= S2(f(x1, t
′), x1, σ̂t[s

′])

= f(x1, t
′) since x2 /∈ var(t ′).

Then σt ◦G σs ∈ R ′
1 ⊆ (MI)HypG(2).

Case 1.2: σs ∈ R ′
2. Then s = f(s ′, x2) where x1 /∈ var(s ′) and

leftmost(s ′) 6= x2. Consider (σs◦Gσt)(f) = σ̂s[f(x1, t ′)] = S2(f(s ′, x2), x1, σ̂s[t ′])
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= f(S2(s ′, x1, w), S
2(x2, x1, w)), where w = σ̂s[t

′]. Since x2 /∈ var(t ′) and
rightmost(t ′) 6= x1, then x1, x2 /∈ var(w). Since x1 /∈ var(s ′) and x1, x2 /∈
var(w), then x1, x2 /∈ var(S2(s ′, x1, w)). Consider (σt◦Gσs)(f) = σ̂t[f(s ′, x2)] =
S2(f(x1, t

′), σ̂t[s
′], x2) = f(S2(x1, u, x2), S

2(t ′, u, x2, )), where u = σ̂t[s
′]. Since

x1 /∈ var(s ′) and leftmost(s ′) 6= x2, we have x1, x2 /∈ var(u). Since x2 /∈
var(t ′) and x1, x2 /∈ var(u), we have x1, x2 /∈ var(S2(t ′, u, x2)). Then σs ◦G
σt, σt ◦G σs ∈ R ′

4 ⊆ (MI)HypG(2).
Case 1.3: σs ∈ R3. Then s = x1 or s = x2 or s = f(x1, x2).
If s = x1, then (σt◦Gσs)(f) = σ̂t[x1] = x1 and (σs◦Gσt)(f) = σ̂x1 [f(x2, t ′)] =

S2(x1, x2, σ̂x1 [t
′]) = x2.

If s = x2, then (σt◦Gσs)(f) = σ̂t[x2] = x2 and (σs◦Gσt)(f) = σ̂x2 [f(x2, t ′)] =
S2(x2, x2, σ̂x2 [t

′]).
Since x1 /∈ var(t ′) and rightmost(t ′) 6= x2, then S2(x2, x2, σ̂x2 [t

′]) = xi /∈
{x1, x2}.

If s = f(x1, x2), then σs = σid such that σt ◦G σid = σt = σid ◦G σt.
Therefore σs ◦G σt, σs ◦G σt ∈ (MI)HypG(2).
Case 1.4: σs ∈ R4. Then s = f(s1, s2) where x1, x2 /∈ var(s). Consider

(σt ◦G σs)(f) = σ̂t[f(s1, s2)] = S2(f(x2, t ′), σ̂t[s1], σ̂t[s2]) = f(S2(x2, w1, w2),
S2(t ′, w1, w2)), where w1 = σ̂t[s1] and w2 = σ̂t[s2]. Then x1, x2 /∈ var(w1) ∪
var(w2). The consequence is x1, x2 /∈ var(S2(t ′, w1, w2)).
Since x1, x2 /∈ var(w2)∪var(S2(t ′, w1, w2)), so that σt◦Gσs ∈ R ′

4 ⊆ (MI)HypG(2).

Consider (σs ◦G σt)(f) = σ̂s[f(x2, t ′)] = S2(f(s1, s2), x2, σ̂s[t ′]) = f(s1, s2) since
x1, x2 /∈ var(s). So that σs ◦G σt ∈ R4 ⊆ (MI)HypG(2).
Case 2: σt ∈ R ′

2 and σs ∈ R ′
2 ∪ R3 ∪ R4. It can be proved similarly as in Case

1. Then we have σt ◦G σs, σs ◦G σt ∈ (MI)HypG(2).
Case 3: σt ∈ R3 and σs ∈ R3 ∪ R4. It can be proved similarly as in Case 1.3.
Then we have σt ◦G σs, σs ◦G σt ∈ (MI)HypG(2).
Case 4: σt ∈ R4 and σs ∈ R4. Then σt ◦G σs = σt ∈ R4 ⊆ (MI)HypG(2).

Therefore (MI)HypG(2) is a submonoid of HypG(2). �

Corollary 1 (MI1)HypG(2) and (MI2)HypG(2) are idempotent submonoids of
HypG(2).

Proposition 3 (MI)HypG(2) is a maximal idempotent submonoid of HypG(2).

Proof. Let K be a proper idempotent submonoid of HypG(2) such that
(MI)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K. Then σt is an idempotent ele-
ment.
Case 1: σt ∈ R1\R ′

1. Then t = f(x1, t
′) where x2 /∈ var(t ′) and rightmost(t ′) =
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x1. Choose σs ∈ R ′
2 ⊆ K, then s = f(s ′, x2) such that x1 /∈ var(s ′) and

leftmost(s ′) 6= x2. Consider (σs◦Gσt)(f) = σ̂s[f(x1, t ′)] = S2(f(s ′, x2), x1, σ̂s[t ′])
= f(S2(s ′, x1, w), S

2(x2, x1, w)) where w = σ̂s[t
′]. Since x2 ∈ var(s) and

rightmost(t ′) = x1, we have x1 ∈ var(w) and S2(s ′, x1, w) ∈ W(2)(X) \ X.
Since x1 ∈ var(w), σs ◦G σt is not idempotent. So σt ∈ R ′

1.
Case 2: σt ∈ R2\R ′

2. Then t = f(t ′, x2) where x1 /∈ var(t ′) and leftmost(t ′) =
x2. Choose σs ∈ R ′

1 ⊆ K, then s = f(x1, s
′) such that x2 /∈ var(s ′) and

rightmost(s ′) 6= x1. Consider (σs◦Gσt)(f) = σ̂s[f(t ′, x2)] = S2(f(x1, s ′), σ̂s[t ′],
x2) = f(S2(x1, w, x2), S

2(s ′, w, x2)), where w = σ̂s[t
′]. Since x1 ∈ var(s) and

leftmost(t ′) = x2, we have x2 ∈ var(w) and S2(s ′, w, x2) ∈W(2)(X) \X. Since
x2 ∈ var(w), σs ◦G σt is not idempotent. So σt ∈ R ′

2. Then σt ∈ (MI)HypG(2).
Therefore K ⊆ (MI)HypG(2) and thus K = (MI)HypG(2). �

Proposition 4 (MI1)HypG(2) is a maximal idempotent submonoid of HypG(2).

Proof. Let K be a proper idempotent submonoid of HypG(2) such that
(MI1)HypG(2) ⊆ K ⊂ HypG(2). Let σt ∈ K. Then σt is an idempotent ele-
ment. If σt ∈ R2. Then t = f(t ′, x2) where x1 /∈ var(t ′). Choose σs ∈ R1 such
that s = f(x1, s

′) where x2 /∈ var(s ′), s ′ ∈W(2)(X)\X and rightmost(s ′) = x1.

Consider (σt ◦Gσs)(f) = σ̂t[f(x1, s ′)] = S2(f(t ′, x2), x1, σ̂t[s ′]) = f(S2(t ′, x1, w),
S2(x2, x1, w)), where w = σ̂t[s

′]. Since x2 ∈ var(t), we have x1 ∈ var(w) and
S2(t ′, x1, w) ∈ W(2)(X) \ X. Since x1 ∈ var(w), σt ◦G σs is not idempotent, so
σt ∈ (MI1)HypG(2). Therefore K = (MI1)HypG(2). �

Proposition 5 (MI2)HypG(2) is a maximal idempotent submonoid of HypG(2).

Proof. The proof is similar to the proof of Proposition 4. �

Corollary 2 {(MI)HypG(2), (MI1)HypG(2), (MI2)HypG(2)} is the set of all maxi-
mal idempotent submonoids of HypG(2).

Proposition 6 ([6]) Let σt be an idempotent element. Then σx1 ≤ σt if and
only if leftmost(t) = x1.

Proposition 7 ([6]) Let σt be an idempotent element. Then σx2 ≤ σt if and
only if rightmost(t) = x2.

Proposition 8 For each t ∈ W(2)(X) where x2 /∈ var(t), {σx1 , σid, σf(x1,t)} is
a maximal compatible idempotent submonoid of HypG(2).
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Proof. By using Proposition 6, σx1 ≤ σf(x1,t). Then σx1 = σx1 ◦G σf(x1,t) =
σf(x1,t) ◦G σx1 and σid is the identity element. We have {σx1 , σid, σf(x1,t)} is an
idempotent submonoid of HypG(2). Since

σf(x1,t) ◦G σx1 = σx1 ◦G σf(x1,t) = σx1 ◦G σx1 = σx1 ≤ σf(x1,t) = σf(x1,t) ◦G σf(x1,t).

We have {σx1 , σid, σf(x1,t)} is a compatible idempotent submonoid of HypG(2).
Let K be a proper compatible idempotent submonoid of HypG(2) such that

{σx1 , σid, σf(x1,t)} ⊆ K ⊂ HypG(2). Let σs ∈ K. Then σs is an idempotent ele-
ment.
Case 1: σs ∈ R1 \ {σx1 , σid, σf(x1,t)}. Then s = f(x1, s

′) where x2 /∈ var(s ′).
Since K is a compatible idempotent submonoid and σf(x1,t) ≤ σid, we have
σf(x1,t) ◦G σf(x1,s ′) = σf(x1,t) ≤ σf(x1,s ′) = σid ◦G σf(x1,s ′) which is a contradic-
tion.
Case 2: σs ∈ R2. Then s = f(s ′, x2) where x1 /∈ var(s ′). Since K is a com-
patible idempotent submonoid and σf(s ′,x2) ≤ σid, we have σx1 ◦G σf(s ′,x2) =
σleftmost(s ′) ≤ σx1 = σx1 ◦G σf(x1,s ′). So leftmost(s ′) = x1 which is a contra-
diction.
Case 3: σs = σx2 . Since K is a compatible idempotent submonoid and σx1 ≤
σid, we have σx2 ◦G σx1 = σx1 ≤ σx2 = σx2 ◦G σid which is a contradiction.
Case 4: σs ∈ R4. Then s = f(s1, s2) ∈ W(2)X \ X where x1, x2 /∈ var(s).
Since K is a compatible idempotent submonoid and σx1 ≤ σid, we have
σs ◦G σx1 = σx1 ≤ σs = σs ◦G σid which is a contradiction.

Therefore K = {σx1 , σid, σf(x1,t)} is a maximal compatible idempotent
submonoid of HypG(2). �

Proposition 9 For each t ∈ W(2)X where x1 /∈ var(t), {σx2 , σid, σf(t,x2)} is a
maximal compatible idempotent submonoid of HypG(2).

Proof. The proof is similar to the proof of Proposition 8. �
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