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Abstract. In this paper, we have obtained upper bound on third Hankel
determinant for the functions belonging to the class of close-to-convex
functions.

1 Introduction

Let H(U) denote the class of functions which are analytic in the open unit disk
U = {z : |z| < 1}. Let A be the class of all functions f ∈ H(U) which are
normalized by f(0) = 0, f ′(0) = 1 and have the following form:

f(z) = z+ a2 z
2 + a3 z

3 + . . . , z ∈ U. (1)
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We denote by S the subclass of A consisting of all functions in A which are
also univalent in U. Let P be the class of all functions p ∈ H(U) satisfying
p(0) = 1 and <(p(z)) > 0. The function p ∈ P have the following form:

p(z) = 1+ c1z+ c2z
2 + . . . , z ∈ U. (2)

Further, a function f ∈ A is said to belong to the class S∗ of starlike functions
in U, if it satisfies the following inequality:

<

(
zf ′(z)

f(z)

)
> 0, z ∈ U. (3)

Moreover, a function f ∈ A is said to belong to the class C of close-to-convex
functions in U, if there exist a function g ∈ S∗, such that the following in-
equality holds:

<

(
zf ′(z)

g(z)

)
> 0, z ∈ U. (4)

The class of close-to-convex functions was introduced by Kaplan [9]. In [16],
Noonan and Thomas studied the qth Hankel determinants Hq(n) of functions
f ∈ A of the form (1) for q ≥ 1, which is defined by

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 . . . . . .
...

...
...

...
...

an+q−1 . . . . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣
(a1 = 1). (5)

The Hankel determinants Hq(n) have been investigated by several authors to
study its rate of growth as n → ∞ and to determine bounds on it for spe-
cific values of q and n. For example, Pommerenke [22] proved that the Han-

kel determinants of univalent functions satisfy |Hq(n)| < Kn−( 1
2
+β)q+ 3

2 (n =
1, 2, . . . , q = 2, 3, . . . ), where β > 1/4000 and K depends only on q. Later, Hay-
man [8] proved that |H2(n)| < An

1/2 (n = 1, 2, . . . ; A is an absolute constant)
for areally mean univalent functions. Pommerenke [21] investigated the Hankel
determinant of areally mean p-valent functions, univalent functions as well as
of starlike functions. Ehrenborg studied Hankel determinant of the exponential
polynomials [6] and Noor studied Hankel determinant for Bazilevic functions
in [18] and for functions with bounded boundary rotations in [17, 19] also for
close-to-convex functions in [20].

A classical theorem of Fekete and Szegö [7] considered the second Hankel
determinant H2(1) = a3 − a

2
2 for univalent functions. They made an early
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study for the estimate of well known Fekete-Szegö functional
∣∣a3 − µa22∣∣ when

µ is real. Jenteng [12] investigated the sharp upper bound for second Hankel
determinant |H2(2)| = |a2a4−a

2
3| for univalent functions whose derivative has

positive real part. Recently, Lee et al. [13] have obtained bounds on |H2(2)|
for functions belonging to the subclasses of Ma-Minda starlike and convex
functions. Further Bansal [2] have obtained bounds on |H2(2)| for some new
class of analytic functions. Recently, Babalola [1], Raza and Malik [24] and
Bansal et al. [3] have studied third Hankel determinant H3(1), for various
classes of analytic and univalent functions. In the present paper we investigate
the upper bound on |H3(1)| for the functions belonging to the class of close-
to-convex functions K defined by (4). To derive our results, we shall need the
following Lemmas:

Lemma 1 (Carathéodory’s Lemma [4], see also [5, p. 41]). Let the function
p ∈ P be given by the series then the sharp estimate |cn| ≤ 2, n = 1, 2, · · ·
holds. The inequality is sharp for each n.

Lemma 2 (cf. [14, p. 254], see also [15]). Let the function p ∈ P be given by
(2), then

2c2 = c
2
1 + x(4− c

2
1)

for some x, |x| ≤ 1, and

4c3 = c
3
1 + 2c1(4− c

2
1)x− c1(4− c

2
1)x

2 + 2(4− c21)(1− |x|2)z

for some z, |z| ≤ 1.

Lemma 3 ([5, p. 44]). If f ∈ S∗ be given by (1), then |an| ≤ n (n =
2, 3, . . . ). Strict inequality holds for all n unless f is rotation of the Koebe
function k(z) = z/(1− z)2.

Lemma 4 ([23]). If f ∈ C be given by (1), then |an| ≤ n (n = 2, 3, . . . ).
Equality holds for all n when f is rotation of the Koebe function.

Lemma 5 ([10]). If f ∈ S∗ be given by (1), then for any real number µ, we
have

|a3 − µa
2
2| ≤


3− 4µ, if µ ≤ 1

2

1, if 1
2 ≤ µ ≤ 1

4µ− 3, if µ ≥ 1.

Lemma 6 ([11]). If f ∈ C be given by (1), then |a3 − a
2
2| ≤ 1. There is a

function in C such that equality holds.
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Lemma 7 ([12]). If f ∈ S∗ be given by (1), then |a2a4 − a
2
3| ≤ 1. Equality is

attended for the the Koebe function.

Lemma 8 ([1]). If f ∈ S∗ be given by (1), then |a2a3 − a4| ≤ 2. Equality is
attained by Koebe function.

2 Main results

Our first main result is contained in the following theorem:

Theorem 1 Let the function f ∈ C be given by (1), then

|a2a3 − a4| ≤ 3. (6)

Proof. Let the function f ∈ C be given by (6), then from the definition, we
have

zf ′(z) = g(z)p(z), z ∈ U, (7)

for p(z) ∈ P. The function g(z) in (7) is a starlike function and let it have
the form g(z) = z+b2z

2+b3z
3+ . . . . Substituting the valves of f(z), g(z) and

p(z) and equating the coefficients, we get

2a2 = b2 + c1 (8)

3a3 = b3 + b2c1 + c2 (9)

4a4 = b4 + b3c1 + b2c2 + c3. (10)

Now

|a2a3 − a4| =

∣∣∣∣b2 + c12

b3 + b2c1 + c2
3

−
b4 + b3c1 + b2c2 + c3

4

∣∣∣∣
=

∣∣∣∣14(b2b3 − b4) − c1
12

(b3 − 2b
2
2) −

1

12
b2b3 +

1

6
b2c

2
1

+

(
c1
6

−
b2
12

)
c2 −

c3
4

∣∣∣∣
(11)

Substituting values of c2 and c3 by Lemma 2 in (11), we get

|a2a3 − a4| =

∣∣∣∣14(b2b3 − b4) − c1
12

(b3 − 2b
2
2) −

1

12
b2b3

+
1

6
b2c

2
1 +

(
c1
6

−
b2
12

)
c21 + (4− c21)x

2

−
c31 + 2c1(4− c

2
1)x− c1(4− c

2
1)x

2 + 2(4− c21)(1− |x|2)z

16

∣∣∣∣
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=

∣∣∣∣14(b2b3 − b4) − c1
12

(b3 − 2b
2
2) −

1

12
b2b3 +

1

48
c31 −

1

24
c1(4− c

2
1)x+

1

8
b2c

2
1

−
1

24
b2(4− c

2
1)x+

1

16
c1(4− c

2
1)x

2 −
1

8
(4− c21)(1− |x|2)z

∣∣∣∣
By Lemma 1, we have |c1| ≤ 2. For convenience of notation, we take c1 = c

and we may assume without loss of generality that c ∈ [0, 2]. Applying the
triangle inequality with µ = |x| and using Lemma 3, Lemma 5 and Lemma 8,
we obtain

|a2a3 − a4| ≤
1

4
|b2b3 − b4|+

1

12
c|b3 − 2b

2
2|+

1

12
|b2||b3|+

1

48
c3 +

1

8
|b2|c

2

+
1

24
(4− c2)(c+ |b2|)µ+

c

16
(4− c2)µ2 +

1

8
(4− c2)(1− µ2)

≤ 3
2
+
5

12
c+

1

8
c2 +

1

48
c3 +

1

24
(4− c2)(c+ 2)µ

+
1

16
(4− c2)(c− 2)µ2 = F1(c, µ).

(12)

Differentiating F1(c, µ) partially with respect to c, we have

∂F1
∂c

=
5

12
+
c

4
+
c2

16
+
µ

24
(4− 3c2 − 4c) +

µ2

16
(4− 3c2 + 4c)

=
1

12
(5− µc2) +

c

12
(3− 2µ) +

c2

16
+
µ

24
(4− c2) +

µ2

16
(2− c)(3c+ 2) > 0,

for c ∈ [0, 2] and for any fixed µ with µ ∈ [0, 1]. Therefore F1(c, µ) is an in-
creasing function of c on the closed interval [0, 2], and hence F1(c, µ) attained
its maximum value at c = 2. Thus

max
0≤ c≤ 2

F1(c, µ) = F1(2, µ) = G1(µ) (say). (13)

From (12) and (13), we get G1(µ) = 3, which is independent of µ. Hence, the
sharp upper bound of the functional |a2a3 − a4| can be obtained by setting
c = 2 in (12), therefore

|a2a3 − a4| ≤ 3.

This completes the proof of Theorem 1. �

Theorem 2 Let the function f ∈ C be given by (1), then

H2(2) = |a2a4 − a
2
3| ≤

85

36
. (14)
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Proof. Let f ∈ C of the form (1), then following the proof of Theorem 1, we
get values of a2, a3 and a4 given in (8)-(10). Using these values, we have

|a2a4 − a
2
3| =

∣∣∣∣∣b2 + c12
.
b4 + b3c1 + b2c2 + c3

4
−

(
b3 + b2c1 + c2

3

)2∣∣∣∣∣
=

∣∣∣∣18b2b4 − 7

72
b2b3c1 +

1

8
b22c2 +

1

8
b2c3 +

1

8
b3c

2
1 −

7

72
b2c1c2

+
1

8
b4c1 +

1

8
c1c3 −

1

9
b23 −

1

9
b22c

2
1 −

1

9
c22 −

2

9
b3c2

∣∣∣∣
=

∣∣∣∣18(b4 − b2b3)c1 + 1

8

(
b3 −

8

9
b22

)
c21 +

1

8
(b2b4 − b

2
3)

−
2

9

(
b3 −

9

16
b22

)
c2 +

1

36
b2b3c1

+
1

8
b2c3 −

7

72
b2c1c2 +

1

8
c1c3 +

1

72
b23 −

1

9
c22

∣∣∣∣
Substituting the values of c2 and c3 from Lemma 2 in above equation, we have

|a2a4 − a
2
3| =

∣∣∣∣18(b4 − b2b3)c1 + 1

8
(b3 −

8

9
b22)c

2
1 +

1

8
(b2b4 − b

2
3)

−
1

9
(b3 −

9

16
b22)(c

2
1 + x(4− c

2
1)) +

1

36
b2b3c1 +

1

72
b23

−
7

144
b2c1(c

2
1 + x(4− c

2
1)) −

1

36
(c21 + x(4− c

2
1))

2

+
1

32
(b2 + c1)[c

3
1 + 2c1(4− c

2
1)x− c1(4− c

2
1)x

2

+2(1− |x|2)(4− c21)z]
∣∣∣

=

∣∣∣∣18(b4 − b2b3)c1 + 1

8
(b3 −

8

9
b22)c

2
1 +

1

8
(b2b4 − b

2
3)

−
1

9
(b3 −

9

16
b22)c

2
1 −

1

9
(b3 −

9

16
b22)(4− c

2
1)x+

1

36
b2b3c1

+
1

72
b23 −

5

288
b2c

3
1 +

1

288
c1
4 +

1

72
b2c1(4− c

2
1)x+

1

144
c21x(4− c

2
1)

−
1

36
x2(4− c21)

2 −
1

32
c1b2x

2(4− c21) −
1

32
c21(4− c

2
1)x

2

+
1

16
(b2 + c1)(4− c

2
1)(1− |x|2)z

∣∣∣∣
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By Lemma 1, we have |c1| ≤ 2. For convenience of notation, we take c1 = c

and we may assume without loss of generality that c ∈ [0, 2]. Applying the
triangle inequality in above equation with µ = |x| and using Lemma 3, Lemma
5, Lemma 7 and Lemma 8, we obtain

|a2a4 − a
2
3| ≤

1

8
|b4 − b2b3|c+

1

8
|b3 −

8

9
b22|c

2 +
1

8
|b2b4 − b

2
3|+

1

9
|b3

−
9

16
b22|c

2 +
1

9
|b3 −

9

16
b22|(4− c

2)µ+
1

36
|b2||b3|c+

1

72
|b3|

2

+
5

288
|b2|c

3 +
1

288
c4 +

1

72
|b2|c(4− c

2)µ+
1

144
c2(4− c2)µ

+
1

36
(4− c2)2µ2 +

1

32
|b2|c(4− c

2)µ2 +
1

32
c2µ2(4− c2)

+
1

16
(|b2|+ c)(4− c

2)(1− µ2)

≤ 1
4
c+

1

8
c2 +

1

8
+
1

9
c2 +

1

9
(4− c2)µ+

1

6
c+

1

8
+

5

144
c3

+
1

288
c4 +

1

36
c(4− c2)µ+

1

144
c2(4− c2)µ+

1

36
(4− c2)2µ2

+
1

16
c(4− c2)µ2+

1

32
c2µ2(4− c2)+

1

16
(2+ c)(4− c2)(1− µ2)

=
3

4
+
2

3
c+
1

9
c2−

1

36
c3+

1

288
c4 + µ(4− c2)

(
1

9
+
1

36
c+

1

144
c2
)

+
1

288
(c2 − 4)(4− c2)µ2 = F2(c, µ)

(15)

Differentiating F2(c, µ) in above equation with respect to µ, we get

∂F2
∂µ

=

(
1

9
+
1

36
c+

1

144
c2
)
(4− c2) +

1

144
(c2 − 4)(4− c2)µ

=

(
1

36
(4− µ) +

1

36
c+

1

144
c2 +

1

144
µc2

)
(4− c2) > 0 for 0 ≤ µ ≤ 1.

Therefore F2(c, µ) is an increasing function of µ for 0 ≤ µ ≤ 1 and for any
fixed c with c ∈ [0, 2]. Hence it attains maximum value at µ = 1. Thus

max
0≤µ≤1

F2(c, µ) = F2(c, 1) = G2(c) (say). (16)

Therefore from (15) and (16), we have

G2(c) =
1

144
(164+ 112c+ 8c2 − 8c3 − c4). (17)
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Now

G ′2(c) =
1

36
[28+ 4c− 6c2 − c3]

=
1

36
[4+ (6+ c)(4− c2)] > 0 for c ∈ [0, 2].

This shows that G2(c) is an increasing function of c, hence it will attains
maximum value at c = 2. Therefore

max
0≤c≤2

G2(c) = G2(2) =
85

36
.

Hence the upper bound on |a2a4 − a
2
3| can bee obtained by setting µ = 1 and

c = 2 in (15) or c = 2 in (17), therefore

|a2a4 − a
2
3| ≤

85

36
.

�

Theorem 3 Let the function f ∈ C be given by (1), then

|H3(1)| ≤
289

12
. (18)

Proof. Let f ∈ C of the form (1), then by definition H3(1) is given by

H3(1) =
a1 a2 a3
a2 a3 a4
a3 a4 a5

(19)

= a3(a2a4 − a
2
3) − a4(a4 − a2a3) + a5(a3 − a

2
2).

Using the triangle inequality in (19), we have

|H3(1)| = |a3||a2a4 − a
2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a

2
2|. (20)

Now applying Lemma 4, Lemma 6, Theorem 1 and Theorem 2 in (20), we
finally have the bound on H3(1) as desired. �
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