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Abstract. In this paper, with use of Lyapunov functional, we investigate
asymptotic stability of solutions of some nonlinear differential equations
of third order with delay. Our results include and improve some well-
known results in the literature.

1 Introduction

The investigation of qualitative behavior of solutions such as stability, conver-
gence, boundedness, asymptotic behavior to mention few, are very important
problems in the theory and applications of differential equations. For instance,
in applied sciences some practical problems concerning mechanics, engineering
technique fields, economy, control theory, physical sciences and so on are asso-
ciated with third, fourth and higher order nonlinear differential equations. In
recent years, there has been increasing interest in obtaining sufficient condi-
tions for the asymptotic stability and boundedness of solutions of the nonlinear
third order differential equations. Many results relative to the stability, bound-
edness of solutions of third order differential equations with delays or without
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delays have been obtained. We refer the reader to the papers (Burton [1, 2],
Swick [10] and Yoshizawa [16] and references therein) to discuss the qualitative
properties of various form of nonlinear differential equations without delay.

The Lyapunov second method had also been found useful and applicable to
study the qualitative properties of the equation with delay. Many interesting
results, on the qualitative behavior of solutions of the third order differential
equations have been obtained by Omeike [4, 5], Remili and Oudjedi [7], Sadek
[8, 9], Tunç [11, 12, 13, 14] and Zhu [17] and references therein.

In 2009, the author [5] adapted [10] and used a suitable Lyapunov function
to establish criteria which guarantee asymptotic stability of solution of non-
autonomous delay differential equation of the third order that is bounded
together with its derivatives on the real line, and boundedness under explicit
conditions on the nonlinear terms of the equation

x′′′ + a(t)x′′ + b(t)g(x′) + c(t)h(x(t− r)) = p(t).

Recently, in 2013 Tunç and Gözen [15] considered the non autonomous differ-
ential equation of the third order with multiple deviating arguments:

x′′′ + a(t)x′′ + nb(t)g(x′) + c(t)

n∑
i=1

hi(x(t− r)) = p(t).

He discussed the stability and boundedness of solutions of this equation.
Our aim in this paper, by using Lyapunov second method is to study the

asymptotic stability of third-order nonlinear differential equation with multiple
deviating arguments

[
ψ(x′(t))x′(t)

]′′
+ a(t)x′′(t) + nb(t)g(x′(t)) + c(t)

n∑
i=1

hi(x(t− ri)) = 0, (1)

and the boundedness of solutions of the equation

[
ψ(x′(t))x′(t)

]′′
+a(t)x′′(t)+nb(t)g(x′(t))+c(t)

n∑
i=1

hi(x(t−ri)) = q(t), (2)

where ri are certain positive constants. It is supposed that the derivatives,

a′(t), b′(t), c′(t), ψ′(y) =
dψ

dy
, and h′i(x) =

dhi
dx , exist and are continuous.

In this work, we want to adopt the approach in Omeike [5] and Tunç [15] to
extend the result in Swick [10] to the equation (1) and give sufficient criteria
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which guarantee the existence of uniform asymptotic stability of the solution
with their derivatives on the real line. Obviously, the equations discussed in
[5] and [15], are particular cases of our equation (2). Here, by this work, we
improve the boundedness result obtained in [5, 15].

2 Preliminaries

First, we will give some basic definitions and important stability criteria for
the general non-autonomous delay differential system. Consider the general
non-autonomous delay differential system

x′ = f(t, xt), xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (3)

where f : I × CH → Rn is a continuous mapping, f(t, 0) = 0, CH := {φ ∈
C([−r, 0], Rn) : ‖φ‖ ≤ H}, and for H1 < H, there exists L(H1) > 0, with
|f(t, φ)| < L(H1) when ‖φ‖ < H1.

Definition 1 [2] An element ψ ∈ C is in the ω − limit set of φ, say Ω(φ),
if x(t, 0, φ) is defined on [0,+∞) and there is a sequence {tn}, tn → ∞, as
n→∞, with ‖xtn(φ) −ψ‖→ 0 as n→∞ where xtn(φ) = x(tn + θ, 0, φ) for
−r ≤ θ ≤ 0.

Definition 2 [2] A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the
solution of (3), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 1 [1] If φ ∈ CHis such that the solution xt(φ) of (3) with x0(φ) = φ
is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a
non-empty, compact, invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→∞.
Lemma 2 [1] let V(t, φ) : I× CH → R be a continuous functional satisfying
a local Lipschitz condition. V(t, 0) = 0, and such that:

(i) W1(|φ(0)|) ≤ V(t, φ) ≤W2(|φ(0)|) +W3(‖φ‖2) where

‖φ‖2 =
(∫t

t−r ‖φ(s)‖
2ds
) 1
2
.

(ii) V̇(3)(t, φ) ≤ −W4(|φ(0)|), where, Wi (i = 1, 2, 3, 4) are wedges. Then the
zero solution of (3) is uniformly asymptotically stable.
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3 Assumptions and main results

The following assumptions will be needed throughout the paper. Let a0, b0, c0,
d,m, d0, d1, A,B,C, L,M, and ε, δi, ρi be an arbitrary but fixed positives num-
bers and suppose that a(t), b(t), c(t) ∈ C1(IR+), h ∈ C1(IR), g ∈ C(IR) and let
ψ be a twice continuously differential function on I R, such that the following
assumptions are satisfied:

i) 0 < a0 ≤ a(t) ≤ A; 0 < b0 ≤ b(t) ≤ B; 0 < c0 ≤ c(t) ≤ C.

ii) c(t) ≤ b(t), b′(t) ≤ c′(t) ≤ 0 for t ∈ [0,∞).

iii) 0 < m ≤ ψ(u) ≤M; 0 < d0 ≤
g(y)

y
≤ d1 for y 6= 0 .

iv) hi(0) = 0,
hi(x)

x
≥ δi > 0 (x 6= 0), and |h′i(x)| ≤ ρi for all x.

v)
Mρi
d0

< d < a0.

vi)
1

2
da′(t) − b0(dd0 −M

n∑
i=1

ρi) ≤ −ε < 0.

vii)

∫+∞
−∞

∣∣ψ′(u)
∣∣du <∞.

viii) inf
u∈R

uΨ′(u) = η > −m.

ix) Q(t) =

∫ t
0

|q(s)|ds <∞.

For ease of exposition throughout this paper we will adopt the following no-
tation

P(t) = ψ(x′(t)), R(t) =
ψ′(x′(t))

ψ2(x′(t))
x′′(t).

Theorem 1 In addition to conditions (i)-(vii) being satisfied, suppose that the
following is also satisfied

n∑
i=1

ri < min {αi, βi} ,
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where

αi =
2(a0 − d)

MCρi
, and βi =

2m3ε

CρiM2(d+ dm2 +m)
.

Then every solution of (1) is uniformly asymptotically stable.

Proof. We write the equation (1) as the following equivalent system

x′ =
1

P(t)
y

y′ = z

z′ = −
a(t)

P(t)
z+ a(t)R(t)y− nb(t)g

(
y

P(t)

)
− c(t)

n∑
i=1

hi(x)

+ c(t)

n∑
i=1

∫ t
t−ri

y(s)

P(t)
h′i(x(s))ds.

(4)

Note that the continuity of the functions a(t), b(t), c(t), q(t) on [0,+∞[, and
ψ(x′), g(x′), hi(x) in their respective arguments on IR with h(0) = g(0) = 0,
guarantee the existence of the solution of (4) (see [3]). It is assumed that the
right hand side of the system (4) satisfies a Lipschitz condition in x(t), x′(t), x′′(t)
and x(t − ri). This assumption guarantees the uniqueness of solutions of (4)
(see [3], pp.15).

We shall use as a tool to prove our main results a Lyapunov function U =
U(t, xt, yt, zt) defined by

U(t, xt, yt, zt) = exp

(
−
γ(t)

µ

)
V(t, xt, yt, zt) = exp

(
−
γ(t)

µ

)
V, (5)

where

γ(t) =

∫ t
0

|R(s)|ds,

and

V = dc(t)H(x) + c(t)y

n∑
i=1

hi(x) + nb(t)P(t)G

(
y

P(t)

)
+
1

2
z2

+
d

P(t)
yz+

da(t)

2P2(t)
y2 +

n∑
i=1

λi

∫ 0
−ri

∫ t
t+s
y2(ξ)dξds,

(6)

where H(x) =
n∑
i=1

∫x
0

hi(u)du and G(y) =

∫y
0

g(u)du. µ and λi are certain pos-

itive constants, which will be specified later in the proof. From the definition
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of V in (6), we observe that the above Lyapunov functional can be rewritten
as follows

V = V1 + V2 +

n∑
i=1

λi

∫ 0
−ri

∫ t
t+s
y2(ξ)dξds,

with

V1 = dc(t)H(x) + c(t)y

n∑
i=1

hi(x) + nb(t)P(t)G(
y

P(t)
),

and

V2 =
1

2
z2 +

d

P(t)
yz+

da(t)

2P2(t)
y2.

First consider

V2 =
1

2

{
z2 +

2d

P(t)
yz+

da(t)

P2(t)
y2
}

=
1

2

(
z+

d

P(t)
y

)2
+
d(a(t) − d)

2P2(t)
y2.

Using the conditions on a(t) in (v),
d(a(t) − d)

2P2(t)
≥ d(a0 − d)

2P2(t)
> 0, it follows

that there exists sufficiently small positive constant δ2 such that

V2 ≥ δ2(y2 + z2). (7)

V1 ≥ dc(t)H(x) + c(t)y
n∑
i=1

hi(x) +
nd0b(t)

2P(t)
y2,

since
g(y)

y
≥ d0 > 0 implies that G

(
y

P(t)

)
≥ d0
2P2(t)

y2. We wish to arrange

V1, and using the assumptions (i)-(v), we get,

V1 ≥ dc(t)H(x) +
d0b(t)

2P(t)

n∑
i=1

{
y+

c(t)hi(x)P(t)

d0b(t)

}2
−

n∑
i=1

c2(t)P(t)h2i (x)

2d0b(t)

≥ dc(t)
n∑
i=1

∫x
0

(
1−

c(t)P(t)h′i(u)

dd0b(t)

)
hi(u)du

≥ dc(t)
n∑
i=1

∫x
0

(
1−

Mρi
dd0

)
hi(u)du
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≥ dc(t)
n∑
i=1

∫x
0

(
1−

Mρi
dd0

)
hi(u)

u
udu

≥ dc(t)
n∑
i=1

∫x
0

(
1−

Mρi
dd0

)
δiudu

≥ dc(t)
2

n∑
i=1

(
1−

Mρi
dd0

)
δix

2,

so that

V1 ≥
δ3
2
x2, (8)

where δ3 = dc0

n∑
i=1

δi

(
1−

Mρi
dd0

)
> dc0

n∑
i=1

δi

(
1−

d

d

)
= 0. From (8), (7)

and (6), It is easy to check that

V ≥ δ2y2 + δ2z2 +
δ3
2
x2 +

n∑
i=1

λi

∫ 0
−ri

∫ t
t+s
y2(ξ)dξds.

Subject to the conditions of Theorem 1, V(0, 0, 0) = 0 and there exists suffi-
ciently small positive constant k such that

V ≥ k(x2 + y2 + z2), (9)

since the integral

∫ t
t+s
y2(ξ)dξ is positive, where k = min

(
δ2,
δ3
2

)
.

Assumptions (iii) and (vii) imply the following:

γ(t) =

∫ t
0

|R(s)|ds

≤
∫α2(t)
α1(t)

|ψ′(τ)|

ψ2(τ)
dτ

≤ 1

m2

∫+∞
−∞

∣∣ψ′(τ)
∣∣dτ ≤ N <∞,

where α1(t) = min{x′(0), x′(t)}, and α2(t) = max{x′(0), x′(t)}. Now, we can
deduce that there exists a continuous function W1 with W1(|Φ(0)|) ≥ 0 such
that W1(|Φ(0)|) ≤ U(t,Φ).
The existence of a continuous function W2(‖φ‖) which satisfies the inequality
U(t, φ) ≤W2(‖φ‖), is easily verified.
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Now, let (x, y, z) = (x(t), y(t), z(t)) be any solution of differential system
(4).
Differentiating the function V, defined in (6), along system (4) with respect
to the independent variable t, we have

d

dt
V = dc′(t)H(x) + c′(t)y

n∑
i=1

hi(x) + nb
′(t)P(t)G

(
y

P(t)

)
+
d− a(t)

P(t)
z2

+ R(t)

[
(a(t) − d)zy− nb(t)P(t)

(
g

(
y

P(t)

)
y− P(t)G

(
y

P(t)

))]
+

n∑
i=1

λiriy
2

+

[
da′(t) + 2c(t)P(t)

∑n
i=1 h

′
i(x)

2P2(t)
y2 − ndb(t)

y

P(t)
g

(
y

P(t)

)]
+ c(t)

(
z+

dy

P(t)

) n∑
i=1

∫ t
t−ri

y(s)

P(s)
h′i(x(s))ds−

n∑
i=1

λi

∫ t
t−ri

y2(ξ)dξ.

Consequently by the hypothesis (i)-(vi), it follows that

d

dt
V ≤ dc′(t)H(x) + c′(t)y

n∑
i=1

hi(x) +
nd0b

′(t)

2P(t)
y2 −

(
ε

M2
−

n∑
i=1

λiri

)
y2

+ |R(t)|

[
(A− d) |zy|+

3

2
nBd1y

2

]
−
1

M
(a0 − d)z

2

+ c(t)

(
z+

dy

P(t)

) n∑
i=1

∫ t
t−ri

y(s)

P(s)
h′i(x(s))ds−

n∑
i=1

λi

∫ t
t−ri

y2(ξ)dξ.

We claim that

θ(t, x, y) = dc′(t)H(x) + c′(t)y

n∑
i=1

hi(x) +
nd0b

′(t)

2P(t)
y2 ≤ 0,

for all x, y and t ≥ 0. First suppose that c′(t) = 0, then

θ(t, x, y) =
nd0b

′(t)

2P(t)
y2 ≤ 0.

Finally, suppose that c′(t) < 0, the quantity in the brackets above can be
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written as,

θ(t, x, y) = dc′(t)

[
H(x) +

1

d
y

n∑
i=1

hi(x) +
nd0b

′(t)

2dc′(t)P(t)
y2

]

= dc′(t)

[
H(x) +

d0b
′(t)

2dc′(t)P(t)

n∑
i=1

{
y+

c′(t)P(t)hi(x)

d0b′(t)

}2]

− dc′(t)

[
n∑
i=1

c′(t)P(t)h2i (x)

2dd0b′(t)

]
,

moreover, assumption (ii) implies
c′(t)

b′(t)
≤ 1, thus

θ(t, x, y) ≤ dc′(t)
n∑
i=1

∫x
0

(1−
P(t)h′i(u)

dd0
)hi(u)du

≤ dc′(t)
n∑
i=1

∫x
0

(1−
Mρi
dd0

)hi(u)du

≤ c′(t) δ3
2c0
x2 ≤ 0.

Hence, on combining the two cases, we have θ(t, x, y) ≤ 0 for all t ≥ 0, x and y.
Utilizing the assumptions of theorem and Schwartz inequality |uv| ≤ 1

2(u
2+v2),

the following inequalities are obtained

dc(t)

P(t)
y

n∑
i=1

∫ t
t−ri

y(s)

P(s)
h′i(x(s))ds ≤

n∑
i=1

dCρiri
2m

y2 +
Cd

2m3

n∑
i=1

∫ t
t−ri

ρiy
2(ξ)dξ

≤
n∑
i=1

dCρiri
2m

y2 +
Cdρi
2m3

n∑
i=1

∫ t
t−ri

y2(ξ)dξ,

c(t)z

n∑
i=1

∫ t
t−ri

y(s)

P(s)
h′i(x(s))ds ≤

n∑
i=1

Cρiri
2

z2 +
C

2m2

n∑
i=1

∫ t
t−ri

ρiy
2(ξ)dξ

≤
n∑
i=1

Cρiri
2

z2 +
Cρi
2m2

n∑
i=1

∫ t
t−ri

y2(ξ)dξ,
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and

W1 = |R(t)|

[
(A− d) |zy|+

3

2
nBd1y

2

]
≤ |R(t)|

[
A− d

2
z2 +

A− d+ 3nBd1
2

y2
]

≤ k1 |R(t)| (y2 + z2),

where k1 =
A− d+ 3nBd1

2
. These estimates imply that

d

dt
V ≤−

[
ε

M2
−

n∑
i=1

(
λi +

dCρi
2m

)
ri

]
y2

−

[
a0 − d

M
−

n∑
i=1

Cρiri
2

]
z2

+

n∑
i=1

[
Cρi
2m2

(
1+

d

m

)
− λi

] ∫ t
t−ri

y2(ξ)dξ

+ k1|R(t)|(y
2 + z2).

If we take
Cρi
2m2

(
1+

d

m

)
= λi, the last inequality becomes

d

dt
V ≤−

[
ε

M2
−

n∑
i=1

Cρi
2m

(
d+

1

m
+
d

m2

)
ri

]
y2

−

[
a0 − d

M
−

n∑
i=1

Cρiri
2

]
z2 + k1|R(t)|(y

2 + z2
)
.

Using (9), (5) and taking µ =
k

k1
we obtain:

d

dt
U = exp

(
−
k1γ(t)

k

)(
d

dt
V −

k1|R(t)|

k
V

)
≤ exp

(
−
k1γ(t)

k

)[
−

(
ε

M2
−

n∑
i=1

Cρiri
2m

(
d+

1

m
+
d

m2

))
y2

−

(
a0 − d

M
−

n∑
i=1

Cρiri
2

)z2
]
.

(10)
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Provided that
n∑
i=1

ri < min

{
2(a0 − d)

MCρi
,

2m3ε

CρiM2(d+ dm2 +m)

}
.

The inequality (10) becomes

d

dt
U(t, xt, yt, zt) ≤ −β exp

(
−
k1N

k
)(y2 + z2

)
, for some β > 0.

It is clear that the largest invariant set in Z is Q = {0} , where

Z =

{
φ ∈ CH :

d

dt
U(φ) = 0

}
.

Namely, the only solution of system (4) for which
d

dt
U(t, xt, yt, zt) = 0 is the

solution x = y = z = 0. Thus, we conclude that every solution of system (4)
is uniformly asymptotically stable. Now from (4) we have

x′(t)Ψ(x′(t)) = y(t), (11)

Furthermore, it follows from (iii) that

|y(t)|

M
≤
∣∣x′(t)∣∣ = |y(t)|

Ψ(x′(t))
≤ |y(t)|

m
,

which implies that lim
t→∞ x′(t) = 0. Differentiating (11) we obtain

x′′(t)
[
Ψ(x′(t)) + Ψ′(x′(t))x′(t)

]
= z(t), (12)

then lim
t→∞ x′′(t) = 0 since lim

t→∞Ψ(x′(t)) + Ψ′(x′(t))x′(t) = Ψ(0).

Thus, under the above discussion, we conclude that every solution of equation
(1) is uniformly asymptotically stable. �

For the case q(t) 6= 0, we consider the equivalent system of (2)

x′ =
1

P(t)
y

y′ = z

z′ = −
a(t)

P(t)
z+ a(t)R(t)y− nb(t)g

(
y

P(t)

)
− c(t)

n∑
i=1

hi(x)

+ c(t)

n∑
i=1

∫ t
t−ri

y(s)

P(t)
h′i(x(s))ds+ q(t).

(13)

The following result is introduced.
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Theorem 2 In addition to the assumptions of Theorem 1, we assume that
(viii) and (ix) hold. Then, there exists a finite positive constant C such that
every solution x(t) of equation (2) defined by the initial functions

x(0) = φ(t), x′(0) = φ′(t), x′′(0) = φ′′(t),

satisfies the inequalities

|x(t)| ≤ C, |x′(t)| ≤ C, |x ′′(t)| ≤ C ∀t ≥ 0,

where φ ∈ C2([−r, 0],R).

Proof. An easy calculation from (13) and (5) yields that

d

dt
U(11) =

d

dt
U(4) + (z+

d

P(t)
y)q(t).

Since
d

dt
U(4) ≤ 0, then it follows that

d

dt
U(11) ≤

(
|z|+

d

P(t)
|y|

)
|q(t)|.

Noting that |x| ≤ 1+ x2, which implies that(
|z|+

d

P(t)
|y|

)
|q(t)| ≤ k2(|z|+ |y|)|q(t)|

≤ k2(2+ z2 + y2)|q(t)|
≤ k2‖X‖2|q(t)|+ 2k2|q(t)|

≤ k2

δe
−N
µ

|q(t)|U+ 2k2|q(t)|,

where k2 = max

{
1,
d

m

}
, recalling that

δe
−N
µ ‖X‖2 ≤ U(t, xt, yt, zt).

Let η = max

{
2k2,

k2

δe
−N
µ

}
, then

d

dt
U(11) ≤ η|q(t)|+ η|q(t)|U.
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Multiplying each side of this inequality by the integrating factor e−ηQ(t), we
get

e−ηQ(t) d

dt
U(11) ≤ e−ηQ(t)ηQ′(t) + e−ηQ(t)ηQ′(t)U.

Integrating each side of this inequality from 0 to t, we get, where X0 =
(x(0), y(0), z(0)),

e−ηQ(t)U−U(0, X0) ≤ 1− e−ηQ(t).

Since Q(t) ≤ L for all t, we have

U(t, xt, yt, zt) ≤ U(0, X0)eηL + [eηL − 1] for t ≥ 0.

Now, since the right-hand side is a constant, and since U(t, xt, yt, zt)→∞ as
x2 + y2 + z2 →∞, it follows that there exists a D > 0 such that

|x(t)| ≤ D, |y(t)| ≤ D, |z(t)| ≤ D ∀t ≥ 0.

From (11) and (iii) we obtain

|x′| =

∣∣∣∣ y

Ψ(x′)

∣∣∣∣ ≤ D

m
,

it follows from condition (viii) that

K(x′) = ψ(x′) + x′ψ′(x′) ≥ m+ η,

but (12) implies ∣∣x′′∣∣ = |z|

K(x′)
≤ D

η+m
,

thus we can deduce

|x(t)| ≤ C, |x′(t)| ≤ C, |x′′(t)| ≤ C ∀t ≥ 0,

where C = sup

(
D,
D

m
,
D

η+m

)
. This completes the proof of theorem. �

Example 1((
x ′

1+ x ′2
+ n(n+ 1)

)
x ′
) ′′

+

(
4n2(n+ 1)2 −

1

2
e−2t +

1

2

)
x ′′

+ n

(
1

1+ t
+ 1

)(
2x ′ +

x ′

1+ x ′2

)
+

(
1

2(1+ t)
+
1

2

) n∑
i=1

[
ix(t− ri) +

ix(t− ri)

1+ |x(t− ri)|

]
= e−t.

(14)
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We can simply verify that

i) 4n2(n+1)2 = a0 ≤ a(t) = 4n2(n+1)2− 1
2e

−2t+ 1
2 ≤ 4n

2(n+1)2+ 1
2 , t ≥ 0,

c0 =
1
2 ≤ c(t) =

1
2(1+t) +

1
2 ≤ C = 1 = b0 ≤ b(t) = 1

1+t + 1 ≤ 2, t ≥ 0,

ii) From (i) we have b(t) > c(t) and b ′(t) ≤ c ′(t) ≤ 0, ∀ t ≥ 0,

iii) ψ(x ′) = x ′

1+x ′2
+ n(n+ 1). Now, it is easy to see that

inf
u∈R

Ψ(u) = −
1

2
+ n(n+ 1) > m = −1+ n(n+ 1),

sup
u∈R

Ψ(u) =
1

2
+ n(n+ 1) < M = 1+ n(n+ 1),

d0 = 2 ≤
g(y)

y
= 2+

1

1+ y2
≤ 3 = d1 with y 6= 0.

Also

iv) δi = i ≤ hi(x)
x =

(
i+ i

1+|x|

)
with x 6= 0, and |h′i(x)| ≤ ρi = 2i,

then

n∑
i=1

ρi =

n∑
i=1

2i = n(n+ 1).

v) For d = 2Mn(n+ 1) we have

Mi =
Mρi
d0

< Mn < d < a0 = 4n
2(n+ 1)2,

vi) a ′(t) = e−2t ≤ 1, and

1

2
da′(t) − b0

(
dd0 −M

n∑
i=1

ρi

)
≤ −

3

2
d+Mn(n+ 1) < 0.

vii) An explicit calculation shows that∫+∞
−∞

∣∣ψ′(u)
∣∣du =

∫+∞
−∞

∣∣∣∣u2 + 1− 2(1+ u2)2

∣∣∣∣du ≤ ∫+∞
−∞

[∣∣∣∣ 1

1+ u2

∣∣∣∣+ ∣∣∣∣ 2

(1+ u2)2

∣∣∣∣]du
≤ 2π,

viii) inf
u∈R

uΨ′(u) = η = −1
4 > −n(n+ 1) + 1,
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ix) Q(t) =
∫t
0 e

−sds <∞.
If we take ri =

2k
π2i2

, with k = min {αn, βn}. Then

i=n∑
i=1

ri <

∞∑
i=1

2k

π2i2
= k < min {αi, βi} .

All the assumptions (i) through (ix) are satisfied, we can conclude using
Theorem 3.2 that every solution of (14) is uniformly bounded.
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