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Abstract. In this paper, we study the geometry of the pseudo-slant
submanifolds of a cosymplectic space form. Necessary and sufficient con-
ditions are given for a submanifold to be a pseudo-slant submanifold,
pseudo-slant product, mixed geodesic and totally geodesic in cosymplec-
tic manifolds. Finally, we give some results for totally umbilical pseudo-
slant submanifold in a cosymplectic manifold and cosymplectic space
form.

1 Introduction

The differential geometry of slant submanifolds has shown an increasing devel-
opment since B. Y. Chen [3, 4] defined slant submanifolds in complex manifolds
as a natural generalization of both the invariant and anti-invariant subman-
ifolds. Many research articles have been appeared on the existence of these
submanifolds in different knows spaces. The slant submanifols of an almost
contact metric manifolds were defined and studied by A. Lotta [2]. After, this
type submanifolds were studied by J.L Cabrerizo et. al [7] of Sasakian mani-
folds. Recently, in [8] M. Atçeken studied slant and pseudo-slant submanifold
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in (LCS)n-manifolds. The notion of semi-slant submanifolds of an almost Her-
mitian manifold was introduced by N. Papagiuc [12]. Recently, A. Carriazo [1]
defined and studied bi-slant immersions in almost Hermitian manifolds and
simultaneously gave the notion of pseudo-slant submanifolds in almost Her-
mitian manifolds. The contact version of pseudo-slant submanifolds has been
defined and studied by V. A. Khan and M. A. Khan [15].

In this paper, we study pseudo-slant submanifolds of a cosymplectic mani-
fold. In section 2, we review basic formulas and definitions for a cosymplectic
manifold and their submanifolds. In section 3, we recall the definition and
some basic results of a pseudo-slant submanifold of an almost contact metric
manifold. In section 4, we give some new results for totally umbilical pseudo-
slant submanifold in a cosymplectic manifold M̃ and cosymplectic space form
M̃(c).

2 Preliminaries

In this section, we give some notations used throughout this paper. We recall
some necessary fact and formulas from the theory of Cosymplectic manifolds
and their submanifols.

Let M̃ be a (2m + 1)-dimensional almost contact metric manifold together
with a metric tensor g, a tensor field φ of type (1, 1), a vector field ξ and a

1-form η on M̃ which satisfy

φ2X = −X+ η(X)ξ, (1)

φξ = 0, η(φX) = 0, η(ξ) = 1, η(X) = g(X, ξ) (2)

and

g(φX,φY) = g(X, Y) − η(X)η(Y), g(φX, Y) = −g(X,φY) (3)

for any vector fields X, Y on M̃. An almost contact structure (φ, ξ, η) is said

to be normal if the almost complex structure J on the product manifold M̃×R
given by

J(X, f
d

dt
) = (φX− fξ, η(X)

d

dt
),

where f is the C∞− function on M̃ × R. The condition for normality in
terms of φ, ξ and η is [φ,φ] + 2dη ⊗ ξ = 0 on M̃, where [φ,φ] (X, Y) = φ2

[X, Y] + [φX,φY] − φ [φX, Y] − φ [X,φY] is the Nijenhuis tensor of φ. Finally
the fundamental 2−form Φ is defined by Φ(X, Y) = g(X,φY).
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An almost contact metric structure (φ, ξ, η, g) is said to be cosymplectic,
if it is normal and both Φ and are η closed. So we have on a cosymplectic
manifold M̃

(∇̃Xφ)Y = 0 (4)

for any vector fields X, Y on M̃. (4) implies that

∇̃Xξ = 0 (5)

for any X ∈ Γ(TM̃), that is ξ is a killing vector field.

Let R̃ be the curvature tensor of the connection ∇̃. The sectional curvature
of a φ- sectional is called a φ- sectional curvature. A cosymplectic manifold
with constant φ- sectional curvature c is said to be a cosymplectic space form
and it is denoted by M̃(c). The curvature tensor R̃ of a cosymplectic space

form M̃(c) is given by

R̃(X, Y)Z =
c

4
{g(Y, Z)X− g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(φY,Z)φX

+ g(X,φZ)φY + 2g(X,φY)φZ}

(6)

for any vector fields X, Y, Z tangent to M̃[13].
Now, let M be an isometrical immersed submanifold of a contact metric

manifold M̃ and denote by the same symbol g the Riemanian metric induced
on M. Let Γ(TM) and Γ(T⊥M) be the diferential vector fields set tangent and
normal to M, respectively. Also we denote by ∇ and ∇⊥ induced connections
on Γ(TM) and Γ(T⊥M), respectively. Then the Gauss and Weingarten formulas
are, respectively, given by

∇̃XY = ∇XY + h(X, Y) (7)

and

∇̃XV = −AVX+∇⊥
XV, (8)

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h and AV are the second funda-

mental form and shape operator for the immersed of M into M̃, respectively.
They are related as

g(AVX, Y) = g(h(X, Y), V). (9)
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We put

hrij = g(h(ei, ej), er) and ‖h‖2 =

n∑
i,j=1

g(h(ei, ej), h(ei, ej)) ,

where, {e1, e2, . . . , en} is an orthonormal basis of Γ(TM) and {en+1, . . . , e2m+1}

is also orthonormal basis of Γ(T⊥M).
The mean curvature vector H of M is given by

H =
1

n
trace(h) =

1

n

n∑
i=1

h(ei, ei). (10)

A submanifold M of an contact metric manifold M̃ is said to be totally um-
bilical if

h(X, Y) = g(X, Y)H, (11)

where H is the mean curvature vector. A submanifold M is said to be totally
geodesic submanifold if h(X, Y) = 0, for each X, Y ∈ Γ(TM) and M is said to
be minimal submanifold if H = 0.

For any submanifold M of a Riemannian manifold M̃, the equation of Gauss
is given by

R̃(X, Y)Z = R(X, Y)Z+Ah(X,Z)Y −Ah(Y,Z)X+ (∇Xh)(Y, Z) − (∇Yh)(X,Z), (12)

where R̃ and R denote the Riemannian curvature tensor of M̃ and M, respec-
tively, where the covariant derivative ∇h of h is defined by

(∇Xh)(Y, Z) = ∇
⊥
Xh(Y, Z) − h(∇XY, Z) − h(∇XZ, Y) (13)

for any X, Y, Z ∈ Γ(TM).
The normal component of (12) is said to be the Codazzi equation is given

by

(R̃(X, Y)Z)
⊥
= (∇Xh)(Y, Z) − (∇Yh)(X,Z), (14)

where (R̃(X, Y)Z)
⊥

denotes the normal part of R̃(X, Y)Z. If (R̃(X, Y)Z)
⊥
= 0,

thenM is said to be curvature-invariant submanifold of M̃. The Ricci equation
is given by

g( R̃(X, Y)V,U) = g(R̃
⊥
(X, Y)V,U) + g([AU, AV ]X, Y), (15)
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for any X, Y,∈ Γ(TM) and V,U ∈ Γ(T⊥M), where R̃
⊥

denotes the Rieman-

nian curvature tensor of the normal T⊥M and if R̃
⊥

= 0, then the normal
connection of M is called flat.

A cosymplectic manifold M̃ is said to be η-Einstein if its Ricci tensor S of
type (0, 2) is of the from

S(X, Y) = ag(X, Y) + bη(X)η(Y) (16)

where a, b are smooth functions on M̃. If b = 0, then the manifold is called
Einstein.

3 Pseudo-slant submanifolds of a cosymplectic
manifold

In this section, we study pseudo-slant submanifolds in a cosymplectic manifold
and we give some characterization results.

Let M be a submanifold of an almost contact metric manifold M̃. Then for
any X ∈ Γ(TM), we can set

φX = TX+NX, (17)

where TX and NX denote the tangential and the normal components of φX,
respectively. In the same way, for any V ∈ Γ(T⊥M), we can write

φV = tV + nV, (18)

where tV(resp.nV) are tangential(resp. normal) components of φV.
A submanifold M is said to be invariant if N is identically zero, that is,

φX ∈ Γ(TM) for all X ∈ Γ(TM). On the other hand, M is said to be anti-

invariant if T is identically zero, that is, φX ∈ Γ(T⊥
M) for all X ∈ Γ(TM).

Thus by using (1), (17) and (18), we obtain

T 2 = −I− tN+ η⊗ ξ, NT + nN = 0 (19)

and
n2 = −I−Nt, Tt+ tn = 0. (20)

Furthermore, the covariant derivatives of the tensor field T , N, t and n are,
respectively, defined by

(∇XT)Y = ∇XTY − T∇XY (21)

(∇XN)Y = ∇⊥
XNY −N∇XY (22)

(∇Xt)V = ∇XtV − t∇⊥
XV (23)
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and
(∇Xn)V = ∇⊥

XnV − n∇⊥
XV. (24)

Furthermore, for any X, Y ∈ Γ(TM), we have g(TX, Y) = −g(X, TY) and V,U ∈
Γ(T⊥M). By using (3), (17) and (18), we have g(U,nV) = −g(nU,V). These
show that T and n are also skew-symmetric tensor fields. Moreover, for any
X ∈ Γ(TM) and V ∈ Γ(T⊥M), we have

g(NX,V) = −g(X, tV), (25)

which gives the relation between N and t.
Taking into account (6) and (15), we have

g(R̃
⊥
(X, Y)V,U) =

c

4
{g(X, tV)g(U,NY) − g(Y, tV)g(NX,U)

+ 2g(X, TY)g(nV,U)}+ g([AV , AU]X, Y)
(26)

for any X, Y ∈ Γ(TM) and V,U ∈ Γ(T⊥M).
By using (6) and (12), the Riemanian curvature tensor R of an immersed

submanifold M of a cosymplectic space form M̃(c) is given by

R(X, Y)Z =
c

4
{g(Y, Z)X− g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(X,φZ)φY

+ g(φY,Z)φX+ 2g(X,φY)φZ}+Ah(Y,Z)X−Ah(X,Z)Y

+ (∇Yh)(X,Z) − (∇Xh)(Y, Z).

(27)

Comparing the tangential and normal parts of the both sides of this equation,
we have, following equations of Gauss and Codazzi equation respectively:

(R(X, Y)Z)
T

=
c

4
{g(Y, Z)X− g(X,Z)Y + η(X)η(Z)Y − η(Y)η(Z)X

+ η(Y)g(X,Z)ξ− η(X)g(Y, Z)ξ+ g(X, TZ)TY

+ g(TY, Z)TX+ 2g(X, TY)TZ}+Ah(Y,Z)X−Ah(X,Z)Y

(28)

and

(∇Xh)(Y, Z) − (∇Yh)(X,Z) =
c

4
{g(X, TZ)NY + g(TY, Z)NX

+ 2g(X, TY)NZ}.
(29)

By an easy computation, we obtain the following formulas

(∇XT)Y = ANYX+ th(X, Y) (30)
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and

(∇XN)Y = nh(X, Y) − h(X, TY). (31)

Similarly, for any V ∈ Γ(T⊥M) and X ∈ Γ(TM), we obtain

(∇Xt)V = AnVX− TAVX (32)

and

(∇Xn)V = −h(tV, X) −NAVX. (33)

Since M is tangent to ξ, making use of (5), (7), ( 9) and (17), we obtain

∇Xξ = 0, h(X, ξ) = 0, AVξ = 0 (34)

for all V ∈ Γ(T⊥M) and X ∈ Γ(TM).

Definition 1 A submanifold M of an almost contact metric manifold M̃ is
said to be slant submanifold if for any x ∈ M and X ∈ TxM − ξ the angle
between TxM and φX is constant. The constant angle [0, π2 ] is then called slant
angle of M. If θ = 0, the submanifold is invariant submanifold, if θ = π

2 then,
it is anti-invariant submanifold, if θ ∈ (0, π2 ) then it is proper slant submanifold
[2].

In almost contact metric manifolds, J. L Cabrerizo [7] proved the following
theorem.

Theorem 1 Let M be a slant submanifold of an almost contact metric mani-
fold M̃ such that ξ ∈ Γ(TM). Then, M is slant submanifold if and only if there
exists a constant λ ∈ [0, 1] such that

T 2 = −λ(I− η⊗ ξ) (35)

furthermore, in this case, if θ is the slant angle of M, then λ = cos2 θ [7].

Corollary 1 Let M be a slant submanifold of an almost contact metric man-
ifold M̃ with slant angle θ. Then for any X, Y ∈ Γ(TM), we have

g(TX, TY) = cos2 θ {g(X, Y) − η(X)η(Y)} (36)

and

g(NX,NY) = sin2 θ {g(X, Y) − η(X)η(Y)} [7]. (37)
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Let M be a slant submanifold of an almost contact metric manifold M̃ with
slant angle θ. Then for any X ∈ Γ(TM), from (19) and (35), we have

− cos2 θ(X− η(X)ξ) = −X+ η(X)ξ− tNX

from which
tNX = − sin2 θ(X− η(X)ξ) (38)

by using (37),
N2X = − sin2 θ(X− η(X)ξ) (39)

from (38) and (39) we, obtain

N2 = tN.

It is well known that th = 0 plays an important role in the geometry of sub-
manifolds. This means that the induced structure T is a cosymplectic structure
on M.

By using (30) and (34), we obtain

η((∇XT)Y) = 0,

for X, Y ∈ Γ(Dθ).

Definition 2 We say that M is a pseudo-slant submanifold of an almost con-
tact metric manifold M̃ if there exist two orthogonal distributions Dθ and D⊥

on M such that

(a) TM admits the orthogonal direct decomposition TM = D⊥ ⊕ Dθ, ξ ∈
Γ(Dθ),

(b) The distribution D⊥ is anti-invariant(totally-real) i.e., φD⊥ ⊂ (T⊥M),

(c) The distribution Dθ is a slant, that is, the slant between of Dθ and φ(Dθ)
is a constant [15].

Let d1 =dim(D⊥) and d2 = dim(Dθ). We distinguish the following five cases.

(i) If d2 = 0 or θ = π
2 , then M is an anti-invariant submanifold.

(ii) If d1 = 0 and θ = 0, then M is invariant submanifold.

(iii) If d1 = 0 and θ 6= {0, π2 }, then M is a proper slant submanifold.

(iv) If d2d1 6= 0 and θ = 0, then M is a semi-invariant submanifold.

(v) If d2d1 6= 0 and θ 6= {0, π2 }, then M is a proper pseudo-slant submanifold.
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By µ we denote the orthogonal complementary of φ(TM) in T⊥M, then we
have the following sum

T⊥M = N(D⊥)⊕N(Dθ)⊕ µ.

Let M be a proper pseudo-slant submanifold of a cosymplectic manifold M̃.
Then for any Z,W ∈ Γ(D⊥) and U ∈ Γ(TM), also by using (4), (7) and (9),
we have

g(ANZW −ANWZ,U) = g(h(W,U), NZ) − g(h(Z,U), NW)

= g(∇̃UW,φZ) − g(∇̃UZ,φW)

= g(φ∇̃UZ,W) − g(φ∇̃UW,Z)

= g(∇̃UφZ− (∇̃Uφ)Z,W) + g((∇̃Uφ)W − ∇̃UφW,Z)

= g(∇̃UφZ,W) − g(∇̃UφW,Z)
= −g(ANZU,W) + g(ANWU,Z)

= g(ANWZ−ANZW,U).

It follows that
ANZW = ANWZ.

Theorem 2 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor N is parallel if and only if the tensor t is parallel.

Proof. By using (9), (31) and (32), we have

g((∇XN)Y, V) = g(nh(X, Y), V) − g(h(X, TY), V)

= −g(h(X, Y), nV) − g(AVX, TY)

= −g(AnVX, Y) + g(TAVX, Y)

= g(−AnVX+ TAVX, Y) = g((∇Xt)V, Y),

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). This proves our assertion. �

Theorem 3 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor N is parallel if and only if

AVTY = −AnVY

for any Y ∈ Γ(TM) and V ∈ Γ(T⊥M).
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Proof. By using (9) and (31), we have

g((∇XN)Y, V) = g(nh(X, Y), V) − g(h(X, TY), V)

= −g(h(X, Y), nV) − g(AVTY, X)

= −g(AnVX, Y) − g(AVTY, X)

for any X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M). This proves our assertion. �

Theorem 4 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. The covariant derivation of T is skew-symmetric, that is

g((∇XT)Y, Z) = −g((∇XT)Z, Y),

for any X, Y, Z ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM), by using (9), (25) and (30), we obtain

g((∇XT)Y, Z) = g(ANYX+ th(X, Y), Z)

= g(h(X,Z), NY) − g(h(X, Y), NZ)

= −g(th(X,Z), Y) − g(ANZX, Y)

= −g(ANZX+ th(X,Z), Y)

= −g((∇XT)Z, Y).

This complete the proof. �

Theorem 5 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor T is parallel if and only if

ANYX = ANXY

for any X, Y ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM), by using (9), (25) and (30), we obtain

g((∇XT)Y, Z) = g(ANYX+ th(X, Y), Z)

= g(h(X,Z), NY) − g(h(X, Y), NZ)

= g(ANYZ,X) − g(ANZY, X)

This complete the proof. �
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Theorem 6 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. The covariant derivation of n is skew-symmetric, that is,

g((∇Xn)V,U) = −g((∇Xn)U,V),

for any X ∈ Γ(TM) and V,U ∈ Γ(T⊥M).

Proof. For any X ∈ Γ(TM) and V,U ∈ Γ(T⊥M), from (9), (25) and (33), we
reach

g((∇Xn)V,U) = g(−h(tV, X) −NAVX,U)
= g(−AUX, tV) + g(AVX, tU)

= g(NAUX,V) + g(h(X, tU), V)

= −g(−NAUX− h(X, tU), V)

= −g((∇Xn)U,V).

This proves our assertion. �

Theorem 7 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. Then the tensor n is parallel if and only if the shape operator AV
of M satisfies the condition

AVtU = AUtV, (40)

for all U,V ∈ Γ(T⊥M).

Proof. From (9), (25) and (33), we have

g((∇Xn)V,U) = −g(h(tV, X), U) − g(NAVX,U)

= −g(AUtV, X) + g(AVX, tU)

= g(AVtU−AUtV, X),

for all X ∈ Γ(TM). The proof is complete. �

Theorem 8 Let M be a proper pseudo-slant submanifold of a cosymplectic
manifold M̃. If tensor n is parallel then, M is totally geodesic submanifold of
M̃.
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Proof. Since n is parallel, from (33) and (17), we have

h(tV, X) + φAVX = 0 (41)

for all X ∈ Γ(TM) and V ∈ Γ(T⊥M). Applying φ to (41) and taking into
account (1) and (34), we obtain

0 = φ2AVX+ φh(tV, X)

= −AVX+ η(AVX)ξ+ th(tV, X) + nh(tV, X).

This yields to

−AVX+ th(tV, X) = 0.

On the other hand, also by using (9), (19), (25) and (40), we conclude that

g(AVX,Z) = g(th(tV, X), Z) = −g(h(tV, X), NZ)

= −g(ANZtV, X) = −g(AVtNZ,X),

for Z ∈ Γ(TM). Taking into account of tNZ = −Z+ η(Z)ξ− T 2Z, we obtain

g(AVZ,X) = −g(−AVZ+ η(Z)AVξ−AVT
2Z,X)

= g(AVZ,X) + g(AVX, T
2Z)

that is,

g(T 2AVX,Z) = 0.

Here, by using (36), we conclude

0 = −g(TAVX, TZ) = − cos2 θg(AVX,Z)

for all Z ∈ Γ(TM). Since M is a proper pseudo-slant submanifold, we arrive at

AV = 0, that is, M is totally geodesic in M̃. �

Definition 3 A pseudo-slant submanifold M of cosymplectic manifold M̃ is
said to be Dθ-geodesic (resp. D⊥-geodesic) if h(X, Y) = 0 for X, Y ∈ Γ(Dθ)
(resp. h(Z,W) = 0 for Z,W ∈ Γ(D⊥)). If h(X,Z) = 0, M is called mixed
geodesic submanifold, for any X ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Theorem 9 Let M be a proper pseudo-slant submanifold of a Cosymplectic
manifold M̃. If t is parallel, then either M is a mixed-geodesic or an anti-
invariant submanifold.
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Proof. From Theorem 2 and (31) we obtain

nh(X, Y) = 0,

for any X ∈ Γ(Dθ) and Y ∈ Γ(D⊥). Also by using (31) and (34), we conclude
that

nh(Y, TX) − h(Y, T 2X) = cos2 θh(X, Y) = 0.

This proves our assertion. �

Theorem 10 Let M be a proper pseudo-slant submanifold of a cosymplec-
tic manifold M̃. If t is parallel, then either M is a D⊥-geodesic or an anti-
invariant submanifold of M̃.

Proof. If t is parallel, then making use of (32), we obtain

TANYZ = 0,

for any Y, Z ∈ Γ(D⊥). This implies thatM is either anti-invariant or ANYZ = 0.
So we obtain

g(h(Z,W), NY) = 0,

for any Y, Z,W ∈ Γ(D⊥). Also by using (32), we conclude that

g(AnVZ, Y) − g(TAVZ, Y) = g(h(Y, Z), nV) = 0,

for any V ∈ Γ(T⊥M). This tells us that M is either D⊥-geodesic or it is an
anti-invariant submanifold. �

Given a proper pseudo-slant submanifold M of a Cosymplectic manifold M̃,
if the distributions Dθ and D⊥ are totally geodesic in M, then M is said to
be contact pseudo-slant product.

Theorem 11 Let M be a pseudo-slant submanifold of a cosymplectic manifold
M̃. Then M is a contact pseudo-slant product if and only if the shape operator
of M satisfies

AND⊥TDθ = ANTDθD
⊥.

Proof. Since the ambient space M̃ is a cosymplectic manifold, for any X, Y ∈
Γ(Dθ) and Z ∈ Γ(D⊥), we have

g(∇XY, Z) = g(∇̃XφY,φZ) = g(∇̃XTY,φZ) + g(∇̃XNY,φZ)

= −g(∇̃XφTY, Z) + g(∇⊥
XNY,NZ)

= −g(∇XT 2Y, Z) − g(∇̃XNTY,Z) + g(∇⊥
XNY,NZ)

= cos2 θg(∇XY, Z) + g(ANTYX,Z) + g(N∇XY,NZ) − g(h(X, TY), NZ),
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which implies that

cos2 θg(∇XY, Z) = g(ANTYZ−ANZTY, X). (42)

On the other hand, for any Z,W ∈ Γ(D⊥) and X ∈ Γ(Dθ), we reach at

g(∇ZW,X) = −g(∇̃ZX,W) = −g(∇̃ZφX,φW)

= −g(∇̃ZTX,φW) − g(∇̃ZNX,φW)

= g(∇̃ZφTX,W) − g(∇⊥
ZNX,NW)

= g(∇ZT 2X,W) + g(∇ZNTX,W) − g(∇⊥
ZNX,NW)

= − cos2 θg(∇ZX,W) − g(ANTXZ,W) − g(N∇ZX,NW)

− g((∇ZN)X,NW)

= cos2 θg(∇ZW,X) − g(ANTXZ,W) − g(N∇ZX,NW)

+ g(h(Z, TX), NW).

This implies that

cos2θg(∇ZW,X) = g(ANTXW −ANWTX, Z). (43)

From (42) and (43), we get desired result. �

4 Pseudo-slant submanifolds in cosymplectic space
forms

In this section, we will study pseudo-slant submanifolds in a cosymplectic
space form, give some characterization and submanifold will be characterized.

Theorem 12 Let M be a pseudo-slant submanifold of a cosymplectic space
form M̃(c) such that c 6= 0. If M is a curvature-invariant pseudo-slant sub-
manifold, then M is either semi-invariant or anti-invariant submanifold.

Proof. We suppose that M is a curvature-invariant pseudo-slant submanifold
of a cosymplectic space form M̃(c) such that c 6= 0. Then from (29) and (14),
we have

g(X, TZ)NY + g(TY, Z)NX+ 2g(X, TY)NZ = 0, (44)

for any X, Y, Z ∈ Γ(TM). Taking X = Z and Y = TZ in (44), we have

g(TZ, TZ)NZ = 0.
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Here, by using (36) and (37), we obtain

cos2 θ sin2 θ
{
g(Z,Z) − η2(Z)

}2
= 0.

This implies that sin 2θ{g(Z,Z) − η2(Z)} = 0, that is, M is either a semi-
invariant or an anti-invariant submanifold. Thus the proof is complete. �

Theorem 13 Let M be a pseudo-slant submanifold of a cosymplectic space
form M̃(c) with flat normal connection such that c 6= 0. If TAV = AVT for
any vector V normal to M, then M is either an anti- invariant or it is a
generic submanifold of M̃(c).

Proof. If the normal connection of M is flat, then from (26), we have

g([AU, AV ]X, Y) =
c

4
{g(X,φV)g(U,φY) − g(Y,φV)g(φX,U)

+2g(X,φY)g(φV,U)}

for any X, Y ∈ Γ(TM) and U,V ∈ Γ(T⊥M). Here, choosing U = nV and
Y = TX, by direct calculations, we can state

g([AV , AnV ]X, TX) = −
c

2
{g(TX, TX)g(nV,nV)},

that is,

g(AnVAVTX−AVAnVTX, X) = −
c

2
{g(TX, TX)g(nV,nV)} ,

from which

tr(AnVAVT) − tr(AVAnVT) =
c

2
tr(T 2)g(nV,nV).

If TAV = AVT , then we conclude that tr(AnVAVT) = tr(AVAnVT) and thus

c

2
tr(T 2)g(nV,nV) = 0,

from here dim(TM) = 2q+ q+ 1, then we can easily to see that

(2p+ q+ 1)cos2θg(nV,nV) = 0.

Thus θ is either π
2 or n = 0. This implies that M is either an anti-invariant or

it is a generic submanifold. �
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Theorem 14 Let M be a proper pseudo-slant submanifold of a cosymplectic
space form M̃(c). Then the Ricci tensor S of M is given by

S(X,W) =
c

4

{
2p+ q− 1+ 3 cos2 θ

}
(g(X,W) − η(X)η(W)) (45)

+(2p+ q+ 1)g(h(X,W), H) −

2p+q+1∑
l=1

g(h(el,W), h(X, el))

for any X,W ∈ Γ(TM).

Proof. For any X, Y, Z ∈ Γ(TM), by using (6) and (12), we have

g(R(X, Y)Z,W) =
c

4
{g(Y, Z)g(X,W) − g(X,Z)g(Y,W)

+ η(X)η(Z)g(Y,W) − η(Y)η(Z)g(X,W)

+ η(Y)η(W)g(X,Z) − η(X)η(W)g(Y, Z)

+ g(X,φZ)g(φY,W) − g(Y,φZ)g(φX,W)

+ 2g(X,φY)g(φZ,W)}+ g(h(X,W), h(Y, Z))

− g(h(Y,W), h(X,Z)).

(46)

Now, let e1, e2, . . . , ep, ep+1 = sec θTe1, ep+2 = sec θTe2, . . . , e2p = sec θTep, e2p+1
= ξ, e2p+2, e2p+3, . . . , e2p+q+1 be an orthonormal basis of Γ(TM) such that
e1, e2, . . . , ep, ep+1 = sec θTe1, ep+2 = sec θTe2, . . . , e2p = sec θTep, e2p+1 =
ξ are tangent to Γ(Dθ) and e2p+2, e2p+3, . . . , e2p+q+1 are tangent to Γ(D⊥).
Hence, from (46) taking Y = Z = ei, ej, ek and 1 ≤ i ≤ p, 1 ≤ j ≤ p, ξ, 2p+2 ≤
k ≤ 2p+ q+ 1 then, we obtain

S(X,W) =

p∑
i=1

g(R(X, ei)ei,W) +

2p∑
j=p+1

g(R(X, sec θTej) sec θTej,W)

+ g(R(X, ξ)ξ,W) +

2p+q+1∑
k=2p+2

g(R(X, ek)ek,W)

=
c

4
{(2p+ q)g(X,W)}−

c

4
{(2p+ q− 1)η(X)η(W)

+ 3 cos2 θ[g(X,W) − η(X)η(W)] − g(X,W)}

+ (2p+ q+ 1)g(h(X,W), H) −

p∑
i=1

g(h(ei,W), h(X, ei))
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−

2p∑
j=p+1

g(h(sec θTej,W), h(X, sec θTej)) + g(h(ξ,W), h(X, ξ))

−

2p+q+1∑
k=2p+2

g(h(ek,W), h(X, ek)).

Here
2p+q+1∑
l=1

g(h(el,W), h(X, el) =

p∑
i=1

g(h(ei,W), h(X, ei)

+

2p∑
j=p+1

g(h(sec θTej,W), h(X, sec θTej))

+

2p+q+1∑
k=2p+2

g(h(ek,W), h(X, ek))

hance, we have

S(X,W) =
c

4

{
2p+ q− 1+ 3 cos2 θ

}
(g(X,W) − η(X)η(W))

+(2p+ q+ 1)g(h(X,W), H) −

2p+q+1∑
l=1

g(h(el,W), h(X, el))

the proof is complete. �

Theorem 15 Let M be a pseudo-slant submanifold of a cosymplectic space
form M̃(c). Then the scalar curvature ρ of M is given by

ρ =
c

4
{2p+ q− 1+ 3 cos2 θ}(2p+ q) + (2p+ q+ 1)2 ‖H)‖2 − ‖h‖2 . (47)

Proof. By using (45), we have

ρ =

2p+q+1∑
l=1

S(el, el)

which gives (47). Thus the proof is complete. �
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Theorem 16 Let M be a proper pseudo-slant submanifold of a cosymplectic
space form M̃(c) such that c 6= 0. Every totally umbilical pseudo-slant sub-

manifold M in a cosymplectic space form M̃(c) is a semi-invariant or anti-
invariant submanifold.

Proof. We suppose that M is totally umbilical pseudo-slant submanifold in
cosymplectic space form M̃(c). Since M is totally geodesic, we have

g(R̃(X, Y)Z,φZ) = g((∇Xh)(Y, Z) − (∇Yh)(X,Z), φZ) = 0,

or

g(R̃(X, Y)Z,φZ) = g(∇⊥
Xg(Y, Z)H− g(∇XY, Z)H− g(∇XZ, Y)H,φZ)

−g(∇⊥
Y g(X,Z)H− g(∇YX,Z)H− g(∇YZ,X)H,φZ) = 0

for any X, Y ∈ Γ(Dθ) and Z ∈ Γ(D⊥). Since the ambient space M is a cosym-
plectic space form, from (6) we infer

g(R̃(X, Y)Z,φZ) =
c

2
g(X,φY)g(NZ,NZ) = 0. (48)

Taking Y = TX in equation (48), we have

g(X,φTX)g(NZ,NZ) = 0.

Here, by using (36) and (37), we obtain

cos2 θ sin2 θg(Z,Z){g(X,X) − η2(X)} = 0.

This implies that sin 2θ = 0, that is, M is either a semi-invariant or an anti-
invariant submanifold. This proves our assertion. �

Theorem 17 Let M be a totally umbilical pseudo-slant submanifold of a Cosym-
plectic space form M̃(c). Then the Ricci tensor S of M is given by

S(X,W) =
c

4

{
2p+ q− 1+ 3 cos2 θ

}
(g(X,W) − η(X)η(W)) (49)

for any X,W ∈ Γ(TM).

Proof. From by using (11) and (45), we obtain

S(X,W) =
c

4

{
2p+ q− 1+ 3 cos2 θ

}
(g(X,W) − η(X)η(W))

+(2p+ q+ 1)g(g(X,W)H,H) −

2p+q+1∑
l=1

g(g(el,W)H, g(X, el)H)

this complete the proof. Thus we have the following corollary. �
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Corollary 2 Every totally umbilical pseudo-slant submanifold M of a cosym-
plectic space form M̃(c) is an η-Einstein submanifold.

Theorem 18 Let M be a totally umbilical pseudo-slant submanifold of a cosym-
plectic space form M̃(c). Then the scalar curvature ρ of M is given by

ρ =
c

4
{2p+ q− 1+ 3 cos2 θ}(2p+ q). (50)

Proof. By using (49), we have

ρ =

2p+q+1∑
l=1

S(el, el)

which gives (50). Thus the proof is complete. �

Example 1 Let M be a submanifold of R9 defined by

x(u, v, s,w, z) = (u,−
√
2v, v sinα, v cosα, s cosw,− cosw, s sinw,− sinw, z).

We can easily to see that the tangent bundle of M is spanned by the tangent
vectors

e1 =
∂

∂x1
, e5 = ξ =

∂

∂z
,

e2 = −
√
2
∂

∂y1
+ sinα

∂

∂x2
+ cosα

∂

∂y2
,

e3 = cosw
∂

∂x3
+ sinw

∂

∂x4
,

e4 = −s sinw
∂

∂x3
+ sinw

∂

∂y3
+ s cosw

∂

∂x4
− cosw

∂

∂y4
.

We define the almost contact structure φ of R9, by

φ

(
∂

∂xi

)
=

∂

∂yi
, φ

(
∂

∂yj

)
= −

∂

∂xj
, φ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 4.

For any vector field X = λi
∂
∂xi

+ µj
∂
∂yi

+ ν ∂
∂z ∈ Γ(TR

9), then we have

g(X,X) = λ2i + µ
2
j + ν

2, g(φX,φX) = λ2i + µ
2
j
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and

φ2X = −λi
∂

∂xi
− µj

∂

∂yi
= −X+ η(X)ξ,

for any i, j = 1, 2, 3, 4. It follows that g(φX,φX) = g(X,X) − η2(X). Thus
(φ, η, ξ, g) is an almost contact metric structure on R9. Thus we have

φe1 =
∂

∂y1
,

φe2 =
√
2
∂

∂x1
+ sinα

∂

∂y2
− cosα

∂

∂x2
,

φe3 = cosw
∂

∂y3
+ sinw

∂

∂y4
,

φe4 = −s sinw
∂

∂y3
− sinw

∂

∂x3
+ s cosw

∂

∂y4
+ cosw

∂

∂x4
.

By direct calculations, we can infer Dθ = span{e1, e2} is a slant distribution

with slant angle cos θ = g(e1,φe2)
‖e1‖‖φe2‖ =

√
6
3 , θ = cos−1(

√
6
3 ). Since g(φe3, ei) = 0,

i = 1, 2, 4, 5 and g(φe4, ej) = 0, j = 1, 2, 3, 5, φe3, φe4 are orthogonal
to M, D⊥ = span{e3, e4} is an anti-invariant distribution. Thus M is a 5-
dimensional proper pseudo-slant submanifold of R9 with its usual almost con-
tact metric structure.

Let ∇ be the Levi-Civita connection on R9. Then we have

0 = [e1, e1] = [e2, e2] = [e3, e3] = [e4, e4] = [e5, e5]

= [e1, e2] = [e1, e3] = [e1, e4] = [e1, e5] = [e2, e3]

= [e2, e4] = [e2, e5] = [e3, e5] = [e4, e5],

[e3, e4] =

(
cos 2w

sinw

)
∂

∂x3
+

(
1

s sinw

)
∂

∂y3
−

(
1

cosw

)
∂

∂x4

+

(
(s− 1)

s
cosw

)
∂

∂y4
,

and

g(e1, e1) = g(e3, e3) = 1, g(e2, e2) = 3, g(e4, e4) = s
2 + 1, g(e5, e5) = 1,



Pseudo-slant submanifold in cosymplectic space forms 73

g(e1, e2) = g(e1, e3) = g(e1, e4) = g(e1, e5) = 0,

g(e2, e3) = g(e2, e4) = g(e2, e5) = 0,

g(e3, e4) = g(e3, e5) = g(e4, e5) = 0.

Using Koszul’s formula, the Riemannian connection ∇ of the metric g is given
by

2g(∇XY, Z) = Xg(Y, Z) + Yg(Z,X) − Zg(X,Z)
− g(X, [Y, Z]) − g(Y, [X,Z]) − g(Z, [X, Y])

Koszul’s formula yields, we can find

0 = ∇e1e1 = ∇e1e2 = ∇e1e3 = ∇e1e4 = ∇e1e5
= ∇e2e2 = ∇e2e4 = ∇e2e5 = ∇e3e1 = ∇e3e2

= ∇e3e5 = ∇e4e5 = ∇e5e5, ∇e4e4 = −se3, ∇e3e3 =
1

s
e3,

∇e3e4 =
s

s2 + 1

(
1− s2 + (1− s− s2) cos2w+ s2 sin2w

)
e4

+

(
cos 2w− tan2w

tanw

)
e3.

Thus we can say that M is Dθ-geodesic and mixed- geodesic. But it is not D⊥-
geodesic.
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