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Abstract. In this paper, we establish some common random fixed point
theorems for contractive type conditions in the setting of cone random
metric spaces. Our results unify, extend and generalize many known re-
sults from the current existing literature.

1 Introduction

Random nonlinear analysis is an important mathematical discipline which is
mainly concerned with the study of random nonlinear operators and their
properties and is needed for the study of various classes of random equations.
The study of random fixed point theory was initiated by the Prague school of
Probabilities in the 1950s [9, 10, 24]. Common random fixed point theorems
are stochastic generalization of classical common fixed point theorems. The
machinery of random fixed point theory provides a convenient way of model-
ing many problems arising from economic theory (see e.g. [19]) and references
mentioned therein. Random methods have revolutionized the financial mar-
kets. The survey article by Bharucha-Reid [7] attracted the attention of several
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mathematicians and gave wings to the theory. Itoh [14] extended Spacek’s and
Hans’s theorem to multivalued contraction mappings. Now this theory has be-
come the full fledged research area and various ideas associated with random
fixed point theory are used to obtain the solution of nonlinear random system
(see [4, 5, 6, 11, 22]). Papageorgiou [17, 18], Beg [2, 3] studied common random
fixed points and random coincidence points of a pair of compatible random
operators and proved fixed point theorems for contractive random operators
in Polish spaces.

In 2007, Huang and Zhang [12] introduced the concept of cone metric spaces
and establish some fixed point theorems for contractive mappings in normal
cone metric spaces. Subsequently, several other authors [1, 13, 21, 23] studied
the existence of fixed points and common fixed points of mappings satisfying
contractive type condition on a normal cone metric space.

In 2008, Rezapour and Hamlbarani [21] omitted the assumption of normality
in cone metric space, which is a milestone in developing fixed point theory in
cone metric space. Recently, Mehta et al. [16] introduced the concept of cone
random metric space and proved an existence of random fixed point under
weak contraction condition in the setting of cone random metric spaces.

In this paper, we establish some common random fixed point theorems for
contractive type conditions in the setting of cone random metric spaces. Our
results extend the corresponding results of [16] and some others from the
current existing literature.

2 Preliminaries

Definition 1 (See [16]) Let (E, τ) be a topological vector space. A subset P of
E is called a cone whenever the following conditions hold:
(c1) P is closed, nonempty and P 6= {0};
(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax+ by ∈ P;
(c3) If x ∈ P and −x ∈ P implies x = 0.

For a given cone P ⊂ E, we define a partial ordering ≤ with respect to P by
x ≤ y if and only if y− x ∈ P. We shall write x < y to indicate that x ≤ y but
x 6= y, while x� y will stand for y− x ∈ P0, where P0 stands for the interior
of P.

Definition 2 (See [12, 25]) Let X be a nonempty set. Suppose that the map-
ping d : X× X→ E satisfies:
(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
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(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric [12] or K-metric [25] on X and (X, d) is called

a cone metric space [12].

The concept of a cone metric space is more general than that of a metric
space, because each metric space is a cone metric space where E = R and
P = [0,+∞).

Example 1 (See [12]) Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, X = R
and d : X × X → E defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a
constant. Then (X, d) is a cone metric space with normal cone P where K = 1.

Example 2 (See [20]) Let E = `2, P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n}, (X, ρ)
a metric space, and d : X× X→ E defined by d(x, y) = {ρ(x, y)/2n}n≥1. Then
(X, d) is a cone metric space.

Clearly, the above examples show that the class of cone metric spaces con-
tains the class of metric spaces.

Definition 3 (See [12]) Let (X, d) be a cone metric space. We say that {xn}

is:
(i) a Cauchy sequence if for every ε in E with 0 � ε, then there is an N

such that for all n,m > N, d(xn, xm)� ε;
(ii) a convergent sequence if for every ε in E with 0� ε, then there is an N

such that for all n > N, d(xn, x)� ε for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X
is convergent in X.

In the following (X, d) will stands for a cone metric space with respect to a
cone P with P0 6= ∅ in a real Banach space E and ≤ is partial ordering in E
with respect to P.

Definition 4 (Measurable function) (See [16]) Let (Ω,Σ) be a measurable
space with Σ-a sigma algebra of subsets of Ω and M be a nonempty subset
of a metric space X = (X, d). Let 2M be the family of nonempty subsets of
M and C(M) the family of all nonempty closed subsets of M. A mapping
G : Ω→ 2M is called measurable if for each open subset U of M, G−1(U) ∈ Σ,
where G−1(U) =

{
ω ∈ Ω : G(ω) ∩U 6= ∅

}
.
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Definition 5 (Measurable selector) (See [16]) A mapping ξ : Ω → M is
called a measurable selector of a measurable mapping G : Ω → 2M if ξ is
measurable and ξ(ω) ∈ G(ω) for each ω ∈ Ω.

Definition 6 (Random operator) (See [16]) The mapping T : Ω×M→ X

is said to be a random operator if and only if for each fixed x ∈M, the mapping
T(., x) : Ω→ X is measurable.

Definition 7 (Continuous random operator) (See [16]) A random oper-
ator T : Ω×M→ X is said to be continuous random operator if for each fixed
x ∈M and ω ∈ Ω, the mapping T(ω, .) : M→ X is continuous.

Definition 8 (Random fixed point) (See [16]) A measurable mapping ξ : Ω→M is a random fixed point of a random operator T : Ω×M→ X if and only
if T(ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω.

Definition 9 (Cone Random Metric Space) Let M be a nonempty set
and let the mapping d : Ω×M→ P, where P is a cone, ω ∈ Ω be a selector,
satisfy the following conditions:

(i) d(x(ω), y(ω)) ≥ 0 and d(x(ω), y(ω)) = 0 if and only if x(ω) = y(ω)
for all x(ω), y(ω) ∈ Ω×M,

(ii) d(x(ω), y(ω)) = d(y(ω), x(ω)) for all x, y ∈M, ω ∈ Ω and x(ω), y(ω)
∈ Ω×M,

(iii) d(x(ω), y(ω)) ≤ d(x(ω), z(ω))+d(z(ω), y(ω)) for all x, y, z ∈M and
ω ∈ Ω be a selector,

(iv) for any x, y ∈ M, ω ∈ Ω, d(x(ω), y(ω)) is non-increasing and left
continuous.

Then d is called cone random metric on M and (M,d) is called a cone
random metric space.

Definition 10 Let (X, d) be a metric space. A mapping T : X → X is called
an a-contraction if

d(Tx, Ty) ≤ ad(x, y) for all x, y ∈ X, (1)

where a ∈ (0, 1).



178 G. S. Saluja, B. P. Tripathi

Definition 11 The mapping T is called Kannan contraction mapping [15] if
there exists b ∈ (0, 12) such that

d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)] for all x, y ∈ X. (2)

Definition 12 The mapping T is called Chatterjea contraction mapping [8] if
there exists c ∈ (0, 12) such that

d(Tx, Ty) ≤ c [d(x, Ty) + d(y, Tx)] for all x, y ∈ X. (3)

Generalized contraction condition for two mappings

Let (X, d) be a metric space and let S, T : X → X be two mappings satisfying
the condition:

d(Sx, Ty) ≤ ad(x, y) + b [d(x, Sx) + d(y, Ty)]
+ c [d(x, Ty) + d(y, Sx)],

(4)

for all x, y ∈ X and a+ 2b+ 2c < 1, where a, b, c > 0 are constants.

Remark 1 (i) If we take S = T and b = c = 0, then condition (4) reduces to
the contraction condition (1).

(ii) If we take S = T and a = c = 0, then condition (4) reduces to the
Kannan contraction condition (2).

(iii) If we take S = T and a = b = 0, then condition (4) reduces to the
Chatterjea contraction condition (3).

Thus it is clear from Remark 1 that the generalized contraction condition for
one or two mappings is weaker than Banach contraction, Kannan contraction
and Chatterjea contraction conditions.

3 Main results

In this section we shall prove some common random fixed point theorems under
generalized contractive condition (4) in the setting of cone random metric
spaces.

Theorem 1 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let S and
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T be two continuous random operators defined on M such that for ω ∈ Ω,
S(ω, .), T(ω, .) : Ω×M→M satisfying the condition:

d(S(x(ω)), T(y(ω))) ≤ a(ω)d(x(ω), y(ω))

+ b(ω) [d(x(ω), S(x(ω))) + d(y(ω), T(y(ω)))]

+ c(ω) [d(x(ω), T(y(ω))) + d(y(ω), S(x(ω)))]

(5)

for all x, y ∈M, a(ω)+2b(ω)+2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and
ω ∈ Ω. Then S and T have a unique common random fixed point in X.

Proof. For each x0(ω) ∈ Ω×M and n = 0, 1, 2, . . . , we choose x1(ω), x2(ω) ∈
Ω×M such that x1(ω) = S(x0(ω)) and x2(ω) = T(x1(ω)). In general we define
sequence of elements of M such that x2n+1(ω) = S(x2n(ω)) and x2n+2(ω) =
T(x2n+1(ω)). Then from (5), we have

d(x2n+1(ω), x2n(ω)) = d(S(x2n(ω)), T(x2n−1(ω)))

≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), S(x2n(ω)))

+ d(x2n−1(ω), T(x2n−1(ω)))]

+ c(ω) [d(x2n(ω), T(x2n−1(ω)))

+ d(x2n−1(ω), S(x2n(ω)))]

≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), x2n+1(ω))

+ d(x2n−1(ω), x2n(ω))] + c(ω) [d(x2n(ω), x2n(ω))

+ d(x2n−1(ω), x2n+1(ω))]

= a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), x2n+1(ω))

+ d(x2n−1(ω), x2n(ω))] + c(ω)d(x2n−1(ω), x2n+1(ω))

≤ a(ω)d(x2n(ω), x2n−1(ω)) + b(ω) [d(x2n(ω), x2n+1(ω))

+ d(x2n−1(ω), x2n(ω))] + c(ω) [d(x2n−1(ω), x2n(ω))

+ d(x2n(ω), x2n+1(ω))]

=
(
a(ω) + b(ω) + c(ω)

)
d(x2n(ω), x2n−1(ω))

+ (b(ω) + c(ω))d(x2n+1(ω), x2n(ω))

Therefore,

d(x2n+1(ω), x2n(ω)) ≤
(
a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)
d(x2n(ω), x2n−1(ω))

= λd(x2n(ω), x2n−1(ω)),

(6)
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where

λ =

(
a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)
.

By the assumption of the theorem

a(ω) + 2b(ω) + 2c(ω) < 1⇒ a(ω) + b(ω) + c(ω) < 1− b(ω) − c(ω)

⇒ λ =
(a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)
< 1.

Similarly, we have

d(x2n(ω), x2n−1(ω)) ≤ λd(x2n−1(ω), x2n−2(ω)).

Hence

d(x2n+1(ω), x2n(ω)) ≤ λ2 d(x2n−1(ω), x2n−2(ω)).

On continuing this process, we get

d(x2n+1(ω), x2n(ω)) ≤ λ2n d(x1(ω), x0(ω)).

Also for n > m, we have

d(xn(ω), xm(ω)) ≤ d(xn(ω), xn−1(ω)) + d(xn−1(ω), xn−2(ω)) + . . .

+ d(xm+1(ω), xm(ω))

≤ (λn−1 + λn−2 + · · ·+ λm)d(x1(ω), x0(ω))

≤
( λm

1− λ

)
d(x1(ω), x0(ω)).

Let 0� ε be given. Choose a natural numberN such that
(
λm

1−λ

)
d(x1(ω), x0(ω))

� ε for every m ≥ N. Thus

d(xn(ω), xm(ω)) ≤
( λm

1− λ

)
d(x1(ω), x0(ω))� ε,

for every n > m ≥ N. This shows that the sequence {xn(ω)} is a Cauchy
sequence in Ω×M. Since (X, d) is complete, there exists z(ω) ∈ Ω× X such
that xn(ω)→ z(ω) as n→∞. Choose a natural number N1 such that

d(x2n+1(ω), x2n+2(ω))� ε (1− b(ω) − c(ω))

2(a(ω) + b(ω) + c(ω))
, (7)
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and

d(z(ω), x2n+2(ω))� ε (1− b(ω) − c(ω))

2(1+ a(ω) + 2c(ω))
, (8)

for every n ≥ N1. Hence for n ≥ N1, we have

d(z(ω), S(z(ω))) ≤ d(z(ω), x2n+2(ω)) + d(x2n+2(ω), S(z(ω))

= d(z(ω), x2n+2(ω)) + d(S(z(ω), T(x2n+1(ω))

≤ d(z(ω), x2n+2(ω)) + a(ω)d(z(ω), x2n+1(ω))

+ b(ω) [d(z(ω), S(z(ω))) + d(x2n+1(ω), T(x2n+1(ω)))]

+ c(ω) [d(z(ω), T(x2n+1(ω))) + d(x2n+1(ω), S(z(ω)))]

= d(z(ω), x2n+2(ω)) + a(ω)d(z(ω), x2n+1(ω))

+ b(ω) [d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ c(ω) [d(z(ω), x2n+2(ω)) + d(x2n+1(ω), S(z(ω)))]

≤ d(z(ω), x2n+2(ω))

+ a(ω) [d(z(ω), x2n+2(ω)) + d(x2n+2(ω), x2n+1(ω))]

+ b(ω) [d(z(ω), S(z(ω))) + d(x2n+1(ω), x2n+2(ω))]

+ c(ω) [d(z(ω), x2n+2(ω)) + d(x2n+1(ω), x2n+2(ω))

+ d(x2n+2(ω), z(ω)) + d(z(ω), S(z(ω)))]

= (1+ a(ω) + 2c(ω))d(z(ω), x2n+2(ω))

+ (b(ω) + c(ω))d(z(ω), S(z(ω)))

+ (a(ω) + b(ω) + c(ω))d(x2n+1(ω), x2n+2(ω)).

The above inequality gives

d(z(ω), S(z(ω))) ≤
(
1+ a(ω) + 2c(ω)

1− b(ω) − c(ω)

)
d(z(ω), x2n+2(ω))

+

(
a(ω) + b(ω) + c(ω)

1− b(ω) − c(ω)

)
d(x2n+1(ω), x2n+2(ω)).

(9)

Using (7) and (8) in (9), we get

d(z(ω), S(z(ω)))� ε

2
+
ε

2
= ε. (10)

Thus d(z(ω), S(z(ω))) � ε
m for all m ≥ 1. So ε

m − d(z(ω), S(z(ω))) ∈ P for
all m ≥ 1. Since ε

m → 0 as m → ∞ and P is closed, −d(z(ω), S(z(ω))) ∈ P.
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But d(z(ω), S(z(ω))) ∈ P. Therefore by definition 1(c3), d(z(ω), S(z(ω))
= 0 and so S(z(ω)) = z(ω).

In an exactly the similar way we can prove that for all ω ∈ Ω, T(z(ω)) =
z(ω). Hence S(z(ω)) = T(z(ω)) = z(ω). This shows that z(ω) is a common
random fixed point of S and T .

Uniqueness

Let v(ω) be another random fixed point common to S and T , that is, for
ω ∈ Ω, S(v(ω)) = T(v(ω)) = v(ω). Then for ω ∈ Ω, we have

d(z(ω), v(ω)) = d(S(z(ω)), T(v(ω)))

≤ a(ω)d(z(ω), v(ω)) + b(ω) [d(z(ω), S(z(ω)))

+ d(v(ω), T(v(ω)))] + c(ω) [d(z(ω), T(v(ω))

+ d(v(ω), S(z(ω)))]

≤ (a(ω) + 2c(ω))d(z(ω), v(ω))

< d(z(ω), v(ω)), since 0 < a(ω) + 2c(ω) < 1,

a contradiction. Hence z(ω) = v(ω) and so z(ω) is a unique common random
fixed point of S and T . This completes the proof. �

Corollary 1 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be a
continuous random operator defined on M such that for ω ∈ Ω, T(ω, .) : Ω×
M→M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ a(ω)d(x(ω), y(ω))

+ b(ω) [d(x(ω), T(x(ω))) + d(y(ω), T(y(ω)))]

+ c(ω) [d(x(ω), T(y(ω))) + d(y(ω), T(x(ω)))]

for all x, y ∈M, a(ω)+2b(ω)+2c(ω) < 1, where a(ω), b(ω), c(ω) > 0 and
ω ∈ Ω. Then T has a unique random fixed point in X.

Proof. The proof of the corollary immediately follows by putting S = T in
Theorem 1. This completes the proof. �

If we take S = T and b(ω) = c(ω) = 0 in Theorem 1, then we obtain the
following result as corollary.
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Corollary 2 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be
a random operator defined on M such that for ω ∈ Ω, T(ω, .) : Ω×M→M

satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ a(ω)d(x(ω), y(ω)),

for all x, y ∈M, a(ω) ∈ (0, 1) and ω ∈ Ω. Then T has a unique random fixed
point in X.

If we take S = T and a(ω) = c(ω) = 0 in Theorem 1, then we obtain the
following result as corollary.

Corollary 3 ([16], Corollary 3.2) Let (X, d) be a complete cone random met-
ric space with respect to a cone P and let M be a nonempty separable closed
subset of X. Let T be a continuous random operator defined on M such that
for ω ∈ Ω, T(ω, .) : Ω×M→M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ b(ω) [d(x(ω), T(x(ω))) + d(y(ω), T(y(ω)))]

for all x, y ∈M, b(ω) ∈ (0, 12) and ω ∈ Ω. Then T has a unique random fixed
point in X.

If we take S = T and a(ω) = b(ω) = 0 in Theorem 1, then we obtain the
following result as corollary.

Corollary 4 ([16], Corollary 3.3) Let (X, d) be a complete cone random met-
ric space with respect to a cone P and let M be a nonempty separable closed
subset of X. Let T be a continuous random operator defined on M such that
for ω ∈ Ω, T(ω, .) : Ω×M→M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ c(ω) [d(x(ω), T(y(ω))) + d(y(ω), T(x(ω)))]

for all x, y ∈M, c(ω) ∈ (0, 12) and ω ∈ Ω. Then T has a unique random fixed
point in X.

Theorem 2 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let S and
T be two continuous random operators defined on M such that for ω ∈ Ω,
S(ω, .), T(ω, .) : Ω×M→M satisfying the condition:

d(S(x(ω)), T(y(ω))) ≤ h(ω) max
{
d(x(ω), y(ω)), d(x(ω), S(x(ω))),

d(y(ω), T(y(ω))), d(x(ω), T(y(ω))),

d(y(ω), S(x(ω)))
} (11)
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for all x, y ∈ M, 0 < h(ω) < 1 and ω ∈ Ω. Then S and T have a unique
common random fixed point in X.

Proof. For each x0(ω) ∈ Ω×M and n = 0, 1, 2, . . . , we choose x1(ω), x2(ω)
∈ Ω ×M such that x1(ω) = S(x0(ω)) and x2(ω) = T(x1(ω)). In general
we define sequence of elements of M such that x2n+1(ω) = S(x2n(ω)) and
x2n+2(ω) = T(x2n+1(ω)). Then from (11), we have

d(x2n+1(ω), x2n(ω)) = d(S(x2n(ω)), T(x2n−1(ω)))

≤ h(ω) max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), S(x2n(ω))), d(x2n−1(ω), T(x2n−1(ω))),

d(x2n(ω), T(x2n−1(ω))), d(x2n−1(ω), S(x2n(ω)))
}

= h(ω) max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω)),

d(x2n(ω), x2n(ω)), d(x2n−1(ω), x2n+1(ω))
}

= h(ω) max
{
d(x2n(ω), x2n−1(ω)),

d(x2n(ω), x2n+1(ω)), d(x2n−1(ω), x2n(ω)),

d(x2n−1(ω), x2n+1(ω))
}

≤ h(ω)d(x2n(ω), x2n−1(ω)).

(12)

Similarly, we have

d(x2n(ω), x2n−1(ω)) ≤ h(ω)d(x2n−1(ω), x2n−2(ω)).

Hence
d(x2n+1(ω), x2n(ω)) ≤ h(ω)2 d(x2n−1(ω), x2n−2(ω)).

On continuing this process, we get

d(x2n+1(ω), x2n(ω)) ≤ h(ω)2n d(x1(ω), x0(ω)).

Also for n > m, we have

d(xn(ω), xm(ω)) ≤ d(xn(ω), xn−1(ω)) + d(xn−1(ω), xn−2(ω)) + . . .

+ d(xm+1(ω), xm(ω))

≤ (h(ω)n−1 + h(ω)n−2 + · · ·+ h(ω)m)d(x1(ω), x0(ω))
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≤
( h(ω)m

1− h(ω)

)
d(x1(ω), x0(ω)).

Let 0� ε be given. Choose a natural number N such that
(
h(ω)m

1−h(ω)

)
d(x1(ω),

x0(ω)) � ε for every m ≥ N. Thus

d(xn(ω), xm(ω)) ≤
( h(ω)m

1− h(ω)

)
d(x1(ω), x0(ω))� ε,

for every n > m ≥ N.

This shows that the sequence {xn(ω)} is a Cauchy sequence in Ω×M. Since
(X, d) is complete, there exists z(ω) ∈ Ω × X such that xn(ω) → z(ω) as
n→∞. Hence, we have

d(z(ω), S(z(ω))) ≤ d(z(ω), x2n+2(ω)) + d(x2n+2(ω), S(z(ω))

= d(z(ω), x2n+2(ω)) + d(S(z(ω)), T(x2n+1(ω)))

≤ d(z(ω), x2n+2(ω)) + h(ω) max
{
d(z(ω), x2n+1(ω)),

d(z(ω), S(z(ω))), d(x2n+1(ω), T(x2n+1(ω))),

d(z(ω), T(x2n+1(ω))), d(x2n+1(ω), S(z(ω)))
}

= d(z(ω), x2n+2(ω)) + h(ω) max
{
d(z(ω), x2n+1(ω)),

d(z(ω), S(z(ω))), d(x2n+1(ω), x2n+2(ω)),

d(z(ω), x2n+2(ω)), d(x2n+1(ω), S(z(ω)))
}
.

Taking the limit as n→∞ in the above inequality, we get

d(z(ω), S(z(ω))) ≤ h(ω)d(z(ω), S(z(ω)))

or,
(1− h(ω))d(z(ω), S(z(ω))) ≤ 0⇒ d(z(ω), S(z(ω))) ≤ 0, since 0 < (1− h(ω)) < 1.

Thus −d(z(ω), S(z(ω))) ∈ P. But d(z(ω), S(z(ω))) ∈ P. Therefore by defi-
nition 1(c3), we have d(z(ω), S(z(ω)) = 0 and so S(z(ω)) = z(ω).

In an exactly the similar way we can prove that for all ω ∈ Ω, T(z(ω)) =
z(ω). Hence S(z(ω)) = T(z(ω)) = z(ω). This shows that z(ω) is a common
random fixed point of S and T . Rest of the proof is same as that of Theorem
1. This completes the proof. �

If we take S = T in Theorem 2 we get the following result as corollary.
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Corollary 5 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be a
continuous random operators defined on M such that for ω ∈ Ω, T(ω, .) : Ω×
M→M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ h(ω) max
{
d(x(ω), y(ω)), d(x(ω), T(x(ω))),

d(y(ω), T(y(ω))), d(x(ω), T(y(ω))),

d(y(ω), T(x(ω)))
} (13)

for all x, y ∈ M, 0 < h(ω) < 1 and ω ∈ Ω. Then T has a unique random
fixed point in X.

Proof. The proof of corollary 5 immediately follows by putting S = T in
Theorem 2. This completes the proof. �

The following corollary is a special case of Corollary 5.

Corollary 6 Let (X, d) be a complete cone random metric space with respect
to a cone P and let M be a nonempty separable closed subset of X. Let T be a
continuous random operators defined on M such that for ω ∈ Ω, T(ω, .) : Ω×
M→M satisfying the condition:

d(T(x(ω)), T(y(ω))) ≤ h(ω)d(x(ω), y(ω)) (14)

for all x, y ∈ M, 0 < h(ω) < 1 and ω ∈ Ω. Then T has a unique random
fixed point in X.

Condition (14) is called Banach contractive condition.
Proof. (Proof of corollary 6) The proof of corollary 6 immediately follows
from Corollary 5 by taking

max
{
d(x(ω), y(ω)), d(x(ω), T(x(ω))), d(y(ω), T(y(ω))),

d(x(ω), T(y(ω))), d(y(ω), T(x(ω)))
}
= d(x(ω), y(ω)).

This completes the proof. �

Example 3 Let Ω = [0, 1] and Σ be the sigma algebra of Lebesgue’s measur-
able subset of [0, 1]. Take X = R with d(x, y) = |x − y| for x, y ∈ R. Define
random mapping T from Ω× X to X as T(ω, x) = ω − x. Then a measurable
mapping ξ : Ω → X defined as ξ(ω) = ω

2 for all ω ∈ Ω, serve as a unique
random fixed point of T .
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Example 4 Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1] and Σ be
the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let X = [0,∞) and
define a mapping d : (Ω×X)×(Ω×X)→M by d(x(ω), y(ω)) = |x(ω)−y(ω)|.
Then (X, d) is a cone random metric space. Define random operator T form

(Ω × X) to X as T(ω, x) = 1−ω2+2x
3 . Also sequence of mapping ξn : Ω → X

is defined by ξn(ω) = (1 − ω2)1+(1/n) for every ω ∈ Ω and n ∈ N. Define
measurable mapping ξ : Ω → X as ξ(ω) = (1 −ω2) for every ω ∈ Ω. Hence
(1−ω2) is the random fixed point of the random operator T .

Example 5 Let M = R and P = {x ∈ M : x ≥ 0}, also Ω = [0, 1] and Σ be
the sigma algebra of Lebesgue’s measurable subset of [0, 1]. Let X = [0,∞) and
define a mapping d : (Ω×X)×(Ω×X)→M by d(x(ω), y(ω)) = |x(ω)−y(ω)|.
Then (X, d) is a cone random metric space. Define random operators S and T

form (Ω×X) to X as S(ω, x) = 1−ω2+x
2 and T(ω, x) = 1−ω2+2x

3 . Also sequence

of mapping ξn : Ω→ X is defined by ξn(ω) = (1−ω2)1+(1/n) for every ω ∈ Ω
and n ∈ N. Define measurable mapping ξ : Ω → X as ξ(ω) = (1 − ω2) for
every ω ∈ Ω. Hence (1−ω2) is a common random fixed point of the random
operators S and T .

Example 6 Let E = {0, 1, 2, 3, 4} ⊂ R with the usual metric d. Consider
Ω = {0, 1, 2, 3, 4} and let Σ be the sigma algebra of Lebesgue’s measurable
subset of Ω. Define S, T : Ω× E→ E by{

S(ω, x) = 3, where x = 0 and ω ∈ Ω
= 1, otherwise,

and {
T(ω, x) = 2, where x = 0 and ω ∈ Ω

= 1, otherwise.

Let us take x(ω) = 0, y(ω) = 1. Then from condition (11), we have

2 = d(S(x(ω)), T(y(ω)))

≤ h(ω) max
{
d(x(ω), y(ω)), d(x(ω), S(x(ω))),

d(y(ω), T(y(ω))), d(x(ω), T(y(ω))),

d(y(ω), S(x(ω)))
}

= h(ω) max{1, 3, 0, 1, 2}
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which implies h(ω) ≥ 2
3 . Now if we take 0 < h(ω) < 1, then condition (11)

is satisfied. The measurable function ξ : Ω → E with ξ(ω) = 1 is a unique
common random fixed point of S and T , that is, S(ω, x) = T(ω, x) = 1 = ξ(ω).

Example 7 Let E = {0, 1, 2, 3, 4} ⊂ R with the usual metric d. Consider
Ω = {0, 1, 2, 3, 4} and let Σ be the sigma algebra of Lebesgue’s measurable
subset of Ω. Define S, T : Ω× E→ E by{

S(ω, x) = 4, where x = 0 and ω ∈ Ω
= 3, otherwise,

and {
T(ω, x) = 2, where x = 0 and ω ∈ Ω

= 3, otherwise.

Let us take x(ω) = 0 and y(ω) = 1. Then condition (5) of Theorem 3.1 is
satisfied with a(ω) = b(ω) = c(ω) = 1

12 and a(ω) + 2b(ω) + 2c(ω) = 5
12 ∈

(0, 1). The measurable function ξ : Ω→ E with ξ(ω) = 3 is a unique common
random fixed point of S and T , that is, S(ω, x) = T(ω, x) = 3 = ξ(ω).

Remark 2 Our results extend and generalize many known results from the
current existing literature.
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