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Abstract. The maximum of the conditional hazard function is a param-
eter of great importance in seismicity studies, because it constitutes the
maximum risk of occurrence of an earthquake in a given interval of time.
Using the kernel nonparametric estimates of the first derivative of the
conditional hazard function, we establish uniform convergence properties
and asymptotic normality of an estimate of the maximum in the context
of independence data.

1 Introduction

The statistical analysis of functional data studies the experiments whose re-
sults are generally the curves. Under this supposition, the statistical analysis
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focuses on a framework of infinite dimension for the data under study. This
field of modern statistics has received much attention in the last 20 years, and
it has been popularised in the book of Ramsay and Silverman (2005). This
type of data appears in many fields of applied statistics: environmetrics (Da-
mon and Guillas, 2002), chemometrics (Benhenni et al., 2007), meteorological
sciences (Besse et al., 2000), etc.

From a theoretical point of view, a sample of functional data can be in-
volved in many different statistical problems, such as: classification and princi-
pal components analysis (PCA) (1986,1991) or longitudinal studies, regression
and prediction (Benhenni et al., 2007; Cardo et al., 1999). The recent mono-
graph by Ferraty and Vieu (2006) summarizes many of their contributions to
the nonparametric estimation with functional data; among other properties,
consistency of the conditional density, conditional distribution and regression
estimates are established in the i.i.d. case under dependence conditions (strong
mixing). Almost complete rates of convergence are also obtained, and differ-
ent techniques are applied to several examples of functional data samples.
Related work can be seen in the paper of Masry (2005), where the asymp-
totic normality of the functional nonparametric regression estimate is proven,
considering strong mixing dependence conditions for the sample data. For au-
tomatic smoothing parameter selection in the regression setting, see Rachdi
and Vieu (2007).

Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest,
especially to inventory theorists, medical researchers, logistics planners, relia-
bility engineers and seismologists. The non-parametric estimation of the haz-
ard function has been extensively discussed in the literature. Beginning with
Watson and Leadbetter (1964), there are many papers on these topics: Ahmad
(1976), Singpurwalla and Wong (1983), etc. We can cite Quintela (2007) for a
survey.

The literature on the estimation of the hazard function is very abundant,
when observations are vectorial. Cite, for instance, Watson and Leadbetter
(1964), Roussas (1989), Lecoutre and Ould-Säıd (1993), Estvez et al. (2002)
and Quintela-del-Rio (2006) for recent references. In all these works the au-
thors consider independent observations or dependent data from time series.
The first results on the nonparametric estimation of this model, in functional
statistics were obtained by Ferraty et al. (2008). They studied the almost
complete convergence of a kernel estimator for hazard function of a real ran-



Nonparametric estimation of conditional risk 129

dom variable dependent on a functional predictor. Asymptotic normality of
the latter estimator was obtained, in the case of α- mixing, by Quintela-del-
Rio (2008). We refer to Ferraty et al. (2010) and Mahhiddine et al. (2014)
for uniform almost complete convergence of the functional component of this
nonparametric model.

When hazard rate estimation is performed with multiple variables, the re-
sult is an estimate of the conditional hazard rate for the first variable, given
the levels of the remaining variables. Many references, practical examples and
simulations in the case of non-parametric estimation using local linear approx-
imations can be found in Spierdijk (2008).

Our paper presents some asymptotic properties related with the non-para-
metric estimation of the maximum of the conditional hazard function. In a
functional data setting, the conditioning variable is allowed to take its values
in some abstract semi-metric space. In this case, Ferraty et al. (2008) define
non-parametric estimators of the conditional density and the conditional dis-
tribution. They give the rates of convergence (in an almost complete sense)
to the corresponding functions, in a independence and dependence (α-mixing)
context. We extend their results by calculating the maximum of the condi-
tional hazard function of these estimates, and establishing their asymptotic
normality, considering a particular type of kernel for the functional part of
the estimates. Because the hazard function estimator is naturally constructed
using these two last estimators, the same type of properties is easily derived
for it. Our results are valid in a real (one- and multi-dimensional) context.

If X is a random variable associated to a lifetime (ie, a random variable with
values in R+, the hazard rate of X (sometimes called hazard function, failure
or survival rate ) is defined at point x as the instantaneous probability that
life ends at time x. Specifically, we have:

h(x) = lim
dx→0 P (X ≤ x+ dx|X ≥ x)

dx
, (x > 0).

When X has a density f with respect to the measure of Lebesgue, it is easy
to see that the hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F(x)
, for all x such that F(x) < 1,

where F denotes the distribution function of X and S = 1 − F the survival
function of X.

In many practical situations, we may have an explanatory variable Z and
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the main issue is to estimate the conditional random rate defined as

hZ(x) = lim
dx→0 P (X ≤ x+ dx|X > x, Z)

dx
, for x > 0,

which can be written naturally as follows:

hZ(x) =
fZ(x)

SZ(x)
=

fZ(x)

1− FZ(x)
, once FZ(x) < 1. (1)

Study of functions h and hZ is of obvious interest in many fields of science
(biology, medicine, reliability , seismology, econometrics, ...) and many authors
are interested in construction of nonparametric estimators of h.

In this paper we propose an estimate of the maximum risk, through the
nonparametric estimation of the conditional hazard function.

The layout of the paper is as follows. Section 2 describes the non-parametric
functional setting: the structure of the functional data, the conditional density,
distribution and hazard operators, and the corresponding non-parametric ker-
nel estimators. Section 3 states the almost complete convergence1 (with rates
of convergence2) for nonparametric estimates of the derivative of the condi-
tional hazard and the maximum risk. In Section 4, we calculate the variance of
the conditional density, distribution and hazard estimates, the asymptotic nor-
mality of the three estimators considered is developed in this Section. Finally,
Section 5 includes some proofs of technical Lemmas.

2 Nonparametric estimation with dependent func-
tional data

Let {(Zi, Xi), i = 1, . . . , n} be a sample of n random pairs, each one distributed
as (Z,X), where the variable Z is of functional nature and X is scalar. For-
mally, we will consider that Z is a random variable valued in some semi-metric
functional space F , and we will denote by d(·, ·) the associated semi-metric.
The conditional cumulative distribution of X given Z is defined for any x ∈ R

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely
to some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of

convergence implies both almost sure and in probability convergence (see for instance Bosq
and Lecoutre, (1987)).

2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete
convergence un, if there exists some ε > 0 for which

∑
n P(|Tn| > εun) <∞. This is denoted

by Tn = O(un), a.co. (or equivalently by Tn = Oa.co.(un)).
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and any z ∈ F by
FZ(x) = P(X ≤ x|Z = z),

while the conditional density, denoted by fZ(x) is defined as the density of
this distribution with respect to the Lebesgue measure on R. The conditional
hazard is defined as in the non-infinite case (1).

In a general functional setting, f, F and h are not standard mathematical
objects. Because they are defined on infinite dimensional spaces, the term
operators may be a more adjusted in terminology.

The functional kernel estimates

We assume the sample data (Xi, Zi)1≤i≤n is i.i.d.
Following in Ferraty et al. (2008), the conditional density operator fZ(·) is

defined by using kernel smoothing methods

f̂Z(x) =

n∑
i=1

h−1H K
(
h−1K d(z, Zi)

)
H ′
(
h−1H (x− Xi)

)
n∑
i=1

K
(
h−1K d(z, Zi)

) ,

where k and H ′ are kernel functions and hH and hK are sequences of smoothing
parameters. The conditional distribution operator FZ(·) can be estimated by

F̂Z(x) =

n∑
i=1

K
(
h−1K d(z, Zi)

)
H
(
h−1H (x− Xi)

)
n∑
i=1

K
(
h−1K d(z, Zi)

) ,

with the function H(·) defined by H(x) =
∫x
−∞H ′(t)dt. Consequently, the

conditional hazard operator is defined in a natural way by

ĥZ(x) =
f̂Z(x)

1− F̂Z(x)
.

For z ∈ F , we denote by hZ(·) the conditional hazard function of X1 given
Z1 = z. We assume that hZ(·) is unique maximum and its high risk point is
denoted by θ(z) := θ, which is defined by

hZ(θ(z)) := hZ(θ) = max
x∈S

hZ(x). (2)
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A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which
maximizes a kernel estimator ĥZ(·), that is,

ĥZ(θ̂(z)) := ĥZ(θ̂) = max
x∈S

ĥZ(x), (3)

where hZ and ĥZ are defined above.
Note that the estimate θ̂ is note necessarily unique and our results are valid

for any choice satisfying (3). We point out that we can specify our choice by
taking

θ̂(z) = inf

{
t ∈ S such that ĥZ(t) = max

x∈S
ĥZ(x)

}
.

As in any non-parametric functional data problem, the behavior of the esti-
mates is controlled by the concentration properties of the functional variable
Z.

φz(h) = P(Z ∈ B(z, h)),

where B(z, h) being the ball of center z and radius h, namely B(z, h) =
P (f ∈ F , d(z, f) < h) (for more details, see Ferraty and Vieu (2006), Chap-
ter 6 ).

In the following, z will be a fixed point in F , Nz will denote a fixed neigh-
borhood of z, S will be a fixed compact subset of R+. We will led to the
hypothesis below concerning the function of concentration φz

(H1) ∀h > 0, 0 < P (Z ∈ B(z, h)) = φz(h) and lim
h→0φz(h) = 0

Note that (H1) can be interpreted as a concentration hypothesis acting on
the distribution of the f.r.v. of Z.

Our nonparametric models will be quite general in the sense that we will
just need the following simple assumption for the marginal distribution of Z,
and let us introduce the technical hypothesis necessary for the results to be
presented. The non-parametric model is defined by assuming that

(H2)

{
∀ (x1, x2) ∈ S2, ∀ (z1, z2) ∈ N 2

z , for some b1 > 0, b2 > 0
|Fz1(x1) − F

z2(x2)| ≤ Cz(d(z1, z2)b1 + |x1 − x2|
b2),

(H3)

{
∀ (x1, x2) ∈ S2, ∀ (z1, z2) ∈ N 2

z , for some j = 0, 1, ν > 0, β > 0

|fz1 (j)(x1) − f
z2 (j)(x2)| ≤ Cz(d(z1, z2)ν + |x1 − x2|

β),

(H4) ∃γ <∞, f ′Z(x) ≤ γ, ∀ (z, x) ∈ F × S,
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(H5) ∃ τ > 0, FZ(x) ≤ 1− τ, ∀ (z, x) ∈ F × S.

(H6) H ′ is twice differentiable such that

(H6a) ∀ (t1, t2) ∈ R2; |H(j)(t1) −H
(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1, 2

and H(j)are bounded for j = 0, 1, 2;

(H6b)

∫
R
t2H ′2(t)dt <∞;

(H6c)

∫
R
|t|β(H ′′(t))2dt <∞.

(H7) The kernel K is positive bounded function supported on [0, 1] and it is
of class C1 on (0, 1) such that ∃C1, C2, −∞ < C1 < K

′(t) < C2 < 0 for
0 < t < 1.

(H8) There exists a function ζz0(·) such that for all t ∈ [0, 1]

lim
hK→0

φz(thK)

φz(hK)
= ζz0(t) and nhHφx(hK)→∞ as n→∞.

(H9) The bandwidth hH and hK and small ball probability φz(h) satisfying
(H9a) lim

n→∞hK = 0, lim
n→∞hH = 0;

(H9b) lim
n→∞ logn

nφx(hK)
= 0;

(H9c) lim
n→∞ logn

nh
2j+1
H φx(hK)

= 0, j = 0, 1.

Remark 1 Assumption (H1) plays an important role in our methodology. It is
known as (for small h) the ”concentration hypothesis acting on the distribution
of X” in infi- nite-dimensional spaces. This assumption is not at all restric-
tive and overcomes the problem of the non-existence of the probability density
function. In many examples, around zero the small ball probabilityφz(h) can
be written approximately as the product of two independent functions ψ(z)
and ϕ(h) as φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This idea was adopted by Masry
(2005) who reformulated the Gasser et al. (1998) one. The increasing proprety
of φz(·) implies that ζzh(·) is bounded and then integrable (all the more so ζz0(·)
is integrable).

Without the differentiability of φz(·), this assumption has been used by many
authors where ψ(·) is interpreted as a probability density, while ϕ(·) may be
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interpreted as a volume parameter. In the case of finite-dimensional spaces,
that is S = Rd, it can be seen that φz(h) = C(d)h

dψ(z)+ohd), where C(d) is
the volume of the unit ball in Rd. Furthermore, in infinite dimensions, there
exist many examples fulfilling the decomposition mentioned above. We quote
the following (which can be found in Ferraty et al. (2007)):

1. φz(h) ≈ ψ(h)hγ for som γ > 0.

2. φz(h) ≈ ψ(h)hγ exp {C/hp} for som γ > 0 and p > 0.

3. φz(h) ≈ ψ(h)/| lnh|.

The function ζzh(·) which intervenes in Assumption (H9) is increasing for all
fixed h. Its pointwise limit ζz0(·) also plays a determinant role. It intervenes in
all asymptotic properties, in particular in the asymptotic variance term. With
simple algebra, it is possible to specify this function (with ζ0(u) := ζz0(u) in
the above examples by:

1. ζ0(u) = u
γ,

2. ζ0(u) = δ1(u) where δ1(·) is Dirac function,

3. ζ0(u) = 1]0,1](u).

Remark 2 Assumptions (H2) and (H3) are the only conditions involving the
conditional probability and the conditional probability density of Z given X. It
means that F(·|·) and f(·|·) and its derivatives satisfy the Hölder condition with
respect to each variable. Therefore, the concentration condition (H1) plays an
important role. Here we point out that our assumptions are very usual in the
estimation problem for functional regressors (see, e.g., Ferraty et al. (2008)).

Remark 3 Assumptions (H6), (H7) and (H9) are classical in functional es-
timation for finite or infinite dimension spaces.

3 Nonparametric estimate of the maximum of the
conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hZ

on S. We will suppose that hZ is sufficiently smooth ( at least of class C2) and
verifies that h ′Z(θ) = 0 and h

′′ Z(θ) < 0.
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Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and
that θ satisfies the uniqueness condition, that is; for any ε > 0 and µ(z), there
exists ξ > 0 such that |θ(z)−µ(z)| ≥ ε implies that |hZ(θ(z))−hZ(µ(z))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function
through the first derivative of the estimator. Our maximum estimate is defined
by assuming that there is some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative
of the function hZ on the basis of these ideas. To estimate the conditional
distribution function and the conditional density function in the presence of
functional conditional random variable Z.

The kernel estimator of the derivative of the function conditional random
functional hZ can therefore be constructed as follows:

ĥ ′
Z
(x) =

f̂ ′
Z
(x)

1− F̂Z(x)
+ (ĥZ(x))2, (4)

the estimator of the derivative of the conditional density is given in the fol-
lowing formula:

f̂ ′
Z
(x) =

n∑
i=1

h−2H K(h
−1
K d(Z,Zi))H

′′(h−1H (x− Xi))

n∑
i=1

K(h−1K d(Z,Zi))

. (5)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′,
hH and hK are little restrictive. Indeed, on one hand, they are not specific to
the problem estimate of hZ (but inherent problems of FZ, fZ and f ′Z estima-
tion), and secondly they consist with the assumptions usually made under
functional variables.

We state the almost complete convergence (withe rates of convergence) of
the maximum estimate by the following results:

Theorem 1 Under assumption (H1)-(H7) we have

θ̂− θ→ 0 a.co. (6)

Remark 4 The hypothesis of uniqueness is only established for the sake of
clarity. Following our proofs, if several local estimated maxima exist, the asymp-
totic results remain valid for each of them.
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Proof. Because h ′Z(·) is continuous, we have, for all ε > 0. ∃ η(ε) > 0 such
that

|x− θ| > ε⇒ |h ′Z(x) − h ′Z(θ)| > η(ε).

Therefore,

P{|θ̂− θ| ≥ ε} ≤ P{|h ′Z(θ̂) − h ′Z(θ)| ≥ η(ε)}.

We also have

|h ′Z(θ̂)−h ′Z(θ)| ≤ |h ′Z(θ̂)− ĥ ′Z(θ̂)|+ |ĥ ′Z(θ̂)−h ′Z(θ)| ≤ sup
x∈S

|ĥ ′Z(x)−h ′Z(x)|,

(7)
because ĥ ′Z(θ̂) = h ′Z(θ) = 0.

Then, uniform convergence of h ′Z will imply the uniform convergence of θ̂.
That is why, we have the following lemma.

Lemma 1 Under assumptions of Theorem 1, we have

sup
x∈S

|ĥ ′Z(x) − h ′Z(x)|→ 0 a.co. (8)

�

The proof of this lemma will be given in Appendix.

Theorem 2 Under assumption (H1)-(H7) and (H9a) and (H9c), we have

sup
x∈S

|θ̂− θ| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
. (9)

Proof. By using Taylor expansion of the function h ′Z at the point θ̂, we obtain

h ′Z(θ̂) = h ′Z(θ) + (θ̂− θ)h ′′Z(θ∗n), (10)

with θ∗ a point between θ and θ̂. Now, because h ′Z(θ) = ĥ ′Z(θ̂)

|θ̂− θ| ≤ 1

h ′′Z(θ∗n)
sup
x∈S

|ĥ ′Z(x) − h ′Z(x)|. (11)

The proof of Theorem will be completed showing the following lemma.

Lemma 2 Under the assumptions of Theorem 2, we have

sup
x∈S

|ĥ ′Z(x) − h ′Z(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
. (12)

The proof of lemma will be given in the Appendix.
�
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4 Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to
add the following assumptions:

(H6d)

∫
R
(H ′′(t))2dt <∞,

(H10) 0 = ĥ ′
Z
(θ̂) < |ĥ ′

Z
(x)|), ∀x ∈ S, x 6= θ̂

The following result gives the asymptotic normality of the maximum of the
conditional hazard function. Let

A =
{
(z, x) : (z, x) ∈ S × R, ax2FZ(x)

(
1− FZ(x)

)
6= 0
}
.

Theorem 3 Under conditions (H1)-(H10) we have (θ ∈ S/fZ(θ), 1−FZ(θ) >
0) (

nh3Hφz(hK)
)1/2 (

ĥ
′Z(θ) − h

′Z(θ)
)
D→N(0, σ2h ′(θ)

)
where →D denotes the convergence in distribution,

axl = K
l(1) −

∫ 1
0

(
Kl(u)

) ′
ζx0(u)du for l = 1, 2

and

σ2h ′(θ) =
ax2h

Z(θ)(
ax1
)2

(1− FZ(θ))

∫
(H ′′(t))2dt.

Proof. Using again (17), and the fact that(
1− FZ(x)

)
(1− F̂Z(x)) (1− FZ(x))

−→ 1

1− FZ(x)
;

and
f̂ ′Z(x)(

1− F̂Z(x)
)
(1− FZ(x))

−→ f ′Z(x)

(1− FZ(x))
2
.

The asymptotic normality of
(
nh3Hφz(hK)

)1/2 (
ĥ ′
Z
(θ) − h ′Z(θ)

)
can be de-

duced from both following lemmas,
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Lemma 3 Under Assumptions (H1)-(H2) and (H6)-(H8), we have

(nφz(hK))
1/2
(
F̂Z(x) − FZ(x)

)
D→N(0, σ2FZ(x)) , (13)

where

σ2FZ(x) =
ax2F

Z(x)
(
1− FZ(x)

)(
ax1
)2 .

Lemma 4 Under Assumptions (H1)-(H3) and (H5)-(H9), we have

(nhHφz(hK))
1/2
(
ĥZ(x) − hZ(x)

)
D→N(0, σ2hZ(x)) , (14)

where

σ2hZ(x) =
ax2h

Z(x)(
ax1
)2

(1− FZ(x))

∫
R
(H ′(t))2dt.

Lemma 5 Under Assumptions of Theorem 3, we have(
nh3Hφz(hK)

)1/2 (
f̂ ′
Z
(x) − f ′Z(x)

)
D→N(0, σ2f ′Z(x)) ; (15)

where

σ2f ′Z(x) =
ax2f

Z(x)(
ax1
)2 ∫

R
(H ′′(t))2dt.

Lemma 6 Under the hypotheses of Theorem 3, we have

Var
[
f̂ ′
Z

N(x)
]
=

σ2
f ′Z(x)

nh3Hφz(hK)
+ o

(
1

nh3Hφz(hK)

)
,

Var
[
F̂ZN(x)

]
= o

(
1

nhHφz(hK)

)
;

and

Var
[
F̂ZD

]
= o

(
1

nhHφz(hK)

)
.

Lemma 7 Under the hypotheses of Theorem 3, we have

Cov(f̂ ′
Z

N(x), F̂
Z
D) = o

(
1

nh3Hφz(hK)

)
,
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Cov(f̂ ′
Z

N(x), F̂
Z
N(x)) = o

(
1

nh3Hφz(hK)

)
and

Cov(F̂ZD, F̂
Z
N(x)) = o

(
1

nhHφz(hK)

)
.

Remark 5
It is clear that, the results of lemmas, Lemma 6 and Lemma 7 allows to

write

Var
[
F̂ZD − F̂ZN(x)

]
= o

(
1

nhHφz(hK)

)
The proofs of lemmas, Lemma3 can be seen in Belkhir et al. (2015), Lemma

lem2-4 and Lemma lem3-4 see Rabhi et al. (2015).
�

Finally, by this last result and (10), the following theorem follows:

Theorem 4 Under conditions (H1)-(H10), we have (θ ∈ S/fZ(θ), 1−FZ(θ) >
0) (

nh3Hφz(hK)
)1/2(

θ̂− θ
) D→N(0, σ2h ′(θ)

(h ′′Z(θ))2

)
;

with σ2h ′(θ) = hZ(θ)
(
1− FZ(θ)

) ∫
(H ′′(t))2dt.

5 Proofs of technical lemmas

Proof. Proof of Lemma 1 and Lemma 2. Let

ĥ ′Z(x) =
f̂ ′Z(x)

1− F̂Z(x)
+ (ĥZ(x))2, (16)

with

ĥ ′Z(x) − h ′Z(x) =

{(
ĥZ(x)

)2
−
(
hZ(x)

)2}
︸ ︷︷ ︸

Γ1

+

{
f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)

}
︸ ︷︷ ︸

Γ2

; (17)

for the first term of (17) we can write∣∣∣ (ĥZ(x))2 − (hZ(x))2 ∣∣∣ ≤ ∣∣∣ĥZ(x) − hZ(x)∣∣∣.∣∣∣ĥZ(x) + hZ(x)∣∣∣, (18)
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because the estimator ĥZ(·) converge a.co. to hZ(·) we have

sup
x∈S

∣∣∣ (ĥZ(x))2 − (hZ(x))2 ∣∣∣ ≤ 2∣∣∣hZ(θ)∣∣∣ sup
x∈S

∣∣∣ĥZ(x) − hZ(x)∣∣∣; (19)

for the second term of (17) we have

f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)
=

1

(1− F̂Z(x))(1− FZ(x))

{
f̂ ′Z(x) − f ′Z(x)

}
+

1

(1− F̂Z(x))(1− FZ(x))

{
f ′Z(x)

(
F̂Z(x) − FZ(x)

)}
+

1

(1− F̂Z(x))(1− FZ(x))

{
FZ(x)

(
f̂ ′Z(x) − f ′Z(x)

)}
.

Valid for all x ∈ S. Which for a constant C <∞, this leads

sup
x∈S

∣∣∣ f̂ ′Z(x)

1− F̂Z(x)
−

f ′Z(x)

1− FZ(x)

∣∣∣ ≤

C

{
sup
x∈S

∣∣∣f̂ ′Z(x) − f ′Z(x)∣∣∣+ sup
x∈S

∣∣∣F̂Z(x) − FZ(x)∣∣∣}
inf
x∈S

∣∣∣1− F̂Z(x)∣∣∣ . (20)

Therefore, the conclusion of the lemma follows from the following results:

sup
x∈S

|F̂Z(x) − FZ(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nφz(hK)

)
, (21)

sup
x∈S

|f̂ ′Z(x) − f ′Z(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nh3Hφz(hK)

)
, (22)

sup
x∈S

|ĥZ(x) − hZ(x)| = O
(
hb1K + hb2H

)
+Oa.co.

(√
logn

nhHφz(hK)

)
, (23)

∃ δ > 0 such that
∞∑
1

P
{

inf
y∈S

|1− F̂Z(x)| < δ

}
<∞. (24)

The proofs of (21) and (22) appear in Ferraty et al. (2006), and (23) is
proven in Ferraty et al. (2008).
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• Concerning (24) by equation (21), we have the almost complete conver-
gence of F̂Z(x) to FZ(x). Moreover,

∀ε > 0
∞∑
n=1

P
{
|F̂Z(x) − FZ(x)| > ε

}
<∞.

On the other hand, by hypothesis we have FZ < 1, i.e.

1− F̂Z ≥ FZ − F̂Z,

thus,

inf
y∈S

|1−F̂Z(x)| ≤ (1−sup
x∈S

FZ(x))/2⇒ sup
x∈S

|F̂Z(x)−FZ(x)| ≥ (1−sup
x∈S

FZ(x))/2.

In terms of probability is obtained

P
{

inf
x∈S

|1− F̂Z(x)| < (1− sup
x∈S

FZ(x))/2

}
≤ P
{

sup
x∈S

|F̂Z(x) − FZ(x)| ≥ (1− sup
x∈S

FZ(x))/2

}
<∞.

Finally, it suffices to take δ = (1 − sup
x∈S

FZ(x))/2 and apply the results

(21) to finish the proof of this Lemma.

�

Proof. Proof of Lemma 4. We can write for all x ∈ S

ĥZ(x) − hZ(x) =
f̂Z(x)

1− F̂Z(x)
−

fZ(x)

1− FZ(x)

=
1

D̂Z(x)

{(
f̂Z(x) − fZ(x)

)
+ fZ(x)

(
F̂Z(x) − FZ(x)

)
−FZ(x)

(
f̂Z(x) − fZ(x)

)}
, (25)

=
1

D̂Z(x)

{(
1− FZ(x)

)(
f̂Z(x) − fZ(x)

)
−fZ(x)

(
F̂Z(x) − FZ(x)

)}
;

with D̂Z(x) =
(
1− FZ(x)

) (
1− F̂Z(x)

)
.
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As a direct consequence of the Lemma 3, the result (26) (see Belkhir et al.
(2015)) and the expression (25), permit us to obtain the asymptotic normality
for the conditional hazard estimator.

(nhHφz(hK))
1/2
(
f̂Z(x) − fZ(x)

)
D→N(0, σ2fZ(x)) ; (26)

where

σ2fZ(x) =
ax2f

Z(x)(
ax1
)2 ∫

R
(H ′(t))2dt.

�

Proof. Proof of Lemma 5. For i = 1, . . . , n, we consider the quantities Ki =

K
(
h−1K d(z, Zi)

)
, H ′′i (x) = H

′′ (h−1H (x− Xi)
)

and let f̂ ′
Z

N(x) (resp. F̂ZD) be defined
as

f̂ ′
Z

N(x) =
h−2H
nEK1

n∑
i=1

KiH
′′
i (x)

(
resp. F̂ZD =

1

nEK1

n∑
i=1

Ki

)
.

This proof is based on the following decomposition

f̂ ′
Z
(x) − f ′Z(x) =

1

F̂ZD

{(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)
−
(
f ′Z(x) − Ef̂ ′

Z

N(x)
)}

+

f ′Z(x)

F̂ZD

{
EF̂ZD − F̂ZD

}
, (27)

and on the following intermediate results.√
nh3Hφz(hK)

(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)
D→N(0, σ2f ′Z(x)) ; (28)

where σ2
f ′Z

(x) is defined as in Lemma 5.

lim
n→∞

√
nh3Hφz(hK)

(
Ef̂ ′

Z

N(x) − f
′Z(x)

)
= 0. (29)

√
nh3Hφz(hK)

(
F̂ZD(x) − 1

)
P→ 0, as n→∞. (30)
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• Concerning (28).

By the definition of f̂ ′
Z

N(x), it follows that

Ωn =
√
nh3Hφz(hK)

(
f̂ ′
Z

N(x) − Ef̂ ′
Z

N(x)
)

=

n∑
i=1

√
φz(hK)√
nhHEK1

(
KiH

′′
i − EKiH ′′i

)
=

n∑
i=1

∆i,

which leads

Var(Ωn) = nh
3
Hφz(hK)Var

(
f̂ ′
Z

N(x) − E
[
f̂ ′
Z

N(x)
])
. (31)

Now, we need to evaluate the variance of f̂ ′
Z

N(x). For this we have for all
1 ≤ i ≤ n, ∆i(z, x) = Ki(z)H

′′
i (x), so we have

Var(f̂ ′
Z

N(x)) =
1(

nh2HE[K1(z)]
)2 n∑

i=1

n∑
j=1

Cov (∆i(z, x), ∆j(z, x))

=
1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x)) .
Therefore

Var (∆1(z, x)) ≤ E
(
H ′′21 (x)K21(z)

)
≤ E

(
K21(z)E

[
H ′′21 (x)|Z1

])
.

Now, by a change of variable in the following integral and by applying
(H4) and (H7), one gets

E
(
H ′′21 (y)|Z1

)
=

∫
R
H ′′2

(
d(x− u)

hH

)
fZ(u)du

≤ hH

∫
R
H ′′2(t)

(
fZ(x− hHt, z) − f

Z(x)
)
dt

+hHf
Z(x)

∫
R
H ′′2(t)dt (32)

≤ h1+b2H

∫
R
|t|b2H ′′2(t)dt+ hHf

Z(x)

∫
R
H ′′2(t)dt

= hH

(
o(1) + fZ(x)

∫
R
H ′′2(t)dt

)
.
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By means of (32) and the fact that, as n→∞, E
(
K21(z)

)
−→ ax2φz(hK),

one gets

Var (∆1(z, x)) = a
x
2φz(hK)hH

(
o(1) + fZ(x)

∫
R
H ′′2(t)dt

)
.

So, using (H8), we get

1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x))
=

ax2φz(hK)

n
(
ax1h

2
Hφz(hK)

)2hH(o(1) + fZ(x) ∫
R
H ′′2(t)dt

)
= o

(
1

nh3Hφz(hK)

)
+

ax2f
Z(x)

(ax1)
2nh3Hφz(hK)

∫
R
H ′′2(t)dt.

Thus as n→∞ we obtain

1

n
(
h2HE[K1(z)]

)2Var (∆1(z, x)) −→ ax2f
Z(x)

(ax1)
2nh3Hφz(hK)

∫
R
H ′′2(t)dt. (33)

Indeed

n∑
i=1

E∆2i =
φz(hK)

hHE2K1
EK21(H ′′1 )2 −

φz(hK)

hHE2K1
(
EK1H ′′1

)2
= Π1n − Π2n. (34)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φz(hK)

E2K1
E
{
K21

∫
H ′′2(t)

(
f ′Z(x− thH) − f

′Z(x) + f ′Z(x)
)
dt

}
.

Meanwhile, by (H1), (H3), (H7) and (H8), it follows that:

φz(hK)EK21
E2K1

−→
n→∞ ax2

(ax1)
2
,

which leads

Π1n −→
n→∞ ax2f

Z(x)

(ax1)
2

∫
(H ′′(t))2dt, (35)
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Regarding Π2n, by (H1), (H3) and (H6), we obtain

Π2n −→
n→∞ 0. (36)

This result, combined with (34) and (35), allows us to get

lim
n→∞

n∑
i=1

E∆2i = σ2f ′Z(x) (37)

Therefore, combining (33) and (36)-(37), (28) is valid.

• Concerning (29).

The proof is completed along the same steps as that of Π1n. We omit it
here.

• Concerning (30). The idea is similar to that given by Belkhir et al. (2015).

By definition of F̂ZD(x), we have√
nh3Hφz(hK)(F̂

Z
D(x) − 1) = Ωn − EΩn,

whereΩn =

√
nh3Hφz(hK)

∑n
i=1 Ki

nEK1
. In order to prove (30), similar to Belkhir

et al. (2015), we only need to proov Var Ωn → 0, as n → ∞. In fact,
since

Var Ωn =
nh3Hφz(hK)

nE2K1
(nVarK1)

≤
nh3Hφz(hK)

E2K1
EK21

= Ψ1,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3Hφz(hK)→ 0, as n→∞.
It is clear that, the results of (21), (22), (24) and Lemma 6 permits us

E
(
F̂ZD − F̂ZN(x) − 1+ F

Z(x)
)
−→ 0,

and
Var

(
F̂ZD − F̂ZN(x) − 1+ F

Z(x)
)
−→ 0;
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then
F̂xD − F̂ZN(x) − 1+ F

Z(x)
P−→ 0.

Moreover, the asymptotic variance of F̂ZD − F̂ZN(x) given in Remark 5
allows to obtain

nhHφz(hK)

σ2
FZ
(x)

Var
(
F̂ZD − F̂ZN(x) − 1+ E

(
F̂ZN(x)

))
−→ 0.

By combining result with the fact that

E
(
F̂ZD − F̂ZN(x) − 1+ E

(
F̂ZN(x)

))
= 0,

we obtain the claimed result.

Therefore, the proof of this result is completed.

Therefore, the proof of this Lemma is completed.
�
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