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Abstract. In this paper our aim is to find the solutions of time and
space fractional heat differential equations by using new definition of frac-
tional derivative called conformable fractional derivative. Also based on
conformable fractional derivative definition conformable Fourier Trans-
form is defined. Fourier sine and Fourier cosine transform definitions are
given and space fractional heat equation is solved by conformable Fourier
transform.

1 Introduction

Fractional differential equations which are the generalization of differential
equations are successful models of real life events and have many applications
in various fields in science [1]-[8]. So the subject becomes very captivating.
Hence, many researchers have been trying to form a new definition of frac-
tional derivative. Most of these definitions include integral form for fractional
derivatives. Two of these definitions which are most popular:
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1. Riemann-Liouville definition: If n is a positive integer and α ∈ [n− 1, n),
α derivative of f is given by

Dαa(f)(t) =
1

Γ(n− α)

dn

dtn

t∫
a

f(x)

(t− x)α−n+1
dx.

2. Caputo definition: If n is a positive integer and α ∈ [n− 1, n), α deriva-
tive of f is given by

Dαa(f)(t) =
1

Γ(n− α)

t∫
a

f(n)(x)

(t− x)α−n+1
dx.

In [9, 10] R. Khalil and et al. give a new definition of fractional derivative
called “conformable fractional derivative”.

Definition 1 Let f : [0,∞) → R be a function. αth order conformable frac-
tional derivative of f is defined by

Tα(f)(t) = lim
ε→0 f(t+ εt

1−α) − f(t)

ε

for all t > 0, α ∈ (0, 1). If fis α-differentiable in some (0, a), a > 0, and
lim
t→0+ f(α)(t) exists, then define

f(α)(0) = lim
t→0+ f(α)(t).

This new definition satisfies the properties which are given in the following
theorem [9, 10].

Theorem 1 Let α ∈ (0, 1] and f, g be α− differentiable at point t > 0. Then

(a) Tα(cf+ dg) = cTα(f) + dTα(g), for all a, b ∈ R.

(b) Tα(t
p) = ptp−α for all p ∈ R.

(c) Tα(λ) = 0 for all constant functions f(t) = λ.

(d) Tα(fg) = fTα(g) + gTα(f).

(e) Tα

(
f
g

)
= gTα(g)−fTα(f)

g2
.
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(f) If, in addition to f is differentiable, then Tα(f)(t) = t
1−α df

dt .

In Section 2, we will give the solution of fractional heat equation for 0 <
α < 1 with the help of conformable fractional derivative definition. In Section
3, we will give conformable Fourier transform, conformable Fourier sine and
cosine transform definitions and solve the space fractional heat equation with
this transform.

2 Time fractional heat equation

General form for one dimension heat equation is

∂u

∂t
= κ

∂2u

∂x2
.

Heat equation has many fractional forms. In this paper we investigate the
solution of time fractional heat differential equation:

∂αu

∂tα
= κ

∂2u

∂x2
, 0 < x < L, t > 0 (1)

with conditions

u(0, t) = 0, t ≥ 0 (2)

u(L, t) = 0, t ≥ 0 (3)

u(x, 0) = f(x), 0 ≤ x ≤ L (4)

where the derivative is conformable fractional derivative and 0 < α < 1.
Firstly we can mention conformable fractional linear differential equations with
constant coefficients

∂αy

∂tα
± µ2y = 0. (5)

From formula (f) in Theorem 1 we can obtain

∂αy

∂tα
= t1−α

dy

dt
. (6)

By substituting (6) in (5) it becomes following first order linear differential
equation

t1−α
dy

dt
± µ2y = 0. (7)
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One can easily see that the solution of equation (7)

y = ce
±µ2
α
tα . (8)

Now we can use separation of variables method [11] for solution of our time
fractional heat equation (1). Let u = P(x)Q(t). Substituting this equation in
Eq. (1), we have

dαQ(t)

dtα
P(x) = κ

d2P(x)

dx2
Q(t)

from which we obtain

dαQ(t)

dtα
/κQ(t) =

d2P(x)

dx2
/P(x) = ω.

As a result:
dαQ(t)

dtα
−ωκQ(t) = 0

and
d2P(x)

dx2
−ωP(x) = 0.

Now, we think about the equation

d2P(x)

dx2
−ωP(x) = 0.

For this equation, there are three cases for values of ω to be evaluated. ω =
0, ω = −µ2, ω = µ2.
Conditions (2) and (3) give

µ =
nπ

L
and Pn(x) = an sin

nπx

L
. (9)

Equations (5) and (8) give,

Qn(t) = bne
−(nπL )

2 κ
α
tα . (10)

Then, using the equations (9) and (10) the solution of the Cauchy problem
which satisfies two boundary conditions obtained as

u(x, t) =

∞∑
n=1

cn sin
nπx

L
e−(

nπ
L )

2 κ
α
tα . (11)
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With the help of condition (4)

cn =
2

L

L∫
0

f(x) sin
(nπx
L

)
dx. (12)

Substituting (12) in (11) we find the solution as

u(x, t) =

∞∑
n=1

sin
nπx

L
e−(

nπ
L )

2 κ
α
tα

2
L

L∫
0

f(x) sin
(nπx
L

)
dx

.
3 Conformable Fourier transform

In [12] Abdeljawad gave the definition of conformable Laplace transform and in
[13] Negero made a study on application of Fourier transform to partial differ-
ential equations. Now in this section we define conformable Fourier transform,
infinite and finite Fourier sine and cosine transform. We give some properties
of this transforms. At the end we use finite Fourier sine transform to solve
space fractional heat equation.

Definition 2 Let 0 < α ≤ 1 and h(x) is real valued function defined on
(−∞,∞). The conformable Fourier transform of h(x) which is denoted by
Fα {h(t)} (w) is given by

Fα {h(t)} (w) = Hα(w) =
1√
2π

∞∫
−∞

e−iw
tα

α h(t) tα−1 dt.

Theorem 2 Let 0 < α ≤ 1 and h(x) is α− differentiable real valued function
defined on (−∞,∞). Then

Fα {Tα(h)(t)} (w) = iwHα(w).

Proof. The proof followed by Theorem 1 (f) and known integration by parts.
�

Lemma 1 Let f : (−∞,∞) → R be a function which satisfies Fα {h(t), w} =
Hα(w) property. Then,

Fα {h(t)} (w) = F
{
h((αt)

1
α )
}
(w) (13)
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where F {h(t)} (w) = 1√
2π

∞∫
−∞ e−iwt h(t) dt.

Proof. One can prove it easily by setting t = uα

α . �

Lemma 2 Fα {h(t)} (w) Fourier transform is a linear operator.

Fα {af+ bg} = aFα {f}+ bFα {g} .

Theorem 3 (Convolution Theorem). Let g(t) and h(t) be arbitrary func-
tions. Then

Fα {g ∗ h} =
√
2πFα {g} Fα {h}

where g∗h is the convolution of functions g(t) and h(t) defined as

(g ∗ h)(t) =
∞∫

−∞
g(x)h(t− x)dx =

∞∫
−∞

g(t− x)h(x)dx.

Proof. From Lemma 1, by using definition and changing the order of integra-
tion, we get

Fα {(g ∗ h)(t)} = F
{
(g ∗ h)((αt)

1
α )
}
,

=
1√
2π

∞∫
−∞

∞∫
−∞

g((αx)
1
α )h((α(t− x))

1
α )e−iwtdxdt,

=
1√
2π

∞∫
−∞

∞∫
−∞

g((αx)
1
α )h((α(t− x))

1
α )e−iwtdtdx.

By making substitution t− x = v, so t = v+ x,

Fα {(g ∗ h)(t)} =
1√
2π

∞∫
−∞

∞∫
−∞

g((αx)
1
α )h((αv)

1
α )e−iw(v+x)dvdx,

=
1√
2π

∞∫
−∞

g((αx)
1
α )e−iwxdx

∞∫
−∞

h((αv)
1
α )e−iwvdv,

=
√
2πFα {g} Fα {h} .

�
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Conformable Fourier transform of partial derivatives

Lemma 3 For given u(x, t) with −∞ < x <∞ and t > 0, we have

i. Fα
{
δ
δt(u(x, t))

}
(w) = d

dt

_
u(w, t).

ii. Fα
{
δn

δtn (u(x, t))
}
(w) = dn

dtn
_
u(w, t), n = 1, 2, 3, ...

iii. Fα {Tα(u(x, t))} (w) = iw
_
u(w, t).

iv. Fα

Tα... Tα(u(x, t))︸ ︷︷ ︸
n times

 (w) = (iw)n
_
u(w, t), n = 1, 2, 3, ...

Fourier sine and cosine transform

In this subsection we shall discuss the Fourier sine and cosine transforms and
some of their properties. These transforms are convenient for problems over
semi-infinite and some of finite intervals in a spatial variable in which the
function or its derivative is prescribed on the boundary.

Infinite Fourier sine and cosine transform

Definition 3 (Fourier cosine transform). The Fourier cosine Transform
of a function f : [0,∞]→ R which is denoted by Fαc (f(t)) is defined as

Fαc {f(t)} =
_

f (w) = Fαc (w) =

√
2

π

∞∫
0

f(x) cos

(
w
xα

α

)
xα−1dx.

Definition 4 (Fourier sine transform). The Fourier sine Transform of a
function f : [0,∞]→ R is defined as

Fαs {f(t)} =
_

f (w) = Fαs (w) =

√
2

π

∞∫
0

f(x) sin

(
w
xα

α

)
xα−1dx.

Lemma 4 Fαs and Fαc are linear operators, i.e.,

Fαc {af+ bg} = aF
α
c {f}+ bF

α
c {g} ,

Fαs {af+ bg} = aF
α
s {f}+ bF

α
s {g} .

Theorem 4 Let f be a function defined for t > 0 and f(t) → 0 as x → ∞.
Then
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1. Fαc (Tα(f)(t)) = wF
α
s (f(t)) −

√
2
πf(0).

2. Fαs (Tα(f)(t)) = −wFαc (f(t)).

Proof. It can be easily proved by using Theorem 1 (f) and integration by
parts. �

Finite Fourier sine and cosine transform

When the physical problem is defined on a finite domain, it is generally not
suitable to use transformation with an infinite range of integration. In such
cases usage of finite Fourier transform is very advantageous.

Definition 5 The finite Fourier sine transform of f(t), 0 < t < L defined as

Fαs {f(t)} = F
α
s (n) =

L∫
0

f(t) sin

(
nπtα

Lα

)
tα−1dt

where 0 < α < 1.
The inverse Fourier sine transform is defined as follows,

f(x) =
2α

Lα

∞∑
n=1

Fαs (n) sin

(
nπtα

Lα

)
.

Definition 6 The finite Fourier cosine transform of f(t), 0 < t < L defined
as

Fαc {f(t)} = F
α
c (n) =

L∫
0

f(t) cos

(
nπtα

Lα

)
tα−1dt

where 0 < α < 1.
The inverse Fourier cosine transform is defined as follows,

f(x) =
α

Lα
Fαc (0) +

2α

Lα

∞∑
n=1

Fαc (n) cos

(
nπtα

Lα

)
.

In bounded domain, the Fourier sine and cosine transforms are useful to solve
PDE’s. Therefore we can give following calculations.

Fαs

{
δαu

δxα

}
= −

nπα

Lα
Fαc {u(x, t)} ,
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Fαs

{
δα

δxα
δαu

δxα

}
= −

nπα

Lα
Fαc

{
δαu

δxα

}
= −

n2π2α2

L2α
Fαs {u(x, t)}−

nπα

Lα
[u(L, t) cosnπ− u(0, t)] .

(14)

And then,

Fαc
{
δαu
δxα

}
= nπα

Lα F
α
s {u(x, t)}− [u(0, t) − u(L, t) cosnπ] ,

Fαc
{
δα

δxα
δαu
δxα

}
= −n2π2α2

L2α
Fαc {u(x, t)}−

nπα
Lα

[
δαu(0,t)
δxα − δαu(L,t)

δxα cosnπ
]
.

Now, let’s apply this transform to solve space fractional heat equation,

δu

δt
=
δα

δxα
δαu

δxα
, 0 < x < L, t > 0 (15)

with the conditions,

u(L, t) = u(0, t) = 0 (16)

u(x, 0) = f(x) (17)

where 0 < α < 1.
When we apply the Fourier sine transform both sides of the equation, we

have the following equality by using (14) and the conditions (16)

d
_
u(n, t)

dt
= −

n2π2α2

L2α
_
u(n, t).

Solving the above differential equation gives us,

_
u(n, t) = Ce

−n
2π2α2

L2α
t
.

To evaluate C, we apply Fourier sine transform to the condition (17). At the
end we have C as,

C =
_
u(n, 0) =

L∫
0

f(x) sin

(
nπxα

Lα

)
xα−1dx.

Hence we get,

_
u(n, t) =

 L∫
0

f(x) sin

(
nπxα

Lα

)
xα−1dx

 e−n2π2α2L2α
t
.
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At the end applying inverse Fourier sine transform, the solution of Eq. (15)
obtained as

u(x, t) =
2α

Lα

∞∑
n=1

 L∫
0

f(x) sin

(
nπxα

Lα

)
xα−1dx

 e−n2π2α2L2α
t
sin

(
nπxα

Lα

)
.

4 Conclusion

In this paper we discuss about the solution of time and space fractional heat
differential equations. Conformable fractional derivative definition is used for
the solution time fractional heat equation. Conformable Fourier transform
which will have very important role in fractional calculus like conformable
Laplace transform is defined and given an application for space fractional
heat equation. We can say that this definition has many advantages in the
solution procedure of fractional differential equations. Some comparisons with
classical fractional differential equations are given by Khalil and Abdeljawad
before. This paper can help to see the researchers that given definitions are
very helpful under the suitable conditions.
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