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Abstract. In this paper, we examine the fractional differential-difference
equation (FDDE) by employing the proposed sensitivity approach (SA)
and Adomian transformation method (ADTM). In SA the nonlinear
differential-difference equation is converted to infinite linear equations
which have a wide criterion to solve for the analytical solution. By ADTM,
the FDDE is converted into ordinary differential-difference equation that
can be solved. We test both the techniques through some test problems
which are arising in nonlinear dynamical systems and found that ADTM
is equivalently appropriate and simpler method to handle than SA.

1 Introduction

A differential-difference equation (DDEs), first studied by Fermi et al. [1]
in the 1950s is of enormous significance in describing physical phenomena of
various fields such as mechanical engineering, biophysics, condensed matter
physics, and in different physical problems like currents flow in electrical net-
works [2], particle vibrations in lattices, and pulses in biological chains [3].
Many forms of DDEs are discovered to analyze the discrete nonlinear system.
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In recent decades fractional derivatives are introduced to deal with non
differentiable functions. The theory of using integrals and derivatives of an
arbitrary order, fractional calculus, discussed about 300 years ago, have appli-
cations in fractional control of engineering systems, acoustics, damping laws,
bioengineering and biomedical applications, electromagnetism, hydrology, sig-
nal processing, and many others [4, 5, 6]. It is used for examining stochastic
processes forced by fractional Brownian processes [7, 8], non-random fractional
phenomena in physics [9, 10, 11], the study of porous systems, and quantum
mechanics [12, 13].

Recently, there have been a number of schemes committed to the solution
of fractional differential equations. The Adomian decomposition method [14],
homotopy perturbation method [15, 16, 17], homotopy analysis method [18,
19], Taylor matrix method [20] and many others have been used to solve the
fractional differential equations.

In the present paper, the sensitivity approach [21, 22, 23] which has been pre-
sented to solve various kinds of optimal control problems and analysis of time
delay systems has used. In this approach, a sensitivity parameter has intro-
duced which transform the original nonlinear fractional differential-difference
equation (FDDE) to a linear sequence of FDDEs. The system of equations
then now consists of a linear term and a nonlinear series terms. Iterations
have been done only for nonlinear series terms, i.e., the result of a sequence of
linear FDDEs leads to nonlinear terms for compensation is extended to solve
FDDEs. Also, the Adomian decomposition method (ADM) has been modified
by a special transformation. The transformation has converted the fractional
order differential-difference equation to ordinary differential-difference equa-
tion which then solved by the Adomian decomposition method.

2 Preliminaries

The modified Riemann-Liouville derivative of order α is defined, for a function
f(x), by

Dαx f(x) =
1

Γ(−α)

∫x
0

(x− η)−1−α(f(η) − f(0))dη; α < 0, (1)

Dαx f(x) =
1

Γ(1− α)

d

dx

∫x
0

(x− η)−α(f(η) − f(0))dη; 0 < α < 1, (2)

Dαx f(x) = (f(n)(x))
(α−n)

dη; n ≤ α ≤ n+ 1, n ≥ 1, (3)
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where f : R → R is a continuous function. Properties of modified Riemann
Liouville derivative are given as

Dαxx
(β) =

Γ(β+ 1)

Γ(β− α+ 1)
xβ−α; β > 0, (4)

dαx(t) = Γ(α+ 1)dx(t); β > 0, (5)

3 Implementation of the methods

Consider the nonlinear FDDEs in the form of:

DαtUn(t) = N (. . . , Un−1(t), Un(t), Un+1(t), . . . ); (6)

with initial conditions

Un(t0) = f(n); (7)

where N is the non linear function,Un(t) is an unknown function, f(n)is the
initial condition and t,n are independent variables. Assuming that a unique
solution exist for Eq. (4). It is difficult to obtain exact solution of nonlinear
FDDE (6). Only in some cases, we can obtain exact solution.

Sensitivity approach (SA)

In this approach, a sensitivity parameter Λ, which varies between zero and
unity, is introduced into nonlinear terms of FDDE. When Λ = 0, the nonlinear
problem is transformed to a simple problem, which can be solved through
analytic method. When Λ = 1, the original nonlinear problem is obtained.
This transformation leads to solving a sequence of linear FDDEs instead of
solving nonlinear FDDEs. Now, we embedded a sensitivity parameter Λ in
Eqs. (6)–(7) and form the following sensitized FDDEs:

DαtUn(t,Λ) = N (..., Un−1(t,Λ), Un(t,Λ), Un+1(t,Λ), . . . ) (8)

with initial conditions

Un(t,Λ)

∣∣∣∣
t=t0

= f(n) (9)

Where 0 ≤ Λ ≤ 1. In the following explanation, we suppose that the solution of
Eq. (6) is distinctively existed and Un(t,Λ) with Λ is infinitely differentiable
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with respect to the Λ in the region of Λ = 0, and its Maclaurin series is
convergent at Λ = 1. Apparently when Λ = 1 Eq. (8) is equivalent to the
original problem Eq. (6). According to the assumption we can write:

Un(t,Λ) =

∞∑
n=1

ΛjU
(j)
n (t) (10)

where (∗)(j) = 1
j!
∂j

∂Λj (∗)
∣∣∣∣
Λ=0

Now, we substitute Eq. (10) into Eq. (8) and

equating terms with the same order of Λ on each side we have:

Λ0 : DαtU
(0)
n (t) = N (U

(0)
n (t)), U

(0)
n (t0) = f(n), (11)

Λ1 : DαtU
(1)
n (t) = N (U

(1)
n (t)) + g

(0)
n (t), U

(1)
n (t0) = 0, (12)

Λj : DαtU
(j)
n (t) = N (U

(j)
n (t)) + g

(j−1)
n (t), U

(j)
n (t0) = 0, (13)

Where, g(j−1)(t) is the coefficient of Λ(j−1) in the expanding of f(n) and can
be resolve in the following manner:

g(j−1)(t) =
1

(j− 1)!

N (..., Un−1(t,Λ), Un(t,Λ), Un+1(t,Λ), . . . )

∂Λ(j− 1)

∣∣∣∣
Λ=0

, (14)

It should be noticed that Eq. (11) gives linear approximate and Eq. (6) gives
correction term to linear approximate solution by keeping in consideration
second order nonlinearity and so on. If the above process caries on, at each
step, a system of non-homogeneous linear FDDEs is obtained in which non-
homogeneous terms are known from the previous step. Hence, solving the
presented sequence is a recursive process. After indentifying Uj(t) for j ≥ 1, it
is obvious that Λ = 1 should be set in Eq. (8) and Eq. (9) so that they deform
to the exact solution of Eq. (6) and so we have:

Un(t, 1) =

∞∑
j=0

U
(j)
n (t) (15)

In this way, the original nonlinear FDDE has been converted into a sequence
of linear FDDEs, which should be solved in a recursive development and this
will overcomes the complexity of working with nonlinear FDDEs. It is clear
from the above procedure, a nonlinear FDDE is transformed into a sequence
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of linear FDDEs. In order to solve the Eq. (8), the following sensitized linear
FDDE can be constructed:

DαtU
(0)
n (t,Λ) = ΛN (. . . , U

(0)
n−1(t,Λ), U

(0)
n (t,Λ), U

(0)
n+1(t,Λ), . . . ) (16)

U
(0)
n (t,Λ) = f(n) (17)

Assuming the solution of Eq. (16) as

Un(t,Λ) =

∞∑
n=1

ΛjU
(0,j)
n (t) (18)

Now by substituting Eq. (18) into Eq. (16) and equating terms with the same
order of Λ on each side we have:

Λ0 : DαtU
(0,0)
n (t) = N (. . . U

(0,0)
n−1 (t,Λ), U

(0,0)
n (t,Λ), U

(0,0)
n+1 (t,Λ), . . . ),(19)

U
(0,0)
n (t0) = f(n),

Λ1 : DαtU
(0,1)
n (t) = N (. . . U

(0,1)
n−1 (t,Λ), U

(0,1)
n (t,Λ), U

(0,1)
n+1 (t,Λ), . . . ),(20)

U
(0,1)
n (t0) = 0,

...

Λj : DαtU
(0,j)
n (t) = N (. . . U

(0,j)
n−1(t,Λ), U

(0,j)
n (t,Λ), U

(0,j)
n+1(t,Λ), . . . ), (21)

U
(0,j)
n (t0) = 0,

...

By taking the inverse operator of Dαt on applying Eqs. (19)–(21), we get the
solution of FDDE as

U0n(t) = U
(0,1)
n (t) =

∞∑
j=0

U
(0,j)
n (t) (22)
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In the same way, Eq. (6) has to be solved for U0n(t) for j ≥ 1. After some
similar calculation we have:

Uj,kn (t) = U
(j,0)
n (t) +U

(j,1)
n (t) +U

(j,2)
n (t) +U

(j,3)
n (t) + . . . (23)

U
(j,0)
n (t) = 0,

...

U
(j,1)
n (t) = −Jα1g

j−1
n (t) (24)

...

U
(j,k)
n (t) = −Jα1N (. . . U

(j,k)
n−1(t), U

(j,k)
n (t), U

(j,k)
n+1(t) . . . )

j.

Since, the steps above are enough to find the analytical solution, however,
only some iteration of sub-problems and the original problem are sufficient
to get a satisfactory accurate solution. We can replace ∞ by any positive
integers S and T in the above mentioned series which may help in obtaining
an approximate closed-form solution

Un(t) =

S∑
j=0

T∑
k=0

U
(j,k)
n (t) (25)

Adomian decomposition transformation method (ADTM)

Fractional complex transforms [24, 25] has now been become a useful tool
to convert fractional differential equations to ordinary differential equations,
which provides a very simple and easy solution approach. In the present
method, the FDDE has transformed into ordinary DDE and then utilizing
the Adomian decomposition method to solve for exact or analytic solutions.
Duan [26, 27] has provided the efficient recurrence one variable formula to
decompose the multivariable Adomian polynomials to solve the non-linear dif-
ferential equation. Recalling the Eq. (6)

DαtUn(t) = N (. . . , Un−1(t), Un(t), Un+1(t), . . . ) (26)

with initial conditions

Un(t0) = f(n); (27)

Let us suppose

T =
tα

Γ(α+ 1)
(28)
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Differentiating Eq. (28) and making use of modified Riemann Liouville deriva-
tive

dαUn(t)

dtα
= U′

n(T) (29)

Putting in Eq. (26), which transform the FDDE into ordinary DDE

U′
n,m(T) = LUn,m(T) = N (. . . , Un−1,m(T), Un,m(T), Un+1,m(T), . . . ) (30)

where L = d
dT and L−1 =

∫T
T0
(∗)dT are the linear operator the inverse operators

respectively. Applying the inverse operator on both sides of the Eq. (26) with
Eq. (27) gives

Un,m+1(T) = f(n) + L−1[N (. . . , Un−1,m(T), Un,m(T), Un+1,m(T), . . . )] (31)

In this section, three examples have presented to demonstrate the applicability
of the suggested methods to solve nonlinear fractional differential-difference
equations.

4 Test problems

Problem 1

Consider the following Volterra equation

DαtUn(t) = Un(t)(Un+1(t) −Un−1(t)) (32)

with initial conditions

Un(0) = n (33)

The exact solution for α = 1 can be written as

Un(t) =
n

(1− 2t)

For solving this equation, the following new equation is constructed with sen-
sitivity parameter:

DαtUn(t,Λ) = ΛUn(t,Λ)(Un+1(t,Λ) −Un−1(t,Λ)) (34)

with initial conditions

Un(0,Λ) = n (35)
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Now assume:

Un(t,Λ) =

∞∑
j=0

ΛjU
(0,j)
n (t) (36)

Un+1(t,Λ) =

∞∑
j=0

ΛjU
(0,j)
n+1(t) (37)

Un−1(t,Λ) =

∞∑
j=0

ΛjU
(0,j)
n−1(t) (38)

Substitute Eq. (36)–(38) in Eq. (34), it has been seen that the nonlinear orig-
inal FDDEs are changed into a set of linear recursive FDDEs by using Eq.
(19)-(21), in which at each step, the non-homogeneous terms are calculated
from the preceding steps and process can be handled very simply which can
solved the equation, we get the following series solution.

Un(t) = n+
2ntα

Γ(α+ 1)
+

8nt2α

Γ(2α+ 1)
+
8nt3α(4Γ(α+ 1)2 + Γ(2α+ 1))

Γ(α+ 1)2Γ(3α+ 1)
+ . . .(39)

By putting α = 1, we recover ref. [24].
Now for the Adomian decomposition transformation method, Let us suppose

η =
1

Γ(α+ 1)
tα (40)

From modified Riemann Liouville derivative, we have

dαUn(t)

dtα
= U′

n(η) (41)

Using Eq. (41) in Eq. (32)

U′
n,m = Un,m(η)[Un+1,m(η) −Un−1,m(η)]

LUn,m = A(Un,m, Un+1,m) − B(Un,m, Un−1,m) (42)

Operating L−1 on both sides gives:

Un,m+1 = Un(0) + L−1(A(Un,m, Un+1,m) − B(Un,m, Un−1,m)) (43)
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Where the nonlinear termsA(Un,m, Un+1,m) and B(Un,m, Un−1,m) can be de-
composed as follows:

An,m =

m−1∑
i=0

Un,iUn+1,m−1−i Bn,m =

m−1∑
i=0

Un,iUn−1,m−1−i (44)

An,1 = Un,0Un+1,0, Bn,1 = Un,0Un−1,0,

An,2 = Un,1Un+1,0 +Un,0Un+1,1, Bn,2 = Un,1Un−1,0 +Un,0Un−1,1,

An,3 = Un,2Un+1,0 +Un,1Un+1,1 +Un,0Un+1,2,

Bn,3 = Un,2Un−1,0 +Un,1Un−1,1 +Un,0Un−1,2,

An,4 = Un,3Un+1,0 +Un,2Un+1,1 +Un,1Un+1,2 +Un,0Un+1,3

Bn,4 = Un,3Un−1,0 +Un,2Un−1,1 +Un,1Un−1,2 +Un,0Un−1,3 (45)

The solution of the transformed problem is

Un = 2nη+ 4nη2 + 8nη3 + 16nη4 + 32nη5 + 64nη6 + . . . (46)

Now, replacing

η =
1

Γ(α+ 1)
tα

in Eq.(46), we get

Un = 2n
tα

Γ(α+ 1)
+ 4n

(
tα

Γ(α+ 1)

)2
+ 8n

(
tα

Γ(α+ 1)

)3
+ 16n

(
tα

Γ(α+ 1)

)4
+ . . .

(47)
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Table 1: Numerical comparison of problem 1 at t = 0.01

n α = 0.5 α = 0.75 α = 1
SA ADTM SA ADTM SA ADTM Exact

-20 -27.1982 -25.8288 -21.5089 -21.4780 -20.4082 -20.4082 -20.4082
-10 -13.5991 -12.9144 -10.7544 -10.7390 -10.2041 -10.2041 -10.2041
10 13.5991 12.9144 10.7544 10.7390 10.2041 10.2041 10.2041
20 27.1982 25.8288 21.5089 21.4780 20.4082 20.4082 20.4082

Problem 2

Let us consider hybrid nonlinear difference equation of the Korteweg-de Vries
(KdV) equations

DαtUn(t) = (1− (Un(t))
2)(Un+1(t) −Un−1(t)) (48)

with initial conditions

Un(0) = tanh(k) tanh(kn) (49)

The exact solution of Eq. (48) for can be written as:

Un(t) = tanh(k) tanh(kn+ 2 tanh(k)t) (50)

Eq. (48) can be simplified as follows:

DαtUn(t) = (Un+1(t) −Un−1(t)) − (Un(t))
2Un+1(t) + (Un(t))

2Un−1(t) (51)

The solution of Eq. (48) by SA is given by

Un(t) = tanh(k) tanh(kn) +
1

Γ(α+ 1)
tα(cosh(2k) + cosh(2kn))

(
1

cosh(kn− k)

)
(

1

(cosh(kn))2

)(
1

cosh(kn+ k)

)
(tanh(k))2)) + . . . (52)

Now, applying the Adomian transformation method the solution of Eq. (48)
with Eq. (49) is

Un = tanh(k) tanh(kn) + η(cosh(2k) + cosh(2kn))

(
1

cosh(kn− k)

)(
1

(cosh(kn))2

)
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1

cosh(kn+ k)

)
(tanh(k))2 . . . (53)

Hence, the solution of the original problem is given by

Un = tanh(k) tanh(kn) +
1

Γ(α+ 1)
tα(cosh(2k) + cosh(2kn))(

1

cosh(kn− k)

)(
1

(cosh(kn))2

)
(

1

cosh(kn+ k)

)
(tanh(k))2 . . .

(54)

Table 2: Numerical comparison of problem 2 for k = 0.1 t = 0.01

n α = 0.5 α = 0.75 α = 1

SA ADTM SA ADTM SA ADTM Exact
-20 -0.291307 -0.291307 -0.291308 -0.291308 -0.291309 -0.291309 -0.291309
-10 -0.289080 -0.289134 -0.289502 -0.289509 -0.289695 -0.289694 -0.289694
0 0.060562 0.059690 0.032840 0.032701 0.016973 0.0169534 0.0169534
10 0.290275 0.290363 0.290150 0.290162 0.290030 0.290030 0.290030
20 0.291310 0.291310 0.291310 0.29131 0.291309 0.291309 0.291309

Problem 3

Consider the following fractional differential-difference problem

DαtUn(t) = (Un(t))
2(Un+1(t) −Un−1(t)) (55)

with initial condition

Un(0) = 1−
1

n2
(56)

The exact solution of Eq. (55) for α = 1 can be written as:

Un(t) = 1−
1

(n+ 2t)2
(57)

By the sensitivity approach and ADTM the solution of the problem are given
by

Un(t) = 1−
1

n2
+

4tα

n3Γ(α+ 1)
−

24t2α

n4Γ(2α+ 1)
+ . . . (58)

Un(t) = 1−
1

n2
+

4tα

n3Γ(α+ 1)
−

12t2α

n4(Γ(α+ 1))2
+ . . . (59)
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Table 3: Numerical comparison of problem 3 at t = 0.3

n α = 0.5 α = 0.75 α = 1
SA ADTM SA ADTM SA ADTM Exact

-20 0.997137 0.99716 0.997259 0.997264 0.997343 0.997343 0.997343
-10 0.986425 0.98698 0.987878 0.987971 0.988683 0.988683 0.988683
10 0.991922 0.992079 0.991510 0.991555 0.988683 0.991100 0.991100
20 0.99777 0.997783 0.997707 0.997707 0.997644 0.997644 0.997644

5 Conclusions

In this study, we extend the sensitivity approach for solving the fractional
differential difference equation and proposed a new Adomian decomposition
transformation method, and obtain the analytical solution of Volterra and
mKDV lattice equations. The solution shows that, both techniques are quite
useful for solving a variety of linear and nonlinear fractional problems, but
ADTM provides an easy and reliable scheme to be implemented on various
problems. The comparison has also been done which is almost approximate
to the exact solution. Numerical examples show that the suggested scheme
is clearly quite efficient and potent technique in finding the solutions of the
proposed equations (see table 1-3).

References

[1] E. Fermi, J. Pasta, S. Ulam, Collected Papers of Enrico Fermi, Chicago
Press, volume 2, page 978, Chicago Press, 1965.
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