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Abstract. Quasi-Einstein manifold and generalized quasi-Einstein man-
ifold are the generalizations of Einstein manifold. The purpose of this pa-
per is to study the mixed super quasi-Einstein manifold which is also the
generalizations of Einstein manifold satisfying some curvature conditions.
We define both Riemannian and Lorentzian doubly warped product on
this manifold. Finally, we study the completeness properties of doubly
warped products on MS(QE)4 for both the Riemannian and Lorentzian
cases.

1 Introduction

The notion of quasi-Einstein manifold was introduced by M. C. Chaki and R.
K. Maity [7]. A non-flat Riemannian manifold (Mn, g), (n ≥ 3) is a quasi-
Einstein manifold if its Ricci tensor S satisfies the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) (1)
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and is not identically zero, where a, b are scalars, b 6= 0 and A is a non-zero
1-form such that

g(X,U) = A(X), ∀ X ∈ χ(M), (2)

where, U being a unit vector field and χ(M) is the set of all differentiable
vector fields on M.

Here a and b are called the associated scalars, A is called the associated
1-form and U is called the generator of the manifold. Such an n-dimensional
manifold will be denoted by (QE)n.

As a generalization of quasi-Einstein manifold, in [8], U. C. De and G. C.
Ghosh defined the generalized quasi-Einstein manifold. A non-flat Riemannian
manifold is called generalized quasi-Einstein manifold if its Ricci-tensor is non-
zero and satisfies the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y), (3)

where a, b and c are non-zero scalars and A, B are two 1-forms such that

g(X,U) = A(X) and g(X,V) = B(X), (4)

U and V being unit vectors which are orthogonal, i.e.,

g(U,V) = 0. (5)

The vector fields U and V are called the generators of the manifold. This type
of manifold will be denoted by G(QE)n.

In [6], M. C. Chaki introduced the super quasi-Einstein manifold, denoted
by S(QE)n, where the Ricci tensor is not identically zero and satisfies the
condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + c[A(X)B(Y)

+A(Y)B(X)] + dD(X, Y),
(6)

where a, b, c and d are scalars such that b, c, d are nonzero, A, B are
two nonzero 1-forms defined as (4) and U, V are mutually orthogonal unit
vector fields, D is a symmetric (0, 2) tensor with zero trace which satisfies the
condition

D(X,U) = 0, ∀X ∈ χ(M). (7)

Here a, b, c and d are called the associated scalars, A, B are called the asso-
ciated main and auxiliary 1-forms respectively, U, V are called the main and
the auxiliary generators and D is called the associated tensor of the manifold.
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In [3], A. Bhattacharyya and T. De introduced the notion of mixed general-
ized quasi-Einstein manifold. A non-flat Riemannian manifold is called mixed
generalized quasi-Einstein manifold if its Ricci tensor is non-zero and satisfies
the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y)

+ d[A(X)B(Y) +A(Y)B(X)],
(8)

where a, b, c, d are non-zero scalars,

g(X,U) = A(X) and g(X,V) = B(X), ∀ X ∈ χ(M), (9)

and also

g(U,V) = 0. (10)

A, B are two non-zero 1-forms, U and V are unit vector fields corresponding
to the 1-forms A and B respectively. If d = 0, then the manifold becomes to a
G(QE)n. This type of manifold is denoted by MG(QE)n.

In [4], A. Bhattacharyya, M. Tarafdar and D. Debnath introduced the notion
of MS(QE)n.
A non-flat Riemannian manifold (Mn, g), (n ≥ 3) is called mixed super quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y) + d[A(X)B(Y)

+A(Y)B(X)] + eD(X, Y),
(11)

where a, b, c, d, e are scalars of which b 6= 0, c 6= 0, d 6= 0, e 6= 0 and A, B
are two non zero 1-forms such that

g(X,U) = A(X) and g(X,V) = B(X), ∀ X ∈ χ(M), (12)

U, V being mutually orthogonal unit vector fields, D is a symmetric (0, 2)
tensor with zero trace which satisfies the condition

D(X,U) = 0, ∀ X ∈ χ(M). (13)

Here a, b, c, d, e are called the associated scalars, A, B are called the associ-
ated main and auxiliary 1-forms, U, V are called the main and the auxiliary
generators and D is called the associated tensor of the manifold. We denote
this type of manifold MS(QE)n.
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The notation of warped product generalizes that of a surface of revolution.
Warped products were first defined by O’Neill and Bishop in [5]. They used
this concept to construct Riemannian manifolds with negative sectional cur-
vature. Then Beem, Ehrlich and Powell pointed out that many exact solutions
in Einstein’s field equation can be expressed in terms of Lorentzian warped
products [2].

In general, doubly warped product was studied by Btilent Unal in [12], can
be considered as a generalization of singly warped product. A doubly warped
product (M,g) is a product manifold which is of the form M =f B×b F with
the metric g = f2gB ⊕ b

2
gF

where b : B −→ (0,∞) and f : F −→ (0,∞) are
smooth map.
So if (B, gB) and (F, gF) be pseudo-Riemannian manifolds and also b : B −→
(0,∞) and f : F −→ (0,∞) be smooth functions, then the doubly warped
product is the product manifold B×F furnished with the metric tensor f2gB⊕b

2
gF

defined by

g = (f ◦ σ)2π∗(gB)⊕ (b ◦ π)2σ∗(gF).

The functions b : B −→ (0,∞) and f : F −→ (0,∞) are called warping
functions and π : B× F −→ B and σ : B× F −→ F are usual projections map.

If (F, gF) and (B, gB) are both Riemannian manifolds, then (fB×bF, f2gB⊕b
2
gF
)

is also a Riemannian manifold. We call (fB×b F, f2gB ⊕b
2
gF
) a Loretzian doubly

warped product if (F, gF) is Riemannian and either (B, gB) is Lorentzian or else
(B, gB) is a one-dimensional manifold with a negative definite metric −dt2. If
neither b nor f is constant, then we have a proper doubly warped product.

Global hyperbolicity is the most important condition on Causality, which
lies at the top of the so-called causal hierarchy of spacetimes and is involved
in problems as Cosmic Censorship, predictability etc.

A connected Lorentzian manifold is called time-orientable iff it admits a
nowhere-vanishing timelike vector field (defining future causal directions). A
piecewise C1 curve c : I −→ M in a time-oriented manifold (M,g) is called
future iff c ′(t) is future for every t ∈ I. For any point p ∈ M, the future of
p (resp. past of p), denoted by J+(p) (resp. J−(p)), is the set of all points q
s.t.there is a future curve from p to q (resp. from q to p).

There are different alternative definitions of what global hyperbolicity means,
but perhaps the most standard one is the following. A spacetime (M,g) is said
globally hyperbolic if and only if it satisfies two conditions: (A) compactness
of J+(p) ∩ J−(q) for all p, q ∈ M (i.e. no “naked” singularity can exist) and
(B) strong causality (no “almost closed” causal curve exists).

Global hyperbolicity is also discussed in the theorem (34), (36) and the
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corollary (36) in [13].
In this paper we find that a Riemannian manifold is a manifold of mixed

super quasi constant curvature iff it is conformally flat MS(QE)n. Also we
have studied Ricci-pseudosymmetric MS(QE)n. Next we have obtained some
expressions for Riemannian curvature tensor when MS(QE)n satisfies the cur-
vature conditions C.S = 0, C̃.S = 0 and C1.S = 0, where C is the Weyl con-
formal curvature tensor, C̃ is the concircular curvature tensor and C1 quasi-
conformal curvature tensor. We have also proved that in a conformally flat
MS(QE)n (n ≥ 3) with R(X, Y).S = 0, the vector fields U, V corresponding
to 1-forms A, B are co-directional. Finally in the last two sections, we discuss
about the doubly warped product on MS(QE)n and completeness of doubly
warped products on MS(QE)4 with examples.

2 Preliminaries

In this section we considerMS(QE)n, (n ≥ 3) with associated scalars a, b, c, d, e,
associated main and auxiliary 1-formsA,B,main and auxiliary generatorsU,V
and associated symmetric (0, 2) tensor D.

So (11), (12) and (13) will hold. Since U and V are mutually orthogonal
unit vector fields, we have

g(U,U) = 1, g(V,V) = 1 and g(U,V) = 0, (14)

traceD = 0 (15)

D(X,U) = 0, ∀ X ∈ χ(M). (16)

Also using (14) in (12), we get

A(V) = B(U) = 0. (17)

Now setting X = Y = ei, where {ei} be an orthonormal basis of the tangent
space at each point of the manifold, in (11) and taking summation over i,
1 ≤ i ≤ n, we obtain

r = na+ b+ c, (18)

where r is the scalar curvature of the manifold.
Also, from (11), we have

S(U,U) = a+ b (19)

S(V,V) = a+ c+ eD(V,V) (20)

S(U,V) = d. (21)
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If X is a unit vector field, then S(X,X) is the Ricci-curvature in the direction
of X. Hence from (19) and (20) we can state that a+ b and a+ c+ eD(V,V)
are the Ricci curvature in the directions of U and V respectively.
Let Q be the Ricci operator, i.e.,

g(QX, Y) = S(X, Y) ∀ X, Y ∈ χ(M). (22)

Also we have

g(lX, Y) = D(X, Y). (23)

Another notion of curvature called mixed super quasi constant curvature was
introduced in [4]. A Riemannian manifold is said to be a manifold of mixed
super quasi-constant curvature if it is conformally flat and the curvature tensor
R of type (0, 4) satisfies the condition

R̃(X, Y, Z,W) = m[g(Y, Z)g(X,W) − g(X,Z)g(Y,W)] + p[g(X,W)A(Y)

A(Z) − g(Y,W)A(X)A(Z) + g(Y, Z)A(X)A(W) − g(X,Z)

A(Y)A(W)] + q[g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)

+ g(Y, Z)B(X)B(W) − g(X,Z)B(Y)B(W)] + s[{A(Y)B(Z)

+ B(Y)A(Z)}g(X,W) − {A(X)B(Z) + B(X)

A(Z)}g(Y,W) + {A(X)B(W) + B(X)A(W)}g(Y, Z)

− {A(Y)B(W) + B(Y)A(W)}g(X,Z)] + t[g(Y, Z)D(X,W)

− g(X,Z)D(Y,W) + g(X,W)D(Y, Z) − g(Y,W)D(X,Z)].

(24)

An n-dimensional Riemannian manifold (Mn, g) is called Ricci-pseudosymmetric
[9] if the tensors R.S and Q(g, S) are linearly dependent, where

(R(X, Y).S)(Z,W) = −S(R(X, Y)Z,W) − S(Z, R(X, Y)W), (25)

Q(g, S)(Z,W;X, Y) = −S((X∧ Y)Z,W) − S(Z, (X∧ Y)W) (26)

and
(X∧ Y)Z = g(Y, Z)X− g(X,Z)Y

for vector fields X, Y, Z,W on Mn, R denotes the curvature tensor of Mn. The
condition of Ricci-pseudosymmetry is equivalent to the relation

(R(X, Y).S)(Z,W) = LSQ(g, S)(Z,W;X, Y) (27)

holding on the set

US = {x ∈M : S 6= r

n
g at x}, (28)
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where LS is some function on US. If R.S = 0 then Mn is called Ricci-semi-
symmetric. Every Ricci-semisymmetric manifold is Ricci-pseudosymmetric but
the converse is not true [9].
The Weyl conformal curvature tensor C of type (1, 3) of an n-dimensional
Riemannian manifold (Mn, g), (n ≥ 3) is defined by [15]

C(X, Y)Z = R(X, Y)Z−
1

n− 2
[S(Y, Z)X− S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY] +
r

(n− 1)(n− 2)
{g(Y, Z)X− g(X,Z)Y}.

(29)

The concircular curvature tensor C̃ of type (1, 3) of n-dimentional Riemanian
manifold (Mn, g),(n ≥ 3) is defined by [15]

C̃(X, Y)Z = R(X, Y)Z−
r

n(n− 1)
[g(Y, Z)X− g(X,Z)Y] (30)

for any vector fields X, Y, Z ∈ χ(M).
The quasi-conformal curvature tensor was defined by Yano and Sawaki [14] as

C1(X, Y)Z = λR(X, Y)Z+ µ{S(Y, Z)X+ S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY}−
r

n

[
λ

(n− 1)
+ 2µ

]
[g(Y, Z)X− g(X,Z)Y],

(31)

where λ and µ are nonzero constants. If λ = 1 and µ = 1
n−2 , then quasi-

conformal curvature tensor is reduced to the conformal curvature tensor.

3 Relation between manifold of mixed super quasi
constant curvature and MS(QE)n

Let M be a Riemannian manifold with mixed super quasi constant curvature
and {ei} be an orthonormal basis of the tangent space at each point of the
manifold. Taking X = W = {ei} and summing over i, 1 ≤ i ≤ n in (24) and
using (23), we obtain

S(Y, Z) = m(n− 2)g(Y, Z) + p(n− 2)A(Y)A(Z) + q(n− 2)B(Y)B(Z)

+ s(n− 2)[A(Y)B(Z) +A(Z)B(Y)] + t(n− 2)D(Y, Z),
(32)

which imply

S(X, Y) = ag(X, Y) + bA(X)A(Y) + cB(X)B(Y) + d[A(X)B(Y)

+A(Y)B(X)] + eD(X, Y),
(33)



On some classes of mixed-super quasi-Einstein manifolds 39

where a = m(n− 2), b = p(n− 2), c = q(n− 2), d = s(n− 2), e = t(n− 2).
So, (Mn, g) is a MS(QE)n.
Conversely, suppose (Mn, g) is conformally flat MS(QE)n. Then

R(X, Y)Z =
1

n− 2
{g(Y, Z)QX− g(X,Z)QY + S(Y, Z)X− S(X,Z)Y}

−
r

(n− 1)(n− 2)
{g(Y, Z)X− g(X,Z)Y}.

(34)

Now using (11), (18) and (19), we get

R̃(X, Y, Z,W) = [g(Y, Z)g(X,W)

− g(X,Z)g(Y,W)]

{
2a

n− 2
−

na+ b+ c

(n− 1)(n− 2)

}
+ [g(X,W)A(Y)A(Z) − g(Y,W)A(X)A(Z)

+ g(Y, Z)A(X)A(W) − g(X,Z)A(Y)A(W)]

{
b

n− 2

}
+ [g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)

+ g(Y, Z)B(X)B(W) − g(X,Z)B(Y)B(W)]

{
c

n− 2

}
+ [{A(Y)B(Z) + B(Y)A(Z)}g(X,W) − {A(X)B(Z)

+ B(X)A(Z)}g(Y,W) + {A(X)B(W) + B(X)A(W)}g(Y, Z)

− {A(Y)B(W) + B(Y)A(W)}g(X,Z)]

{
d

n− 2

}
+ [g(Y, Z)D(X,W) − g(X,Z)D(Y,W)

+ g(X,W)D(Y, Z) − g(Y,W)D(X,Z)]

{
e

n− 2

}
.

(35)

So,

R̃(X, Y, Z,W) = m1[g(Y, Z)g(X,W) − g(X,Z)g(Y,W)]

+ p1[g(X,W)A(Y)A(Z) − g(Y,W)A(X)A(Z)

+ g(Y, Z)A(X)A(W) − g(X,Z)A(Y)A(W)]

+ q1[g(X,W)B(Y)B(Z) − g(Y,W)B(X)B(Z)

+ g(Y, Z)B(X)B(W) − g(X,Z)B(Y)B(W)]

+ s1[{A(Y)B(Z) + B(Y)A(Z)}g(X,W)

− {A(X)B(Z) + B(X)A(Z)}g(Y,W) + {A(X)B(W)

+ B(X)A(W)}g(Y, Z) − {A(Y)B(W)

(36)
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+ B(Y)A(W)}g(X,Z)] + t[g(Y, Z)D(X,W)

− g(X,Z)D(Y,W) + g(X,W)D(Y, Z) − g(Y,W)D(X,Z)],

where, m = a(n−2)−b−c
(n−1)(n−2) , p = b

n−2 , q = c
n−2 , s =

d
n−2 , t =

e
n−2 .

So, (Mn, g) is a manifold of mixed super quasi constant curvature.
Then we have the following theorem:

Theorem 1 A Riemannian manifold is a manifold of mixed super quasi con-
stant curvature iff it is conformally flat MS(QE)n.

4 Ricci-pseudosymmetric MS(QE)n

In this section we consider a Ricci-pseudosymmetric MS(QE)n and prove the
following theorem:

Theorem 2 Let (Mn, g), (n ≥ 3), be a MS(QE)n. If Mn is Ricci-pseudosym
metric then the following conditions hold on Mn :

R(X, Y,U, V) = LS{A(Y)B(X) −A(X)B(Y)} (37)

D(R(X, Y)U,V) = LS{A(Y)D(X,V) −A(X)D(Y, V)} (38)

D(R(X, Y)V,V) = LS{B(Y)D(X,V) − B(X)D(Y, V)} (39)

for all vector fields X, Y on Mn, where U,V are the generators of the manifold
Mn.

Proof. Assume that Mn is Ricci-pseudosymmetric. Then by the use of (25)
to (28), we can obtain

S(R(X, Y)Z,W) + S(Z, R(X, Y)W) = LS{g(Y, Z)S(X,W) − g(X,Z)S(Y,W)

+ g(Y,W)S(X,Z) − g(X,W)S(Y, Z)}.
(40)

Since Mn is also MS(QE)n, using the well-known properties of the curvature
tensor R we get

b[A(R(X, Y)Z)A(W) +A(Z)A(R(X, Y)W)] + c[B(R(X, Y)Z)B(W)

+ B(Z)B(R(X, Y)W)] + d[A(R(X, Y)Z)B(W) +A(W)B(R(X, Y)Z)

+A(Z)B(R(X, Y)W) +A(R(X, Y)W)B(Z)] + e[D(R(X, Y)Z,W)

+D(Z, R(X, Y)W)] = LS{b[g(Y, Z)A(X)A(W) − g(X,Z)A(Y)A(W)

+ g(Y,W)A(X)A(Z) − g(X,W)A(Y)A(Z)] + c[g(Y, Z)B(X)B(W)

− g(X,Z)B(Y)B(W) + g(Y,W)B(X)B(Z) − g(X,W)B(Y)B(Z)]

(41)
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+ d[g(Y, Z)A(X)B(W) + g(Y, Z)A(W)B(X) − g(X,Z)A(Y)B(W)

− g(X,Z)A(W)B(Y) + g(Y,W)A(X)B(Z) + g(Y,W)A(Z)B(X)

− g(X,W)A(Y)B(Z) − g(X,W)A(Z)B(Y)] + e[g(Y, Z)D(X,W)

− g(X,Z)D(Y,W) + g(Y,W)D(X,Z) − g(X,W)D(Y, Z)]}.

Putting Z = U and W = V in (41), we get

b[R(X, Y, V,U) − LS{A(X)B(Y) −A(Y)B(X)}] + c[R(X, Y,U, V)

− LS{A(Y)B(X) −A(X)B(Y)}] + e[D(R(X, Y)U,V)

− LS{A(Y)D(X,V) −A(X)D(Y, V)}] = 0.

(42)

Taking Z =W = U in (41), we get

d[R(X, Y,U, V) − LS{A(Y)B(X) −A(X)B(Y)}] = 0.

Since d 6= 0, we get

R(X, Y,U, V) − LS{A(Y)B(X) −A(X)B(Y)} = 0. (43)

Which gives (37). Similarly, if we take Z =W = V in (41), we get

d[R(X, Y, V,U) − LS{A(X)B(Y) −A(Y)B(X)}] + e[D(R(X, Y)V,V)

− LS{B(Y)D(X,V) − B(X)D(Y, V)}] = 0.
(44)

From (42) and (43), we get

e[D(R(X, Y)U,V) − LS{A(Y)D(X,V) −A(X)D(Y, V)}] = 0.

Since e 6= 0,

D(R(X, Y)U,V) − LS{A(Y)D(X,V) −A(X)D(Y, V)} = 0.

Which gives (38).
Again from (43) and (44), we obtain (39). So our theorem is proved. �

5 MS(QE)n satisfying the condition C.S = 0

In this section we consider a MS(QE)n)(n ≥ 3) satisfying the condition C.S =
0. Then we have

S(C(X, Y)Z,W) + S(Z,C(X, Y)W) = 0. (45)
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Now using (11) in (45), we get,

ag(C(X, Y)Z,W) + bA(C(X, Y)Z)A(W) + cB(C(X, Y)Z)B(W)

d[A(C(X, Y)Z)B(W) + B(C(X, Y)Z)A(W)] + eD(C(X, Y)Z,W)

ag(Z,C(X, Y)W) + bA(Z)A(C(X, Y)W) + cB(Z)B(C(X, Y)W)

d[A(Z)B(C(X, Y)W) + B(Z)A(C(X, Y)W)] + eD(Z,C(X, Y)W) = 0.

(46)

From (46),

b[A(C(X, Y)Z)A(W) +A(Z)A(C(X, Y)W)] + c[B(C(X, Y)Z)B(W)

+ B(Z)B(C(X, Y)W)] + d[A(C(X, Y)Z)B(W) + B(C(X, Y)Z)A(W)

+A(Z)B(C(X, Y)W) + B(Z)A(C(X, Y)W)] + e[D(C(X, Y)Z,W)

+D(Z,C(X, Y)W)] = 0.

(47)

Putting Z =W = U in (47), we get

2b[A(C(X, Y)U] + 2d[B(C(X, Y)U] = 0. (48)

So, we obtain

2d[B(C(X, Y)U] = 0

As d 6= 0, we get,

B(C(X, Y)U = 0. (49)

That is

C(X, Y,U, V) = 0. (50)

So, from (29), we obtain

R(X, Y,U, V) =
1

n− 2
[A(QY)B(X) −A(X)B(QY) +A(Y)B(QX)

−A(QX)B(Y)] −
r

(n− 1)(n− 2)
{A(Y)B(X) −A(X)B(Y)}

(51)

So, we can state that

Theorem 3 In a MS(QE)n (n ≥ 3) with C.S = 0, the curvature tensor R of
the manifold satisfies the relation (51).
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6 MS(QE)n satisfying the condition C̃.S = 0

In this section we consider a MS(QE)n (n ≥ 3) satisfying the condition C̃.S =
0.Then we have,

S(C̃(X, Y)Z,W) + S(Z, C̃(X, Y)W) = 0. (52)

From (11) in (52), we get,

ag(C̃(X, Y)Z,W) + bA(C̃(X, Y)Z)A(W) + cB(C̃(X, Y)Z)B(W)

d[A(C̃(X, Y)Z)B(W) + B(C̃(X, Y)Z)A(W)] + eD(C̃(X, Y)Z,W)

ag(Z, C̃(X, Y)W) + bA(Z)A(C̃(X, Y)W) + cB(Z)B(C̃(X, Y)W)

d[A(Z)B(C̃(X, Y)W) + B(Z)A(C̃(X, Y)W)] + eD(Z, C̃(X, Y)W) = 0.

(53)

Putting Z =W = U in (53), we get

d[B(C(X, Y)U] = 0.

As d 6= 0,

B(C̃(X, Y)U = 0. (54)

That is,

C̃(X, Y,U, V) = 0. (55)

So, from (30), we get

R(X, Y,U, V) =
r

n(n− 1)
[A(Y)B(X) −A(X)B(Y)]. (56)

Thus, we have

Theorem 4 In a MS(QE)n (n ≥ 3) with C̃.S = 0, the curvature tensor R of
the manifold satisfies the relation (56).

7 MS(QE)n satisfying the condition C1.S = 0

In this section we consider a MS(QE)n (n ≥ 3) satisfying the condition C1.S =
0. Then we have,

S(C1(X, Y)Z,W) + S(Z,C1(X, Y)W) = 0 (57)

for any vector fields X, Y, Z,W ∈ χ(M). Then we have the following theorem:
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Theorem 5 Let (Mn, g) (n ≥ 3) be a MS(QE)n. If the condition C1.S = 0

holds on Mn then the curvature tensor R of Mn satisfies the following property:

λR(X, Y,U, V) =

[
na+ b+ c

n

(
λ

n− 1
+ 2µ

)
− µ(2a+ b+ c)

]
{A(Y)B(X)

−A(X)B(X)}− µe{D(X,V)A(Y) −D(Y, V)A(X)}

(58)

for all vector fields X, Y on Mn, where U,V are the generators of the manifold
Mn.

Proof. Since, C1.S = 0 holds on Mn we have,

S(C1(X, Y)Z,W) + S(Z,C1(X, Y)W) = 0.

Since Mn be a MS(QE)n, using (11) in (57), we obtain

ag(C1(X, Y)Z,W) + bA(C1(X, Y)Z)A(W) + cB(C1(X, Y)Z)B(W)

d[A(C1(X, Y)Z)B(W) + B(C1(X, Y)Z)A(W)] + eD(C1(X, Y)Z,W)

ag(Z,C1(X, Y)W) + bA(Z)A(C1(X, Y)W) + cB(Z)B(C1(X, Y)W)

d[A(Z)B(C1(X, Y)W) + B(Z)A(C1(X, Y)W)] + eD(Z,C1(X, Y)W) = 0.

(59)

From (59),

b[A(C1(X, Y)Z)A(W) +A(Z)A(C1(X, Y)W)] + c[B(C1(X, Y)Z)B(W)

+ B(Z)B(C1(X, Y)W)] + d[A(C1(X, Y)Z)B(W) + B(C1(X, Y)Z)A(W)

+A(Z)B(C1(X, Y)W) + B(Z)A(C1(X, Y)W)] + e[D(C1(X, Y)Z,W)

+D(Z,C1(X, Y)W)] = 0.

(60)

Putting Z =W = U in (60), we get

2b[A(C1(X, Y)U] + 2d[B(C1(X, Y)U] = 0. (61)

So, we obtain
2d[B(C1(X, Y)U] = 0.

As d 6= 0, we get

B(C1(X, Y)U = 0. (62)

That is
C1(X, Y,U, V) = 0.
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Now using (31), we obtain

λR(X, Y,U, V) = µ{S(X,U)g(Y, V) − S(Y,U)g(X,V) − g(Y,U)S(X,V)

+ g(X,U)S(Y, V)}+
r

n

[
λ

(n− 1)
+ 2µ

]
[g(Y,U)g(X,V)

− g(X,U)g(Y, V)].

(63)

Using (11) and (18) in (63), we get,

λR(X, Y,U, V) =

[
na+ b+ c

n

(
λ

n− 1
+ 2µ

)
− µ(2a+ b+ c)

]
{A(Y)B(X)

−A(X)B(X)}− µe{D(X,V)A(Y) −D(Y, V)A(X)}.

Hence the proof. �

8 Conformally flat MS(QE)n (n ≥ 3) with
R(X, Y).S = 0

Let us consider a conformally flat MS(QE)n (n ≥ 3). Then, from (29), we get

R(X, Y)Z =
1

n− 2
[S(Y, Z)X− S(X,Z)Y + g(Y, Z)QX− g(X,Z)QY]

+
r

(n− 1)(n− 2)
{g(Y, Z)X− g(X,Z)Y}.

(64)

Since the manifold satisfies R(X, Y).S = 0, we get

S(R(X, Y)Z,W) + S(Z,C(X, Y)W) = 0. (65)

Using (64) in (65) we obtain

g(Y, Z)S(QX,W) − g(X,Z)S(QY,W) + g(Y,W)S(QX,Z)

− g(X,W)S(QY,Z) =
r

n− 1
[g(Y, Z)S(X,W)

− g(X,Z)S(Y,W) + g(Y,W)S(X,Z)

− g(X,W)S(Y, Z)].

(66)

Let λ be the eigen value of Q corresponding to the eigen vector X. Then
QX = λX, i.e., S(X,W) = λg(X,W) (where the manifold is not Einstein) and
hence

S(QX,W) = λS(X,W). (67)
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Now using (67) in (66) we get,(
λ−

r

n− 1

)
[g(Y, Z)S(X,W) − g(X,Z)S(Y,W) + g(Y,W)S(X,Z)

− g(X,W)S(Y, Z) = 0.

Which gives

g(Y, Z)S(X,W)−g(X,Z)S(Y,W)+g(Y,W)S(X,Z)−g(X,W)S(Y, Z) = 0, (68)

provided λ− r
n−1 6= 0. Now using (11) in (68) we get

g(Y, Z)[ag(X,W) + bA(X)A(W) + cB(X)B(W) + d{A(X)B(W)

+ B(X)A(W)}+ eD(X,W)] − g(X,Z)[ag(Y,W) + bA(Y)A(W)

+ cB(Y)B(W) + d{A(Y)B(W) + B(Y)A(W)}+ eD(Y,W)] + g(Y,W)

[ag(X,Z) + bA(X)A(Z) + cB(X)B(Z) + d{A(X)B(Z) + B(X)A(Z)}

+ eD(X,Z)] − g(X,W)[ag(Y, Z) + bA(Y)A(Z) + cB(Y)B(Z)

+ d{A(Y)B(Z) + B(Y)A(Z)}+ eD(Y, Z)] = 0.

(69)

Now putting Z =W = U in (69), we obtain,

2d[A(Y)B(X) − B(Y)A(X)] = 0.

As d 6= 0, so

A(Y)B(X) − B(Y)A(X) = 0, (70)

that is, the vector fields U and V are co-directional. Thus we can state the
following:

Theorem 6 If, in a conformally flat Ricci-semisymmetric MS(QE)n (n ≥ 3)
r
n−1 is not an eigenvalue of the Ricci-operator Q, the vector fields U and V
corresponding to the 1-forms A and B respectively are co-directional.

9 Example of doubly warped product on MS(QE)n

In [10], B. Pal, A. Bhattacharyya and M. Tarafdar defined warped product
on MS(QE)4. Here, we define doubly warped product on four dimensional
MS(QE)n. Let (M4, g) be a 4-dimensional Lorentzian manifold endowed with
the metric given by

ds2 = gijdx
idxj = (1+ 2p)[(dx1)2 + (dx2)2 + (dx3)2 − (dx4)2], (71)



On some classes of mixed-super quasi-Einstein manifolds 47

where p > 0 is a smooth function and i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the
standard coordinates of M4.
In [11], A. A. Shaikh and S. K. Hui have shown that (71) becomes G(QE)n.
As it is non-Einstein metric, so one can easily show that (71) is MS(QE)n.

We know that (fB ×b F, f2gB ⊕ b
2
gF
) is a Lorentzian doubly warped prod-

uct if (F, gF) is Riemannian and either (B, gB) is Lorentzian or else (B, gB) is
a one-dimensional manifold with a negative definite metric −dt2. To define
Lorentzian doubly warped product onMS(QE)n, we take the line element on
R× R3 where we consider R is the B and R3 is the F. If we consider the above
example, we have the metric gF , where (F, gF) is Riemannian and the metric
gB, where (B, gB) is a one-dimensional manifold with a negative definite metric
ds2B = −(dx4)2. Here, the metric gF on R3 is

ds2F =
1

1+ 2p
[(dx1)2 + (dx2)2 + (dx3)2]

and the warping function
f : R3 −→ (0,∞)

is defined by
f(x1, x2, x3) =

√
(1+ 2p)

and the other warping function is

b : R −→ (0,∞),

which is defined by
b(x4) = (1+ 2p).

Here, we see that the warping functions f =
√

(1+ 2p) > 0 and b = (1+2p) >
0, both are also smooth functions. Therefore the metric

ds2M = f2ds2B + b
2ds2F

which is

ds2 = gijdx
idxj = −(1+ 2p)(dx4)2 + (1+ 2p)[(dx1)2 + (dx2)2 + (dx3)2].

This is the example of Lorentzian doubly warped product on MS(QE)4.
Next we consider the another example. Let (M4, g) be a Riemannian man-

ifold endowed with the metric given by

ds2 = gijdx
idxj = e2x

1

(dx1)2 + sin2 x1[(dx2)2 + (dx3)2 + (dx4)2], (72)
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where 0 < x1 < π
2 but x1 6= π

4 and i, j = 1, 2, 3, 4 and x1, x2, x3, x4 are the
standard coordinates of M4. Then it can be easily shown that it is a mixed
super quasi-Einstein manifold with non-vanishing scalar curvature.

We know that (fB×b F, f2gB ⊕ b
2
gF
) is a Riemannian doubly warped product

if (F, gF) and (B, gB) are both Riemannian manifolds. To define Riemannian
doubly warped product on MS(QE)4, we take the line element on L2 × L2,
where B = F = L2 = R × R. If we consider the example (72), we have the
metric gB, where (B, gB) is Riemannian and the metric gF , where (F, gF) is
also Riemannian with metrices

ds2B = (dx1)2 +
1

e2x
1

sin2 x1(dx2)2,

ds2F =
1

sin2 x1
[(dx3)2 + (dx4)2]

and the warping function
f : L2 −→ (0,∞)

is defined by

f(x1, x2) =
√
e2x

1

and the other warping function is

b : L2 −→ (0,∞),

which is defined by
b(x3, x4) = sin2 x1.

Here, we see that the warping functions f =
√
e2x

1
> 0 and b = sin2 x1 > 0

both are also smooth functions. Therefore the metric

ds2M = f2ds2B + b
2ds2F

which is

ds2M = e2x
1

[
(dx1)2 +

1

sin2 x1
(dx2)2

]
+ sin4 x1

[
1

sin2 x1
(dx3)2 +

1

sin2 x1
(dx4)2

]
,

is the example of Riemannian doubly warped product on MS(QE)4.

10 Completeness of doubly warped products on
MS(QE)4

In this section, we obtain some results on completeness properties of Rie-
mannian doubly warped products and Lorentzian doubly warped products on
MS(QE)4.
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The Riemannian case

In this subsection, we state some results about completeness of Riemannian
doubly warped products. Here we want to investigate about the completeness
properties of Riemannian doubly warped products with respect to the example
(72), which is MS(QE)4. Now it is clear that inf(f) > 0 and inf(b) > 0 and
B = F = L2 = R × R. Therefore (B, gB) and (F, gF) are complete Riemannian
manifolds. Hence by proposition (32) of [12], we can state that

Example 1 Let M = B × F be a Riemannian doubly warped product on
MS(QE)4 endowed with the metric given by

ds2M = e2x
1

[
(dx1)2 +

1

sin2 x1
(dx2)2

]
+ sin4 x1

[
1

sin2 x1
(dx3)2 +

1

sin2 x1
(dx4)2

]
,

where, x1, x2, x3, x4 are the standard coordinates of M4. Then (M4, g) is a
complete Riemannian manifold.

Here we want to discuss about global hyperbolicity of mixed super quasi-
Einstein space-time with doubly warped product fibers by using [1]. Let us
consider the example. Let (M4, g) be a Riemannian manifold endowed with
the metric given by

ds2M = −(dx4)2 + x1
[
(x3)4{(dx1)2}+

2d

(x3)4

{
(dx2)2 +

(x3)4

2dx1
(dx3)2

}]
,

where, x1, x2, x3, x4 are the standard coordinates of M4. Then it can be easily
shown that it is a mixed super quasi-Einstein manifold with non vanishing
scalar curvature. Now this manifold is of the form

M = (c, d)×h (Bf ×b F),

a Lorentzian singly warped product with the metric

g = −(dx4)2 ⊕ h2(f2gB + b2gF),

where −∞ ≤ c ≤ d ≤∞,
h : (c, d) −→ (0,∞)

is defined by h =
√
x1, which is strictly positive and smooth. Also (B, gB) and

(F, gF) are complete Riemannian manifolds and inf(b) that is inf(
√
2d

(x3)2
) > 0

or inf(f) that is inf((x3)2) > 0. Then we have the following:
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Example 2 Let M = (c, d)×h(Bf×bF), be a Lorentzian singly warped product
on MS(QE)4 endowed with the metric given by

ds2M = −(dx4)2 + x1
[
(x3)4{(dx1)2}+

2d

(x3)4

{
(dx2)2 +

(x3)4

2dx1
(dx3)2

}]
,

where, x1, x2, x3, x4 are the standard coordinates of M4. Then (M4, g) is glob-
ally hyperbolic.

Lorentzian case

We now consider the nonspacelike geodesic completeness of Lorentzian warped
products of the form

M =f (c, d)×b F

with the metric

g = f2dt2 ⊕ b2gF,

where −∞ ≤ c ≤ d ≤ ∞. Here a space-time is said to be null (respectively,
timelike) geodesically incomplete if some future directed null (respectively,
timelike) geodesic can not be extended for arbitrary negative and positive
values of an affine parameter. Let us consider (M4, g) be a 4-dimensional
Lorentzian manifold endowed with the metric given by

ds2 = e2x
1

(dx1)2 + (sin2)x1[(dx2)2 + (dx3)2 − (dx4)2],

where, x1, x2, x3, x4 are the standard coordinates of M4. Then it is clear that
it is mixed super quasi-Einstein manifold with non vanishing scalar curvature.
Now, this metric can be written as

ds2 = e2x
1

[
(dx1)2 +

1

sin2 x1
(dx2)2

]
+ sin4 x1

[
1

sin2 x1
(dx3)2 −

1

sin2 x1
(dx4)2

]
.

Take B = F = L2 = R× R and define

f : L2 −→ (0,∞)

is defined by

f(x1, x2) =
√
e2x

1

and the another function

b : L2 −→ (0,∞)
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is defined by

b(x3, x4) = sin2 x1.

Let us define

α : (−∞,∞) −→ B

is defined by

α(t) = (t, t)

and

β : (−∞,∞) −→ B

is defined by

β(t) = (t, t).

Clearly, α and β are complete null geodesics of B and F. Also, if γ = (α,β)
then it is a null pre-geodesic in M and γ′′ = γ by equation in proposition 2.3
in [12]. Now using the example (3.8) in [12], we get γ is incomplete. Then we
can state

Example 3 If (B, gB) and (F, gF) are null complete pseudo-Riemannian man-
ifolds then M =f B ×b f is not a null complete pseudo-Riemannian doubly
warped product with the metric gM = f2gB ⊕ b2gF on MS(QE)4.
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