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Abstract. We study submanifolds of a quaternionic projective space, it
is of great interest how to pull down some formulae deduced for subman-
ifolds of a sphere to those for submanifolds of a quaternionic projective
space.

1 Introduction

It is well known that an odd-dimensional sphere is a circle bundle over the
quaternionic projective space. Consequently, many geometric properties of the
quaternionic projective space are inherited from those of the sphere.

Let M be a connected real n-dimensional submanifold of real codimension
p of a quaternionic Kahler manifold M with quaternionic Kéhler structure
{F, G, H}. If there exists an r-dimensional normal distribution v of the normal
bundle TM* such that

Fvy C vy, Gvy C Vy, Hvy C vy,
Fv% C TkM, Gv,% C TuM, Hv% C TkM,
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at each point x in M, then M is called a QR-submanifold of r QR-dimension,
where v denotes the complementary orthogonal distribution to v in TM
[2, 14, 16].

Equivalently, there exists distributions (Dy, D) of the tangent bundle TM,
such that

FDy C Dy, GDy C Dy, HDy C Dy,
FD{y € M+, GD{ € MY, HDf c M,

where Dy denotes the complementary orthogonal distribution to Dy in TM.
Real hypersurfaces, which are typical examples of QR-submanifold with r =0,
have been investigated by many authors [3, 9, 14, 16, 18, 20] in connection
with the shape operator and the induced almost contact 3-structure. Recently,
Kwon and Pak have studied QR~submanifolds of (p — 1) QR-dimension iso-
metrically immersed in a quaternionic projective space QPnT+p [14, 16].

Pak and Sohn studied n-dimensional QR-submanifold of (p—1) QR-dimension

(n+p)
in a quaternionic projective space QP i [19].

Kim and Pak studied n-dimensional QR-submanifold of maximal QR-dimension
isometrically immersed in a quaternionic projective space [13].

2 Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kihler manifold. Then,
by definition, there is a 3-dimensional vector bundle V consisting with tensor
fields of type (1,1) over M satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood U, there is a local basis {F, G, H} of V such
that

F=-1, G'=-I H'=-], (1)
FG=—-GF=H, GH=-HG=F HF=-FH=G.
(b) There is a Riemannian metric g which is hermite with respect to all of F, G

and H.
(c) For the Riemannian connection V with respect to g

VF 0 r —q F
VG |=[-r 0 p G (2)
VH q —-p O H

where p, q and 1 are local 1-forms defined in U. Such a local basis {F, G, H} is
called a canonical local basis of the bundle V in U (cf. [11, 12]).
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For canonical local basis {F, G, H} and {F/, G’, H'} of V in coordinate neighbor-
hoods of U and 27/, it follows that in U NU

P F
G'|=(sxw)| G (xy=1,2,3)
H’ H

where sy are local differentiable functions with (sxy) € SO(3) as a conse-
quence of (1). As is well known [11, 12], every quaternionic Ké&hler manifold
is orientable.

Now let M be an n-dimensional QR-submanifold of maximal QR-dimension,
that is, of (p —1) QR-dimension isometrically immersed in M. Then by def-
inition there is a unit normal vector field & such that v = span{&} at each
point x in M. We set

FE=—-U, G&E=-V, HE=-W. (3)
Denoting by Dy the maximal quaternionic invariant subspace
TTMNFTLM N GTM NHT M,

of TM, we have D O Span{U,V, W}, where D} means the complementary
orthogonal subspace to Dy in TyM. But, using (1), we can prove that D% =
Span{U, V, W} [2, 16]. Thus we have

TuxM = Dy @ Span{U, V, W}, Vx e M,
which together with (1) and (3) imply
FIM, GTAM, HTuM € TiM & Span{é&}.

Therefore, for any tangent vector field X and for a local orthonormal basis
{Eata=1,...p (&1 = &) of normal vectors to M, we have

FX = X+ u(X)E, GX=yPX+v(X)§ HX=060X+ w(X)E, (4)

F‘ioc = —Uy + Pq ‘(-»oca G‘ioc = _vcx + PZ&O()
Héy = —Wy + P3éy, (x=1,...,p). (5)
Then it is easily seen that {¢,V,0} and {P;, P, P3} are skew-symmetric endo-
morphisms acting on Ty;M and T,M*, respectively.
Also, from the hermitian properties
Q(FX» E.(x) = *9(X> F‘t-v(x)) Q(GX, E.(x) = *Q(X, GEvO())
g(HX)‘Z—vtx):_g(X>H£(X)a (“:1>---)P)-
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It follows that
Q(X» ucx) = u(X)élou Q(X» vot) = V(X)61LX) g(X) W(x) = W(X)éhxy
and hence

g(X,Lh)ZLL(X), g(X)V1):V(X)) g(wal):W(X))
Uy =0, Va=0, Woe=0, (x=2,...p). (6)

On the other hand, comparing (3) and (5) with « =1, we have U; = U, V; =
V,W; = W, which together with (3) and (6) imply

LL(U) :1) V(V):]a W(W):1)
FE = U, GE =V, HE = —W
F‘EO(ZP] Exd G‘i(x:Pz&a HEVO(:P3E,(X) ((X = 2) oo )P)

Now, let V be the Levi-Civita connection on M and V- the normal connection
induced from V in the normal bundle TM* of M. The Gauss and Weingarten
formula are given by

VxY =VxY +h(X,Y), Vxéa=—AuX+Vxis, (x=1,...,p),  (7)

for any X,Y € x(M) and &, € T®(T(M)+), (¢ =1,...,p). h is the second
fundamental form and A, are shape operator corresponding to &.
We have the following Gauss equation

g(R(X,Y)Z,W) = g(R(X,Y)Z, W)

P 8
— ) {9(AY, Z)g(AdX, W) — g(AeX, Z)g(ALY, W)}, )
i=1

and Codazzi and Ricci equations

gRIX,Y)Z,&4) = (VXALY = (VyAq)X

P
— > {sva(X)g(AaY, Z) = sva(Y)g(AdX, Z)},
b=1

JRX, V)&, &) = g([Ab, AdX,Y) +G(RE(X,Y)E, &b), (9)

where R and R are the curvature tensors of M and M, respectively. sq, are
called the coefficients of the third fundamental form of M in M, such that
satisfy

Sab = —Sba-
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3 The principal circle bundle S™+3(QP™, S3)

Let Q“H be the (n + 1)-dimensional quaternionic space with natural quater-
nionic Kihler structure ({F/, G’,H’}, (,)) and let $**3 be the unit sphere de-
fined by

n+1
4 1 1 1 i i
ST ={(w',...,w) e QU Y wiwl) =1}
i=1
1T .1 .1 1 1 1 1 1 4n+4
:{(XDXZ»X?;)XM---)X;H_ )XEH— )X;H— )XLH— ) eR e |
n+1
(12 . . .
DO+ )2+ (65 + ()2 = 1),

i=1

such that w* = (x7, —x2, —x3, —X4).

The unit normal vector field & to $*"*3 is given by
n+1
. 0 . 0 . 0 . 0
= — x} .+X17.+X17.+X1 = ).
£ ;( Taxt T Pond  Paxd 4ax5)

From
(F'g, &) = (F2E,F'E) = —(E,F'E),
(G'g, &) = (G"E,G'E) = —(£,G'E),
(H'g, &) = (H"?&,H'e) = —(£,H'E),
it follows (F'&,&) = 0,(G'E,&) = 0,(H'E, &) = 0, that is, F/§, G'E, H/E €
T(S*+3). We put
F'g=—l/, G'&=-—, HE=-W, (10)

where 1 denotes the immersion of $*™*3 into Q™. From the Hermitian prop-

erty of (,), it is easily seen that U, V/, W' are unit tangent vector field of
S4n+3‘

We put
Hp (SM3) = (X" € T, (S™ )/ (X!) = 0,v/(X') = 0,w'(X") = 0L

Then u/,v/,w’ define a connection form of the principal bundle $***3(QP™, S3)
and we have

T, (S™3) = Hp (") @ span{U/, V), W)}
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We call Hp(S*3) and span{U/,V; W} the horizontal subspace and verti-

P V)
cal subspace of Tp(S‘m*Z‘), respectively. By definition, the horizontal subspace

Hp(S4“+3) is isomorphic to Typ)(QP™), where 7 is the natural projection from

S*+3 onto QP™. Therefore, for a vector field X on QP™, there exists unique

horizontal vector field X’ of $*™*3 such that 7t(X’) = X. The vector field X’ is
called the horizontal lift of X and we denote it by X*.

Proposition 1 As a subspace of T,(Q™1), H,(S™+3) is {F/, G', H'}-invariant
subspace.

Proof. By definition (10) of the vertical vector field {U’, V/; W'}, for X' €
H, (S*3), it follows

(FX', &) = —(iX, F'g) = (X', W) =0,
(G/X, £) = —(iX', G'E) = (X', V') = 0,
(H'X, £) = —(X', HYE) = (X, W) = 0,

This shows that F/tX/, G'iX/, H'tX” € T,(S*"3). In entirely the same way we
compute

(FuX 5y = — (X Flul’) = (X7, —¢&) =0,
(G'X'\ Wy = (X, GV = (X, —&) =0,
(H' X', W) = —(X,H' W) = (X&) =0.

By use from relations

F/v/ — _Hla’ F/w/ — G/E) Glu/ — H/a)
G/w/ — F/E,) H/u/ — _G/E,) H/vl — F/a)

we have

(F'X V) = —(X PV = (X HE) = — (X W) =0,
(F'X W) = (X FW!) = (X GYE) = — (X)) =0,
(G'X ) = —(X',G" U’y = (X! H'E) = — (X', W) =0,
(G' X, W'y = — (X', G" W) = (X' F'E) = (X, U’y =0,
(H'WX' )W) = —(X HW) = (X FE) = —(X d’) =0,
(H'X', 1) = — (X H WU = (X, GYE) = — (X! V) = 0.

and hence F/tX’, Gt X/, H'IX’ € HP(S4“+3), which completes the proof. O
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Therefore, the almost quaternionic structure {F, G, H} can be induced on Ty,
(QP™) and we set

(FX)* = F'iX*,  (GX)* = G'uX*,  (HX)* = H/uX*. (11)

Next, using the Gauss formula (7) for the vertical vector field {U’, V/, W'} and
a horizontal vector fields X’ of Tp(S4"+3), we compute

VEU = VU + g/(AX, UNE = ViU + (X, UNE = ViU, (12)
by similar computation for vector fields {V’, W’} we have
ViV =V Vv,
E = o (13)
VX/W = VX/W y

where VE denotes the Euclidean connection of E¥"*4 ¥’ denotes the connec-
tion of $*"3 and A’ denotes the shape operator with respect to &. Now, using
relations (10), (12) and (13) and the Weingarten formula (7), we conclude

Vil =-VLFE = (VL F)E —FVLe
= —(r(X)G’E — q(X')H'E) —F'VL.&

(14)
=X )V —q(X" W +F(1A'X")
=XV —q(X' W +F X’
by similar computation for vector fields {V’, W’} we have
ViV =-V5GE = (XU +p(X )W 4+ G WX/, 1)

VW' = —VEH'E = q(X)U' —p(X)V' + H'X'.

Consequently, according to notation (11), relations (14) and (15) can be writ-
ten as

Vi = (X )V — q(X* )W’ + (FX)*,
ViV = —r(X U + p(X )W’ + (GX)*, (16)
VieW' = q(X*)U —p(X*)V' + (HX)*.
We note that, since by definition, the Lie derivative of a horizontal lift of a
vector field with respect to a vertical vector field is zero, it follows

0 =LuwX" = [UW,X*] = V(i X* = V§. U,
0=LyX" =[V X=V,X —VV
0 =Ly X" =W/ X =V X — VW
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and using (16), we conclude

Vi X* = 1(X* )V — (X)W + (FX)*,
VX = (XU + p(X )W + (GX)*, (17)
Vi X5 = q(X* U —p(X )V + (HX)*.

We define a Riemannian metric g and a connection V in QP™ respectively by

Q(X,Y) = QI(X*>Y*)) (18)
VY = n(VL. V7). (19)

Then (V{Y)* is the horizontal part of V{.Y* and therefore

Vi Y* = (VLY)* + ¢/ (Vi Y+, u/u’

20
+ g (VLY VIV + ¢/ (Vi Y, W)W, (20)

Using relations (16) and (18), we compute

g (Vi YU = —g'(Y*, Vi U)

= —g'(Y",r(X*)V' = q(X" )W’ + (FX)*) = —g(Y, FX),
g9’ (V- Y5, V') = —g(¥, GX),
g9’ (V- Y5, V') = —g(Y, HX),

and, using (20), we conclude

Vi Y = (VXY)" = g(, FX)U’ — g(Y, GX)V' — g(, HX)W'.  (21)

Proposition 2 V is the Levi-Civita connection for g.

Proof. Let T be the torsion tensor field of V. Then we have

TX,Y) = VxY—VyX—[X,Y] = (Vi Y*) — (Vi X*) — [X*F, mY*]
= (VY — VX — X5, Y¥]) = m(T/ (X, Y*)) =0,

hence V is torsion free. We now show that V is a metric connection.

(Vxg)(\, Z) = X(g(Y,Z)) — g(VxY, Z) — g(Y, VxZ)
=X"(g"(Y,Z") — g'((VXY)*, Z*) — g'(Y*, (VxZ)").
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Since Z* is horizontal vector field, from relation (20), it follows that

9’ ((VxY)",Z2") = ¢'(Vx.Y*, Z") — g/ (V. Y*, W)g'(U', Z%)
_ g/(V)/(*Y*,V/)g/(VI) Z*) _ gl(v)lcﬁY*)ul)gl(u/) Z*)
=g/ (Vi Y*, Z")

and we compute
(Vx9)(,2) = X'(g'(Y",Z")) = g'(Vx:Y", Z") — g (V- 27, Y7)
= (VQ*Q,)(Y*%Z*))
where we have used the fact that V' is the Levi-Civita connection for g’. Thus
V is the Levi-Civita connection for g and the proof is complete. ]
Now, by (21), it follows
[X*,Y*] — [X)Y]* + g/([X*’Y*])u/)u/
+ 9/ (X, Y, VIV + g/ (X7, Y7, WIW/
== [X)Y]* + g,(V),(*Y* - V§*X*,u/)u/
+ g/ (Vi Y = V3. X5 VIV 4+ g/ (Vi Y — Vi X5 WW/
= X, YI" + g (V)" — g(Y, FX)U’ — g(Y, GX) V'
— Y, KXW/, W)U — g’ ((VyX)* — g(FY, X)U’
— g(GY, X)V/ — g(HY, X)W/, W)U’ + g'((VxY)*
— g(Y, FX)U’ — g(Y, GX)V' — g(Y, HX)W/, V')V
— g/((VyX)* — g(FY, X)U’ — g(GY, X)V' — g(HY, X)W, V')V’
+g'((VxY)* = g(\, FX)U" — g(Y, GX)V' — g (Y, X)W/, W))W/
—g'((VyX)" — g(FY, X)U’ — g(GY, X)V' — g(HY, X)W', W)W’
=X, YI* — 2g(Y, FX)U" — 2g(Y, GX)V' — 2g(Y, HX)W".
Consequently, using (16), (17), (21) and (22), the curvature tensor R of QP™
is calculated as follows:
R(X,Y)Z = VxVyZ - VyVxZ —VxyZ
= Vi (V4 Z* + g(Z, FY)U' + g(Z, GY)V' + g(Z,HY)W')
— Vi (Vi Z* + g(Z, FX)U' + g(Z, GX)V' + g(Z, HX)W')

/
o V[X*,Y*]+2g(Y,FX)U’+29(Y,GX)V’+29(Y,HX)W’Z*)}
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= (Vi Vi Z* + g(Z,FY) ViU + g(Z, GY) V.V’
+g(Z,HY) VW — V. Vi ZF — g(Z, FX) Vi U’
—9(Z,GX)Vy. V' = g(Z,HX) V3. W' = V|x. v, Z*
—2g9(Y\FEX)V{,.Z" = 2g(Y, GX) Vv, Z* — 2g(Y, HX) Vi, 2"}

= n{R’(X* Y9 Z* + g(Z, FY) (r(X*)V' — q(X*)W' + (FX)*)

g(Z, GY)(—r(X*)U' + p(X*)W' + (GX)*)
g(Z, HY)(q(X*)U" = p(X*)V' + (HX)")
9(Z, FX)(r(Y)V' — q(Y )W’ + (FY)")
g(Z, GX)(—r(Y")U' + p(Y )W’ + (GY)*)
+ 9(Z, HX) (q(YIU —p(Y)V' + (HY)")
+29(Y, FEX)(r(Z*)V' — q(Z°)W' + (FZ)")
+2g(Y, GX)(—=7(Z)U" +p(Z*)W' + (GZ)*)
+2g(Y,HX)q(Z)U' —p(Z*)V' 4 (HZ)"}.

S4n+3

Since the curvature tensor R’ of satisfies

R/(X*,Y*)Z* = g'(Y*, Z")X* — g'(X*, Z*)Y* = g(Y, Z)X* — g(X, Z2)Y*, (23)
we conclude that the curvature tensor of QP™ is given by

R(X,Y)Z = g(Y,Z)X — g(X,Z)Y
+ g(FY, Z)FX — g(FX, Z)FY — 2g(FX, Y)FZ
+g(GY,Z)GX — g(GX, Z)GY — 2g(GX, Y)GZ
+ g(HY, Z)HX — g(HX, Z)HY — 2g(HX, Y)HZ.

(24)

4 Submanifolds of quaternionic manifolds

Let M be an n-dimensional submanifold of QPn4j and 7w '(M) be the circle
bundle over M which is compatible with the Hopf map

n+p
Sn+‘p+3 QP

Then 7w '(M) is a submanifold of S™P*3. The compatibility with the Hopf
map is expressed by mol’ = to7t where ' and t are the immersions of M into
QP%E and 1 (M) into S™P+3, respectively.

Let &g, a=1,...,p be orthonormal normal local fields to M in QP%E and
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&; be the horizontal lifts of &y. Then &} are mutually orthonormal normal
local fields to (M) in S™P+3. At each point y € 7w ' (M) we compute

g* (VX" E8) = g (1X)%, &5) = g(1X, &) =0,
g (U, &) = g* (U, &) =0,

PV E) =g (V&) =0,

PUW,E) =g* (W, &) =0,

g (EREr) = (aa,ab) = 8qb,

where g° and g denote the Riemannian metric on S™P*3 and QP“TW, respec-
tively. Here U’ = VU, V' = VV,W’ = VW are unit tangent vector field of
S™HP+3 defined by relation (10).

Now, let V3, V’,V and V be the Riemannian connections of S™P*3 7~ 1(M),

QP%E and M, respectively. By means of the Gauss formula (7) and relations
(4) and (21), we compute

Vi U'Y* = V5. (1Y)* = (VxtY)* — g(FuX, ty)/u

— (G WYV — g(HWX, Y)W
= (LVxY +h(X,Y))* —g(teX,Y)u’

, , (25)
— g(X; tY)V' — g(oX, Y)W
= (VxY)" + (h(X,Y))"
— g(@X, Y)U' — g(hX, V)V — g(6X, Y)W’
where g is the metric on M. On the other hand, we also have
V- UY* = UV Y + 1/ (X5 Y9 = U (VxY)* — g(eX, Y)U (26)

—g(WX, Y)V —g(0X,Y)W) + h'(X", Y7)

where h and h’ denote the second fundamental form of M and 7w~ '(M), re-
spectively. Comparing the vertical part and horizontal part of relations (25)
and (26), we conclude

that is,

P p P
> gAXSYIE = (D 9(AX Y)E)" =D g(AX, Y)E,

a=1 a=1 a=1
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where A, and A/ are the shape operators with respect to normal vector fields
£q and & of M and 7t (M), respectively. Consequently, we have

g (ALX*Y*) =g(AXY), (a=1,..,p).
Next, using the weingarten formula, we calculate V. & as follows
P
V& = —VAX" + ViEEL = —VAX" + ) sy (X)E5. (28)
b=1

where V' is normal connection 7t~ (M) in S™P+3,

On the other hand, from relation (21), it follows
Vi = (Vx&a)* — g(FiX, éa)L’U —G(GX, £V = G(HX, EJU'W
= (—tAX + Vx&a)* Z{u g(Ea, E)U
+ V2 (X)G(&ay E0) V' + WP (X)G(Eay Ep)W') (29)
—(AaX)* + i(sab(X*)ab)* —ut(xju’
— VX))V —w;(X)W’,

where V- is normal connection M in QPnztﬂ.
We have put

Fix = toX + Z u(X)&q,

a=1

GLX—LIJ,)X+ZV )Eas

a=1
P
Hox = 10X + ) wo(X)&a. (30)
a=1
Comparing relations (28) and (29), we obtain
ALXS = (AX) +ut (X)W +v4( X))V + we X)W/
(AaX)" 4+ g(Ug, XU’ + g(Va, X)V + g(Wq, X)W/,
Vicks = (Vx&a)", (31)
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that is, s/ (X*) = sqp(X)*, where Ugq, Vo, W, are defined by

P
F‘ia = _ua + Z P] ab Eyb)

b=1

P
Gaa = _va + Z Pzab E,b)

b=1
P
H‘Ea = _Wa + Z P3ab ‘Eb- (32)
b=1
where, 3 b _; Pi,, &b = Pifa, (i =1,2,3). Now, we consider vﬁa;; and using
relations (17) and (32) imply
ViEs = (F&a)* = —tla- + P15,
VvEe = (GEa)" = —WVar + Pagy,
V\S/VE,Z = (H‘ia)* = —Wqx + P3£Z- (33>

On the other hand, from the Weingarten formula, it follows

V3E: = VAU + Vi E*——LAU—i—Zsab )EL,
b=1

VyEs = —VALV + ViFE: = —UVA] V+Zsab )EE,
b=1

Vel = —UAIW + Vb Er = —UA! W+Zsab )X (34)
b=1
Consequently, using (33) and (34), we obtain
AlU=UL, ALV=V AIW=W]
Stllb(u) =Py, S(/lb(v) =Py, Sé{b(W) = P3, (35>
{&s = (FX)* + g,
7 EL = (GX)" + Var,
Vv & = (HX)* + W,-. (36)
The first relations of (31) and (35), we get

°(Xut(Y)

g (ALALXS Y*) = g(AqApX,Y) +u
w? (X)w(Y),

+ v (X)v(Y)
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and especially,

g'(A2X* Y*) = g(A2X,Y) +u (X)u“(Y)

(38)
FVEXVEY) +w (X (Y),

For x € M, let {ej,..., entbe an orthonormal basis of TyM and y be a point of
70" (M) such that 7t(y) = x. We take an orthonormal basis {e],... e, U,V W}
of Ty(n_1 (M)). Then, using the first relations (35) and (39), we compute

P
Z trace A2 = Z { Z g'(Alet,ef) + g’ (AU, U)
a=1

a=1 i=1
+g'(AZV, V) + g (APW, W)}
P

n
= AZei e) +u®(e)u(e;
;{;g( Zeiye) + ut(en)ul (e 39)
+ v (ei)v(ei) +w(ei)w(e)
+ 9" (AU, AU) + g" (A, AQV) + g (AW, AgW)}
P
=Y {trace A% +2g(Uq, Ua) +29(Va, Va) + 29(Wa, W)},
a=1

we conclude

Proposition 3 Under the above assumptions, the following inequality

P p
Z trace Aaz > Z trace A%l
a=1 a=1

is always valid. The equality holds, if and only if M is a {F, G, H}- invariant
submanifold.

Corollary 1 [8] M is a totally geodesic submanifold if and only if relation
Az = 0 holds for any normal vector field & of M. Particularly, M is totally
geodesic if and only if Ay = ... = A, = 0 for an orthonormal frame field
Elyerny&p of THM)

Proposition 4 Under the condition stated above, if 71 (M) is a totally geodesic
submanifold of S™PT3, then M is a totally geodesic {F, G, H}- invariant sub-
manifold.
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Proof. Since 7w 1(M) is a totally geodesic submanifold of S**P*+3, using Corol-
lary (26), it follows A} = 0. The first Relation (31) then implies Aq = 0 and
U, = Vo = W, =0, which, using relation (32), completes the proof. O

Further, for the normal curvature of M in QPHTW, using relation (24) and the
second relation (9), we obtain

(R (X, Y)&a, &) = g([Aq, AplX, Y) +u® (X)us(Y)
— ua(X)ub (Y) + v (X (Y) — v (X)vP(Y)
WP (XIwe(Y) = w* (X)W (Y)
— 29((pX,Y P1 —2g(¥X,Y)P, —2g(6X,Y)P3

(40)

(

)

Therefore, if M be a totally geodesic submanifold of {F, G,H}- invariant
submanifold, we conclude

G(RH(X,Y)&a, &) = —29(@X, Y)P1 — 2g(¥X, Y)P, —2g(6X,Y)P;  (41)

In this case the normal space T (M) is also {F, G, H}- invariant and P7, P, P3
never vanish. We have thus proved

Proposition 5 The normal curvature of a totally geodesic submanifold of
{F, G, H}- invariant submanifold of a quaternionic projective space never van-
ishes.

This proposition show that the normal connection of the quaternionic projec-
tive space which is immersed standardly in a higher dimensional quaternionic
projective space not flat.

Finally, we give a relation between the normal curvature Rt and Rt of M
and 1 (M), respectively, where M is a n-dimensional submanifold of QP%}2
and 7' (M) is the circle bundle over M which is compatible with the Hopf
map 7. Using relation (37), we obtain

g'([ALAYX, Y = g([Aa AplX, Y) + 1 (XJus(Y) — ut (X)u(Y)
+ VIOOVEY) = vE XV (Y) + WP (X)W (Y) —we (X (Y),
and therefore, from the second relation (9), it follows
—g (RP(XT,UYIEG, &) + g7 (R (X, Y9)Eg, &)
= —g(R(X, 1Y) E&a, &b) + G(R(X, Y)Ea, &b) + ul (XJut(Y) —ut (X)u°(Y)
F VP XVE(Y) = vE XV (V) +wP (X)W (Y) —we (X)wP (V).
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Using the expression (23) and (24) , for curvature of S™™P*3 and QPnTﬂ’(C),
respectively and relations (30) and (32) imply

g (RE(X*, Y*)EX, E5) = GIRH(X, V) &gy &) + 2g(@X, V)P
+2g(WX, Y)P2 +2g(6X,Y)P;
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