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Abstract. We study submanifolds of a quaternionic projective space, it
is of great interest how to pull down some formulae deduced for subman-
ifolds of a sphere to those for submanifolds of a quaternionic projective
space.

1 Introduction

It is well known that an odd-dimensional sphere is a circle bundle over the
quaternionic projective space. Consequently, many geometric properties of the
quaternionic projective space are inherited from those of the sphere.

Let M be a connected real n-dimensional submanifold of real codimension
p of a quaternionic Kähler manifold M

n+p
with quaternionic Kähler structure

{F,G,H}. If there exists an r-dimensional normal distribution ν of the normal
bundle TM⊥ such that

Fνx ⊂ νx, Gνx ⊂ νx, Hνx ⊂ νx,
Fν⊥x ⊂ TxM, Gν⊥x ⊂ TxM, Hν⊥x ⊂ TxM,
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at each point x in M, then M is called a QR-submanifold of r QR-dimension,
where ν⊥ denotes the complementary orthogonal distribution to ν in TM

[2, 14, 16].
Equivalently, there exists distributions (Dx, D

⊥
x ) of the tangent bundle TM,

such that

FDx ⊂ Dx, GDx ⊂ Dx, HDx ⊂ Dx,
FD⊥x ⊂ TxM⊥, GD⊥x ⊂ TxM⊥, HD⊥x ⊂ TxM⊥,

where D⊥x denotes the complementary orthogonal distribution to Dx in TM.
Real hypersurfaces, which are typical examples of QR-submanifold with r = 0,
have been investigated by many authors [3, 9, 14, 16, 18, 20] in connection
with the shape operator and the induced almost contact 3-structure. Recently,
Kwon and Pak have studied QR-submanifolds of (p − 1) QR-dimension iso-

metrically immersed in a quaternionic projective space QP
n+p
4 [14, 16].

Pak and Sohn studied n-dimensional QR-submanifold of (p−1) QR-dimension

in a quaternionic projective space QP
(n+p)
4 [19].

Kim and Pak studied n-dimensionalQR-submanifold of maximalQR-dimension
isometrically immersed in a quaternionic projective space [13].

2 Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kähler manifold. Then,
by definition, there is a 3-dimensional vector bundle V consisting with tensor
fields of type (1, 1) over M satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood U , there is a local basis {F,G,H} of V such
that

F2 = −I, G2 = −I, H2 = −I, (1)

FG = −GF = H, GH = −HG = F, HF = −FH = G.

(b) There is a Riemannian metric g which is hermite with respect to all of F,G
and H.
(c) For the Riemannian connection ∇ with respect to g ∇F∇G

∇H

 =

 0 r −q
−r 0 p

q −p 0

 F

G

H

 (2)

where p, q and r are local 1-forms defined in U . Such a local basis {F,G,H} is
called a canonical local basis of the bundle V in U (cf. [11, 12]).
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For canonical local basis {F,G,H} and {F ′, G ′, H ′} of V in coordinate neighbor-

hoods of U and U ′, it follows that in U ∩ U ′ F ′

G ′

H ′

 =
(
sxy

) F

G

H

 (x, y = 1, 2, 3)

where sxy are local differentiable functions with (sxy) ∈ SO(3) as a conse-
quence of (1). As is well known [11, 12], every quaternionic Kähler manifold
is orientable.
Now let M be an n-dimensional QR-submanifold of maximal QR-dimension,
that is, of (p − 1) QR-dimension isometrically immersed in M. Then by def-
inition there is a unit normal vector field ξ such that ν⊥x = span{ξ} at each
point x in M. We set

Fξ = −U, Gξ = −V, Hξ = −W. (3)

Denoting by Dx the maximal quaternionic invariant subspace

TxM ∩ FTxM ∩GTxM ∩HTxM,

of TxM, we have D⊥x ⊃ Span{U,V,W}, where D⊥x means the complementary
orthogonal subspace to Dx in TxM. But, using (1), we can prove that D⊥x =
Span{U,V,W} [2, 16]. Thus we have

TxM = Dx ⊕ Span{U,V,W}, ∀x ∈M,

which together with (1) and (3) imply

FTxM,GTxM,HTxM ⊂ TxM⊕ Span{ξ}.

Therefore, for any tangent vector field X and for a local orthonormal basis
{ξα}α=1,...,p (ξ1 := ξ) of normal vectors to M, we have

FX = ϕX+ u(X)ξ, GX = ψX+ v(X)ξ, HX = θX+ω(X)ξ, (4)

Fξα = −Uα + P1ξα, Gξα = −Vα + P2ξα,

Hξα = −Wα + P3ξα, (α = 1, . . . , p). (5)

Then it is easily seen that {ϕ,ψ, θ} and {P1, P2, P3} are skew-symmetric endo-
morphisms acting on TxM and TxM

⊥, respectively.
Also, from the hermitian properties

g(FX, ξα) = −g(X, Fξα), g(GX, ξα) = −g(X,Gξα),

g(HX, ξα) = −g(X,Hξα), (α = 1, . . . , p).
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It follows that

g(X,Uα) = u(X)δ1α, g(X,Vα) = v(X)δ1α, g(X,Wα) = w(X)δ1α,

and hence

g(X,U1) = u(X), g(X,V1) = v(X), g(X,W1) = w(X),

Uα = 0, Vα = 0, Wα = 0, (α = 2, . . . p). (6)

On the other hand, comparing (3) and (5) with α = 1, we have U1 = U,V1 =
V,W1 =W, which together with (3) and (6) imply

g(X,U) = u(X), g(X,V) = v(X), g(X,W) = w(X),
u(U) = 1, v(V) = 1, w(W) = 1,
Fξ = −U, Gξ = −V, Hξ = −W
Fξα=P1ξα , Gξα=P2ξα Hξα=P3ξα , (α = 2, . . . , p).

Now, let ∇ be the Levi-Civita connection onM and ∇⊥ the normal connection
induced from ∇ in the normal bundle TM⊥ of M. The Gauss and Weingarten
formula are given by

∇XY = ∇XY + h(X, Y), ∇Xξα = −AαX+∇⊥Xξα, (α = 1, . . . , p), (7)

for any X, Y ∈ χ(M) and ξα ∈ Γ∞(T(M)⊥), (α = 1, . . . , p). h is the second
fundamental form and Aα are shape operator corresponding to ξα.
We have the following Gauss equation

g(R(X, Y)Z,W) = g(R(X, Y)Z,W)

−

p∑
i=1

{g(AaY, Z)g(AaX,W) − g(AaX,Z)g(AaY,W)},
(8)

and Codazzi and Ricci equations

g(R(X, Y)Z, ξa) = (∇XAa)Y − (∇YAa)X

−

p∑
b=1

{sba(X)g(AaY, Z) − sba(Y)g(AaX,Z)},

g(R(X, Y)ξa, ξb) = g([Ab, Aa]X, Y) + g(R
⊥(X, Y)ξa, ξb), (9)

where R and R are the curvature tensors of M and M, respectively. sab are
called the coefficients of the third fundamental form of M in M, such that
satisfy

sab = −sba.
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3 The principal circle bundle S4n+3(QPn, S3)

Let Qn+1 be the (n+ 1)-dimensional quaternionic space with natural quater-
nionic Kähler structure ({F ′, G ′, H ′}, 〈, 〉) and let S4n+3 be the unit sphere de-
fined by

S4n+3 = {(w1, . . . , wn+1) ∈ Qn+1|
n+1∑
i=1

wi(wi)∗ = 1}

= {(x11, x
1
2, x

1
3, x

1
4, . . . , x

n+1
1 , xn+12 , xn+13 , xn+14 ) ∈ R4n+4|

n+1∑
i=1

(xi1)
2 + (xi2)

2 + (xi3)
2 + (xi4)

2 = 1}.

such that w∗ = (x1,−x2,−x3,−x4).
The unit normal vector field ξ to S4n+3 is given by

ξ = −

n+1∑
i=1

(xi1
∂

∂xi1
+ xi2

∂

∂xi2
+ xi3

∂

∂xi3
+ xi4

∂

∂xi4
).

From

〈F ′ξ, ξ〉 = 〈F ′2ξ, F ′ξ〉 = −〈ξ, F ′ξ〉,
〈G ′ξ, ξ〉 = 〈G ′2ξ,G ′ξ〉 = −〈ξ,G ′ξ〉,
〈H ′ξ, ξ〉 = 〈H ′2ξ,H ′ξ〉 = −〈ξ,H ′ξ〉,

it follows 〈F ′ξ, ξ〉 = 0, 〈G ′ξ, ξ〉 = 0, 〈H ′ξ, ξ〉 = 0, that is, F ′ξ,G ′ξ,H ′ξ ∈
T(S4n+3). We put

F ′ξ = −ιU ′, G ′ξ = −ιV ′, H ′ξ = −ιW ′, (10)

where ι denotes the immersion of S4n+3 into Qn+1. From the Hermitian prop-
erty of 〈, 〉, it is easily seen that U ′, V ′,W ′ are unit tangent vector field of
S4n+3.

We put

Hp(S
4n+3) = {X ′ ∈ Tp(S4n+3)|u ′(X ′) = 0, v ′(X ′) = 0,w ′(X ′) = 0}.

Then u ′, v ′, w ′ define a connection form of the principal bundle S4n+3(QPn, S3)
and we have

Tp(S
4n+3) = Hp(S

4n+3)⊕ span{U ′p, V ′p,W ′p}.
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We call Hp(S
4n+3) and span{U ′p, V

′
p,W

′
p} the horizontal subspace and verti-

cal subspace of Tp(S
4n+3), respectively. By definition, the horizontal subspace

Hp(S
4n+3) is isomorphic to Tπ(p)(QP

n), where π is the natural projection from

S4n+3 onto QPn. Therefore, for a vector field X on QPn, there exists unique
horizontal vector field X ′ of S4n+3 such that π(X ′) = X. The vector field X ′ is
called the horizontal lift of X and we denote it by X∗.

Proposition 1 As a subspace of Tp(Q
n+1), Hp(S

4n+3) is {F ′, G ′, H ′}-invariant
subspace.

Proof. By definition (10) of the vertical vector field {U ′, V ′,W ′}, for X ′ ∈
Hp(S

4n+3), it follows

〈F ′ιX ′, ξ〉 = −〈ιX ′, F ′ξ〉 = 〈ιX ′, ιU ′〉 = 0,
〈G ′ιX ′, ξ〉 = −〈ιX ′, G ′ξ〉 = 〈ιX ′, ιV ′〉 = 0,
〈H ′ιX ′, ξ〉 = −〈ιX ′, H ′ξ〉 = 〈ιX ′, ιW ′〉 = 0.

This shows that F ′ιX ′, G ′ιX ′, H ′ιX ′ ∈ Tp(S4n+3). In entirely the same way we
compute

〈F ′ιX ′, ιU ′〉 = −〈ιX ′, F ′ιU ′〉 = 〈ιX ′,−ξ〉 = 0,
〈G ′ιX ′, ιV ′〉 = −〈ιX ′, G ′ιV ′〉 = 〈ιX ′,−ξ〉 = 0,
〈H ′ιX ′, ιW ′〉 = −〈ιX ′, H ′ιW ′〉 = 〈ιX ′,−ξ〉 = 0.

By use from relations

F ′V ′ = −H ′ξ, F ′W ′ = G ′ξ, G ′U ′ = H ′ξ,

G ′W ′ = F ′ξ, H ′U ′ = −G ′ξ, H ′V ′ = F ′ξ,

we have

〈F ′ιX ′, ιV ′〉 = −〈ιX ′, F ′ιV ′〉 = 〈ιX ′, H ′ξ〉 = −〈ιX ′, ιW ′〉 = 0,
〈F ′ιX ′, ιW ′〉 = −〈ιX ′, F ′ιW ′〉 = 〈ιX ′, G ′ξ〉 = −〈ιX ′, ιV ′〉 = 0,
〈G ′ιX ′, ιU ′〉 = −〈ιX ′, G ′ιU ′〉 = 〈ιX ′, H ′ξ〉 = −〈ιX ′, ιW ′〉 = 0,
〈G ′ιX ′, ιW ′〉 = −〈ιX ′, G ′ιW ′〉 = 〈ιX ′, F ′ξ〉 = −〈ιX ′, ιU ′〉 = 0,
〈H ′ιX ′, ιV ′〉 = −〈ιX ′, H ′ιV ′〉 = 〈ιX ′, F ′ξ〉 = −〈ιX ′, ιU ′〉 = 0,
〈H ′ιX ′, ιU ′〉 = −〈ιX ′, H ′ιU ′〉 = 〈ιX ′, G ′ξ〉 = −〈ιX ′, ιV ′〉 = 0.

and hence F ′ιX ′, G ′ιX ′, H ′ιX ′ ∈ Hp(S4n+3), which completes the proof. �
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Therefore, the almost quaternionic structure {F,G,H} can be induced on Tπ(p)
(QPn) and we set

(FX)∗ = F ′ιX∗, (GX)∗ = G ′ιX∗, (HX)∗ = H ′ιX∗. (11)

Next, using the Gauss formula (7) for the vertical vector field {U ′, V ′,W ′} and
a horizontal vector fields X ′ of Tp(S

4n+3), we compute

∇EX ′U ′ = ∇ ′X ′U ′ + g ′(A ′X ′, U ′)ξ = ∇ ′X ′U ′ + 〈X ′, U ′〉ξ = ∇ ′X ′U ′, (12)

by similar computation for vector fields {V ′,W ′} we have

∇EX ′V ′ = ∇ ′X ′V ′,
∇EX ′W ′ = ∇ ′X ′W ′,

(13)

where ∇E denotes the Euclidean connection of E4n+4, ∇ ′ denotes the connec-
tion of S4n+3 and A ′ denotes the shape operator with respect to ξ. Now, using
relations (10), (12) and (13) and the Weingarten formula (7), we conclude

∇ ′X ′U ′ = −∇EX ′F ′ξ ′ = −(∇EX ′F ′)ξ− F ′∇EX ′ξ
= −(r(X ′)G ′ξ− q(X ′)H ′ξ) − F ′∇EX ′ξ
= r(X ′)V ′ − q(X ′)W ′ + F ′(ιA ′X ′)

= r(X ′)V ′ − q(X ′)W ′ + F ′ιX ′

(14)

by similar computation for vector fields {V ′,W ′} we have

∇ ′X ′V ′ = −∇EX ′G ′ξ ′ = −r(X ′)U ′ + p(X ′)W ′ +G ′ιX ′,

∇ ′X ′W ′ = −∇EX ′H ′ξ ′ = q(X ′)U ′ − p(X ′)V ′ +H ′ιX ′.
(15)

Consequently, according to notation (11), relations (14) and (15) can be writ-
ten as

∇ ′X∗U ′ = r(X∗)V ′ − q(X∗)W ′ + (FX)∗,

∇ ′X∗V ′ = −r(X∗)U ′ + p(X∗)W ′ + (GX)∗,

∇ ′X∗W ′ = q(X∗)U ′ − p(X∗)V ′ + (HX)∗.

(16)

We note that, since by definition, the Lie derivative of a horizontal lift of a
vector field with respect to a vertical vector field is zero, it follows

0 = LU ′X
∗ = [U ′, X∗] = ∇ ′U ′X∗ −∇ ′X∗U ′,

0 = LV ′X
∗ = [V ′, X∗] = ∇ ′V ′X∗ −∇ ′X∗V ′

0 = LW ′X
∗ = [W ′, X∗] = ∇ ′W ′X∗ −∇ ′X∗W ′
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and using (16), we conclude

∇ ′U ′X∗ = r(X∗)V ′ − q(X∗)W ′ + (FX)∗,

∇ ′V ′X∗ = −r(X∗)U ′ + p(X∗)W ′ + (GX)∗,

∇ ′W ′X∗ = q(X∗)U ′ − p(X∗)V ′ + (HX)∗.

(17)

We define a Riemannian metric g and a connection ∇ in QPn respectively by

g(X, Y) = g ′(X∗, Y∗), (18)

∇XY = π(∇ ′X∗Y∗). (19)

Then (∇ ′XY)∗ is the horizontal part of ∇ ′X∗Y∗ and therefore

∇ ′X∗Y∗ = (∇ ′XY)∗ + g ′(∇ ′X∗Y∗, U ′)U ′

+ g ′(∇ ′X∗Y∗, V ′)V ′ + g ′(∇ ′X∗Y∗,W ′)W ′.
(20)

Using relations (16) and (18), we compute

g ′(∇ ′X∗Y∗, U ′) = −g ′(Y∗,∇ ′X∗U ′)
= −g ′(Y∗, r(X∗)V ′ − q(X∗)W ′ + (FX)∗) = −g(Y, FX),

g ′(∇ ′X∗Y∗, V ′) = −g(Y,GX),

g ′(∇ ′X∗Y∗, V ′) = −g(Y,HX),

and, using (20), we conclude

∇ ′X∗Y∗ = (∇XY)∗ − g(Y, FX)U ′ − g(Y,GX)V ′ − g(Y,HX)W ′. (21)

Proposition 2 ∇ is the Levi-Civita connection for g.

Proof. Let T be the torsion tensor field of ∇. Then we have

T(X, Y) = ∇XY −∇YX− [X, Y] = π(∇ ′X∗Y∗) − π(∇ ′Y∗X∗) − [πX∗, πY∗]

= π(∇ ′X∗Y∗ −∇ ′Y∗X∗ − [X∗, Y∗]) = π(T ′(X∗, Y∗)) = 0,

hence ∇ is torsion free. We now show that ∇ is a metric connection.

(∇Xg)(Y, Z) = X(g(Y, Z)) − g(∇XY, Z) − g(Y,∇XZ)
= X∗(g ′(Y∗, Z∗)) − g ′((∇XY)∗, Z∗) − g ′(Y∗, (∇XZ)∗).
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Since Z∗ is horizontal vector field, from relation (20), it follows that

g ′((∇XY)∗, Z∗) = g ′(∇ ′X∗Y∗, Z∗) − g ′(∇ ′X∗Y∗, U ′)g ′(U ′, Z∗)
− g ′(∇ ′X∗Y∗, V ′)g ′(V ′, Z∗) − g ′(∇ ′X∗Y∗, U ′)g ′(U ′, Z∗)

= g ′(∇ ′X∗Y∗, Z∗)

and we compute

(∇Xg)(Y, Z) = X∗(g ′(Y∗, Z∗)) − g ′(∇ ′X∗Y∗, Z∗) − g ′(∇ ′X∗Z∗, Y∗)
= (∇ ′X∗g ′)(Y∗, Z∗),

where we have used the fact that ∇ ′ is the Levi-Civita connection for g ′. Thus
∇ is the Levi-Civita connection for g and the proof is complete. �

Now, by (21), it follows

[X∗, Y∗] = [X, Y]∗ + g ′([X∗, Y∗], U ′)U ′

+ g ′([X∗, Y∗], V ′)V ′ + g ′([X∗, Y∗],W ′)W ′

= [X, Y]∗ + g ′(∇ ′X∗Y∗ −∇ ′Y∗X∗, U ′)U ′

+ g ′(∇ ′X∗Y∗ −∇ ′Y∗X∗, V ′)V ′ + g ′(∇ ′X∗Y∗ −∇ ′Y∗X∗,W ′)W ′

= [X, Y]∗ + g ′((∇ ′XY)∗ − g(Y, FX)U ′ − g(Y,GX)V ′

− g(Y,HX)W ′, U ′)U ′ − g ′((∇YX)∗ − g(FY, X)U ′

− g(GY,X)V ′ − g(HY,X)W ′, U ′)U ′ + g ′((∇XY)∗

− g(Y, FX)U ′ − g(Y,GX)V ′ − g(Y,HX)W ′, V ′)V ′

− g ′((∇YX)∗ − g(FY, X)U ′ − g(GY,X)V ′ − g(HY,X)W ′, V ′)V ′

+ g ′((∇XY)∗ − g(Y, FX)U ′ − g(Y,GX)V ′ − g(Y,HX)W ′,W ′)W ′

− g ′((∇YX)∗ − g(FY, X)U ′ − g(GY,X)V ′ − g(HY,X)W ′,W ′)W ′

= [X, Y]∗ − 2g(Y, FX)U ′ − 2g(Y,GX)V ′ − 2g(Y,HX)W ′.

(22)

Consequently, using (16), (17), (21) and (22), the curvature tensor R of QPn

is calculated as follows:

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z

= π{∇ ′X∗(∇YZ)∗) −∇ ′Y∗(∇XZ)∗) −∇ ′[X,Y]∗Z
∗)}

= π{∇ ′X∗(∇ ′Y∗Z∗ + g(Z, FY)U ′ + g(Z,GY)V ′ + g(Z,HY)W ′)
−∇ ′Y∗(∇ ′X∗Z∗ + g(Z, FX)U ′ + g(Z,GX)V ′ + g(Z,HX)W ′)
−∇ ′[X∗,Y∗]+2g(Y,FX)U ′+2g(Y,GX)V ′+2g(Y,HX)W ′Z

∗)}
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= π{∇ ′X∗∇ ′Y∗Z∗ + g(Z, FY)∇ ′X∗U ′ + g(Z,GY)∇ ′X∗V ′

+ g(Z,HY)∇ ′X∗W ′ −∇ ′Y∗∇ ′X∗Z∗ − g(Z, FX)∇ ′Y∗U ′

− g(Z,GX)∇ ′Y∗V ′ − g(Z,HX)∇ ′X∗W ′ −∇ ′[X∗,Y∗]Z
∗

− 2g(Y, FX)∇ ′U ′Z∗ − 2g(Y,GX)∇ ′V ′Z∗ − 2g(Y,HX)∇ ′W ′Z∗}
= π{R ′(X∗, Y∗)Z∗ + g(Z, FY)(r(X∗)V ′ − q(X∗)W ′ + (FX)∗)

+ g(Z,GY)(−r(X∗)U ′ + p(X∗)W ′ + (GX)∗)

+ g(Z,HY)(q(X∗)U ′ − p(X∗)V ′ + (HX)∗)

+ g(Z, FX)(r(Y∗)V ′ − q(Y∗)W ′ + (FY)∗)

+ g(Z,GX)(−r(Y∗)U ′ + p(Y∗)W ′ + (GY)∗)

+ g(Z,HX)(q(Y∗)U ′ − p(Y∗)V ′ + (HY)∗)

+ 2g(Y, FX)(r(Z∗)V ′ − q(Z∗)W ′ + (FZ)∗)

+ 2g(Y,GX)(−r(Z∗)U ′ + p(Z∗)W ′ + (GZ)∗)

+ 2g(Y,HX)q(Z∗)U ′ − p(Z∗)V ′ + (HZ)∗}.

Since the curvature tensor R ′ of S4n+3 satisfies

R ′(X∗, Y∗)Z∗ = g ′(Y∗, Z∗)X∗ − g ′(X∗, Z∗)Y∗ = g(Y, Z)X∗ − g(X,Z)Y∗, (23)

we conclude that the curvature tensor of QPn is given by

R(X, Y)Z = g(Y, Z)X− g(X,Z)Y

+ g(FY, Z)FX− g(FX, Z)FY − 2g(FX, Y)FZ

+ g(GY,Z)GX− g(GX,Z)GY − 2g(GX, Y)GZ

+ g(HY,Z)HX− g(HX,Z)HY − 2g(HX, Y)HZ.

(24)

4 Submanifolds of quaternionic manifolds

Let M be an n-dimensional submanifold of QP
n+p
4 and π−1(M) be the circle

bundle over M which is compatible with the Hopf map

π : Sn+p+3 −→ QP
n+p
4 .

Then π−1(M) is a submanifold of Sn+p+3. The compatibility with the Hopf
map is expressed by πoι ′ = ιoπ where ι ′ and ι are the immersions of M into

QP
n+p
4 and π−1(M) into Sn+p+3, respectively.

Let ξa, a = 1, . . . , p be orthonormal normal local fields to M in QP
n+p
4 and
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ξ∗a be the horizontal lifts of ξa. Then ξ∗a are mutually orthonormal normal
local fields to π−1(M) in Sn+p+3. At each point y ∈ π−1(M) we compute

gS(ι ′X∗, ξ∗a) = g
S((ιX)∗, ξ∗a) = g(ιX, ξa) = 0,

gS(ι ′U, ξ∗a) = g
S(U ′, ξ∗a) = 0,

gS(ι ′V, ξ∗a) = g
S(V ′, ξ∗a) = 0,

gS(ι ′W,ξ∗a) = g
S(W ′, ξ∗a) = 0,

gS(ξ∗aξ
∗
b) = g(ξa, ξb) = δab,

where gS and g denote the Riemannian metric on Sn+p+3 and QP
n+p
4 , respec-

tively. Here U ′ = ι ′U,V ′ = ι ′V,W ′ = ι ′W are unit tangent vector field of
Sn+p+3 defined by relation (10).
Now, let ∇S,∇ ′,∇ and ∇ be the Riemannian connections of Sn+p+3, π−1(M),

QP
n+p
4 and M, respectively. By means of the Gauss formula (7) and relations

(4) and (21), we compute

∇SX∗ι ′Y∗ = ∇SX∗(ιY)∗ = (∇XιY)∗ − g(FιX, ιY)ι ′U
− g(GιX, ιY)ι ′V − g(HιX, ιY)ι ′W

= (ι∇XY + h(X, Y))∗ − g(ιϕX, ιY)U ′

− g(ιψX, ιY)V ′ − g(ιθX, ιY)W ′

= ι ′(∇XY)∗ + (h(X, Y))∗

− g(ϕX, Y)U ′ − g(ψX, Y)V ′ − g(θX, Y)W ′

(25)

where g is the metric on M. On the other hand, we also have

∇SX∗ι ′Y∗ = ι ′∇ ′X∗Y∗ + h ′(X∗, Y∗) = ι ′((∇XY)∗ − g(ϕX, Y)U
− g(ψX, Y)V − g(θX, Y)W) + h ′(X∗, Y∗)

(26)

where h and h ′ denote the second fundamental form of M and π−1(M), re-
spectively. Comparing the vertical part and horizontal part of relations (25)
and (26), we conclude

(h(X, Y))∗ = h ′(X∗, Y∗), (27)

that is,

p∑
a=1

g ′(A ′aX
∗, Y∗)ξ∗a = (

p∑
a=1

g(AaX, Y)ξa)
∗ =

p∑
a=1

g(AaX, Y)ξ
∗
a,
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where Aa and A ′a are the shape operators with respect to normal vector fields
ξa and ξ∗a of M and π−1(M), respectively. Consequently, we have

g ′(A ′aX
∗, Y∗) = g(AaX, Y), (a = 1, ..., p).

Next, using the weingarten formula, we calculate ∇SX∗ξ∗a as follows

∇SX∗ξ∗a = −ι ′A ′aX
∗ +∇ ′⊥X∗ξ∗a = −ι ′A ′aX

∗ +

p∑
b=1

s ′ab(X
∗)ξ∗b. (28)

where ∇ ′⊥ is normal connection π−1(M) in Sn+p+3.
On the other hand, from relation (21), it follows

∇SX∗ξ∗a = (∇Xξa)∗ − g(FιX, ξa)ι ′U− g(GιX, ξa)ι
′V − g(HιX, ξa)ι

′W

= (−ιAaX+∇⊥Xξa)∗ −
p∑
b=1

{ub(X)g(ξa, ξb)U
′

+ vb(X)g(ξa, ξb)V
′ +wb(X)g(ξa, ξb)W

′}

= −ι ′(AaX)
∗ +

p∑
b=1

(sab(X
∗)ξb)

∗ − ua(X)U ′

− va(X)V ′ −wa(X)W ′,

(29)

where ∇⊥ is normal connection M in QP
n+p
4 .

We have put

Fιx = ιϕX+

p∑
a=1

ua(X)ξa,

Gιx = ιψX+

p∑
a=1

va(X)ξa,

Hιx = ιθX+

p∑
a=1

wa(X)ξa. (30)

Comparing relations (28) and (29), we obtain

A ′aX
∗ = (AaX)

∗ + ua(X)U ′ + va(X)V ′ +wa(X)W ′

= (AaX)
∗ + g(Ua, X)U

′ + g(Va, X)V + g(Wa, X)W
′,

∇ ′⊥X∗ξ∗a = (∇⊥Xξa)∗, (31)
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that is, s ′ab(X
∗) = sab(X)

∗, where Ua, Va,Wa are defined by

Fξa = −Ua +

p∑
b=1

P1abξb,

Gξa = −Va +

p∑
b=1

P2abξb,

Hξa = −Wa +

p∑
b=1

P3abξb. (32)

where,
∑p
b=1 Piabξb = Piξa, (i = 1, 2, 3). Now, we consider ∇SUξ∗a and using

relations (17) and (32) imply

∇SUξ∗a = (Fξa)
∗ = −ιUa∗ + P1ξ

∗
a,

∇SVξ∗a = (Gξa)
∗ = −ιVa∗ + P2ξ

∗
a,

∇SWξ∗a = (Hξa)
∗ = −ιWa∗ + P3ξ

∗
a. (33)

On the other hand, from the Weingarten formula, it follows

∇SUξ∗a = −ι ′A ′aU+∇ ′⊥U ξ∗a = −ι ′A ′aU+

p∑
b=1

s ′ab(U)ξ
∗
b,

∇SVξ∗a = −ι ′A ′aV +∇ ′⊥V ξ∗a = −ι ′A ′aV +

p∑
b=1

s ′ab(V)ξ
∗
b,

∇SWξ∗a = −ι ′A ′aW +∇ ′⊥W ξ∗a = −ι ′A ′aW +

p∑
b=1

s ′ab(W)ξ∗b. (34)

Consequently, using (33) and (34), we obtain

A ′aU = U∗a, A
′
aV = V∗a, A

′
aW =W∗a,

s ′ab(U) = P1, s
′
ab(V) = P2, s

′
ab(W) = P3, (35)

∇ ′⊥U ξ∗a = (FX)∗ + ιUa∗ ,

∇ ′⊥V ξ∗a = (GX)∗ + ιVa∗ ,

∇ ′⊥W ξ∗a = (HX)∗ + ιWa∗ . (36)

The first relations of (31) and (35), we get

g ′(A ′aA
′
bX
∗, Y∗) = g(AaAbX, Y) + u

b(X)ua(Y)

+ vb(X)va(Y) +wb(X)wa(Y),
(37)
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and especially,

g ′(A ′2a X
∗, Y∗) = g(A2aX, Y) + u

a(X)ua(Y)

+ va(X)va(Y) +wa(X)wa(Y),
(38)

For x ∈M, let {e1, . . . , en}be an orthonormal basis of TxM and y be a point of
π−1(M) such that π(y) = x. We take an orthonormal basis {e∗1, . . . , e

∗
n, U, V,W}

of Ty(π
−1(M)). Then, using the first relations (35) and (39), we compute

p∑
a=1

traceA ′2a =

p∑
a=1

{ n∑
i=1

g ′(A ′2a e
∗
i , e
∗
i ) + g

′(A ′2a U,U)

+ g ′(A ′2a V,V) + g
′(A ′2aW,W)}

=

p∑
a=1

{ n∑
i=1

g(A ′2a ei, ei) + u
a(ei)u

a(ei)

+ va(ei)v
a(ei) +w

a(ei)w
a(ei)

+ g ′(A ′aU,A
′
aU) + g

′(A ′aV,A
′
aV) + g

′(A ′aW,A
′
aW)}

=

p∑
a=1

{traceA2a + 2g(Ua, Ua) + 2g(Va, Va) + 2g(Wa,Wa)},

(39)

we conclude

Proposition 3 Under the above assumptions, the following inequality

p∑
a=1

traceA ′2a ≥
p∑
a=1

traceA2a

is always valid. The equality holds, if and only if M is a {F,G,H}- invariant
submanifold.

Corollary 1 [8] M is a totally geodesic submanifold if and only if relation
Aξ = 0 holds for any normal vector field ξ of M. Particularly, M is totally
geodesic if and only if A1 = . . . = Ap = 0 for an orthonormal frame field
ξ1, . . . , ξp of T⊥(M)

Proposition 4 Under the condition stated above, if π−1(M) is a totally geodesic
submanifold of Sn+p+3, then M is a totally geodesic {F,G,H}- invariant sub-
manifold.
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Proof. Since π−1(M) is a totally geodesic submanifold of Sn+p+3, using Corol-
lary (26), it follows A ′a = 0. The first Relation (31) then implies Aa = 0 and
Ua = Va =Wa = 0, which, using relation (32), completes the proof. �

Further, for the normal curvature of M in QP
n+p
4 , using relation (24) and the

second relation (9), we obtain

g(R⊥(X, Y)ξa, ξb) = g([Aa, Ab]X, Y) + u
b(X)ua(Y)

− ua(X)ub(Y) + vb(X)va(Y) − va(X)vb(Y)

+wb(X)wa(Y) −wa(X)wb(Y)

− 2g(ϕX, Y)P1 − 2g(ψX, Y)P2 − 2g(θX, Y)P3

(40)

Therefore, if M be a totally geodesic submanifold of {F,G,H}- invariant
submanifold, we conclude

g(R⊥(X, Y)ξa, ξb) = −2g(ϕX, Y)P1 − 2g(ψX, Y)P2 − 2g(θX, Y)P3 (41)

In this case the normal space T⊥x (M) is also {F,G,H}- invariant and P1, P2, P3
never vanish. We have thus proved

Proposition 5 The normal curvature of a totally geodesic submanifold of
{F,G,H}- invariant submanifold of a quaternionic projective space never van-
ishes.

This proposition show that the normal connection of the quaternionic projec-
tive space which is immersed standardly in a higher dimensional quaternionic
projective space not flat.
Finally, we give a relation between the normal curvature R⊥ and R ′⊥ of M

and π−1(M), respectively, where M is a n-dimensional submanifold of QP
n+p
4

and π−1(M) is the circle bundle over M which is compatible with the Hopf
map π. Using relation (37), we obtain

g ′([A ′a, A
′
b]X
∗, Y∗) = g([Aa, Ab]X, Y) + u

b(X)ua(Y) − ua(X)ub(Y)

+ vb(X)va(Y) − va(X)vb(Y) +wb(X)wa(Y) −wa(X)wb(Y),

and therefore, from the second relation (9), it follows

−gS(R ′S(ι ′X∗, ι ′Y∗)ξ∗a, ξ
∗
b) + g

S(R ′⊥(X∗, Y∗)ξ∗a, ξ
∗
b)

= −g(R(ιX, ιY)ξa, ξb) + g(R
⊥(X, Y)ξa, ξb) + u

b(X)ua(Y) − ua(X)ub(Y)

+ vb(X)va(Y) − va(X)vb(Y) +wb(X)wa(Y) −wa(X)wb(Y).
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Using the expression (23) and (24) , for curvature of Sn+p+3 and QP
n+p
4 (C),

respectively and relations (30) and (32) imply

gS(R⊥(X∗, Y∗)ξ∗a, ξ
∗
b) = g(R

⊥(X, Y)ξa, ξb) + 2g(ϕX, Y)P1

+ 2g(ψX, Y)P2 + 2g(θX, Y)P3
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