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Abstract. In this paper, we establish the property of conditional full
support for two processes: the Ornstein Uhlenbeck and the stochastic
integral in which the Brownian Bridge is the integrator and we build the
absence of arbitrage opportunities without calculating the risk-neutral
probability.

1 Introduction

Stochastic portfolio theory is a section of mathematical finance. It is intro-
duced by Fernholz [1, 2], and then further developed by Fernholz, Karatzas
and Kardaras [3]. It analyses the results of portfolio by a new and different
structure.

The conditional full support (CFS) is a simple condition on asset prices
which specifies that from any time, the asset price path can continue arbitrarily
close to any given path with positive conditional probability. The conditional
full support’s notion is introduced by Guasoni et al. (2008) [16] who proves
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that the fractional Brownian motion with arbitrary Hurst parameter has a
desired property.

This latter is generalized by Cherny (2008) [17] who proves that any Brow-
nian moving average satisfies the conditional full support condition. Then, the
(CSF) property is established for Gaussian processes with stationary incre-
ments by Gasbarra (2011) [18].

Let’s note that, by the main result of Guasoni et al. (2008) [16], the CFS
generates the consistent price systems which admit a martingale measure. In
2014, Attila Herczegh et al. provide a new result on conditional full support
in higher dimensions [19].

By the main result of Guasoni, Résonyi, and Schachermayer [16], the CFS
generates the consistent price systems which admit a martingale measure.

M. S. Pakkanan in 2009 [7] presents conditions that imply the conditional
full support for the process Z := H + K ∗W, where W is a Brownian motion
and H is a continuous process.

This paper is organized as follows. Section 2 presents some basic concepts
from stochastic portfolio theory and some results on consistent price system.
In section 3, we present the conditions that imply the conditional full support
(CFS) property for processes Z := H+K∗W. In section 4, we establish our main
result on the conditional full support for the processes: the Ornstein Uhlenbeck
and the stochastic integral such that the Brownian Bridge is the integrator and
we build the absence of arbitrage opportunities without calculating the risk-
neutral probability in the case of existence of the consistent price systems.
Finnaly we give a conclusion.

2 Reminder

2.1 Markets and portfolios

We shall place ourselves in a model M for a financial market of the form

dB(t) = B(t)r(t)dt, B(0) = 1,

dSi(t) = Si(t)

(
bi(t)dt+

d∑
v=1

σiv(t)dWv(t)

)
,

Si(0) = si > 0; i = 1, . . . , n,

(1)

consisting of a money-market B(.) and of n stocks, whose prices S1(.); . . . ;Sn(.)
are driven by the d-dimensional Brownian motion W(.) = W1(.); . . . ;Wd(.))

′

with d ≥ n.
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The following notations are adopted; The interest-rate process r(.) for the
money-market, the vector-valued process b(.) = (b1(.); . . . ;bn(.))

′
of rates

of return for the various stocks, and the (n*d)-matrix-valued process σ(.) =
(σiv(.))1<i<n,1≤v≤d of stock-price volatilities.

Definition 1 A portfolio π(.) = (π1(.), . . . , πn(.))
′

is an F-progressively mea-
surable process, bounded uniformly in (t,w), with values in the set⋃

k∈N
{(π1, . . . , πn) ∈ Rn|π21 + . . .+ π2n ≤ k2, π1 + . . .+ πn = 1}.

The Market Portfolio

The stock price Si(t) can be interpreted as the capitalization of the ith com-
pany at time t, and the quantities

S(t) = S1(t) + . . .+ Sn(t) and µi(t) =
Si(t)

S(t)
, i = 1, . . . , n (2)

as the total capitalization of the market and the relative capitalizations of the
individual companies, respectively.

Clearly, 0 < µi(t) < 1, ∀ i = 1, . . . , n and
∑n
i=1 µi(t) = 1.

The resulting wealth process Vw,µ(.) satisfies

dVw,µ(t)

Vw,µ(t)
=

n∑
i=1

µi(t)
dSi(t)

Si(t)
=

n∑
i=1

dSi(t)

S(t)
=
dS(t)

S(t)
.

2.2 Conditional full support

Definition 2 Let O ⊂ Rn be an open set and (S(t))t∈[0,T ] be a continuous
adapted process taking values in O. We say that S has conditional full support
in O if for all t ∈ [0, T ] and for all open set G ⊂ C([0, T ],O),

P(S ∈ G|Ft) > 0, a.s. on the event (S|[0,t] ∈ {g|[0,t] : g ∈ G}). (3)

We will also say that S has full support in O, or simply full support when
O = Rn, if (3) holds for t = 0 and for all open subset of C([0, T ],O).

Recall also, the notion of consistent price system.
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Definition 3 Let ε > 0. An ε−consistent price system to S is a pair (S̃,Q),
where Q is a probability measure equivalent to P and S̃ is a Q−martingale
in the filtration F, such that

1

1+ ε
≤ S̃i(t)
Si(t)

≤ 1+ ε, almost surely for all t ∈ [0, T ] and i = 1, . . . , n.

Note that S̃ is a martingale under Q, hence we may asuume that it is càdlàg,
but it is not required in the definition that S̃ is continuous.

Theorem 1 [14] Let O ⊂ (0,∞)n be the open set defined by

O = O(δ) =
{
x ∈ (0,∞)n : max

j

xj

x1 + . . .+ xn
< 1− δ

}
(4)

and assume that the price process takes values and has conditional full support
in O. Then for any ε > 0 there is an ε− consistent price system (S̃,Q) such
that S̃ takes values in O.

To check the condition of Theorem 2.1 we apply the next Theorem. In
comparison to the existing results, we mention that our findings seem to be
new in the sense that we do not assume that our process solves a stochastic
differential equation as it is done in Stroock and Varadhan [11] and it is not
only for one dimensional processes as it is in Pakkanen [7].

Theorem 2 [14] Let X be a n-dimensional Itô proces on [0, T ], such that

dXi(t) = µi(t)dt+

n∑
v=1

σiv(t)dWv(t).

Assume that |µ| is bounded and σ satisfies

ε|ξ|2 ≤ |σ
′
(t)ξ|2 ≤M|ξ|2, a.s. for all t ∈ [0, T ] and ξ ∈ Rn and ε,M > 0.

Then X has conditional full support.

2.3 Consistent Price System and Conditional Full support

Theorem 3 [14] Let O ⊂ Rn be an open set and (S(t))t∈[0,T ] be an O-valued,
continuous adapted process having conditional full support in O.
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Besides, let (εt)t∈[0,T ] be a continuous positive process, that satisfies

|εt − εs| ≤ Ls sups≤u≤t|S(u) − S(s)|, for all 0 ≤ s ≤ t ≤ T,

with some progressively measurable finite valued (Ls)s∈[0,T ].

Then S admits an ε-consistent price system in the sense that, there is an
equivalent probability Q on Ft and a process (S̃(t))t∈[0,T ] taking values in O
such that S̃ is Q martingale, bounded in L2(Q) and finally |S(t) − S̃(t)| ≤ εt
almost surely for all t ∈ [0, T ].

Lemma 1 [14] Under the assumption of theorem 3.1 there is a sequence of
stopping times (τn)n≥1, a sequence of random variables (Xn)n≥0 and an equiv-
alenty Q such that

1. τ0 = 0, (τn) is increasing and
⋃
n{τn = T } has full probability,

2. (Xn)n≥0 is a Q martingale in the discrete time filtration (gn = Fτn)n≥0,
bounded in L2(Q),

3. if τn ≤ t ≤ τn+1 then |St − Xn+1| ≤ εt.

Corollary 1 [14] Assume that the continuous adapted process S evoling in O
has conditional full support in O. Let τ be a stopping time and denote by QS|Fτ

the regular version of the conditional distribution of S given Fτ.

Then the support of the random measure QS|Fτ is

suppQS|Fτ =

{
g ∈ C([0, T ],O) : g|[0,τ] = S|[0,τ]

}
, almost surely.

3 Conditional full support for stochastic integrals

We shall establish the CFS for processes of the form

Zt := Ht +

∫ t
0

ksdWs, t ∈ [0, T ],

where H is a continuous process, the integrator W is a Brownian motion, and
the integrand k satisfies some varying assumptions (to be clarified below). We
focus on three cases, each of which requires a separate treatment (see [7]).

First, we study the case:
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(1) Independent integrands and Brownian integrators

Theorem 4 [7] Let us define

Zt := Ht +

∫ t
0

ksdWs, t ∈ [0, T ]

Suppose that

• (Ht)t∈[0,T ] is a continuous process

• (kt)t∈[0,T ] is a measurable process s.t.
∫T
0 K

2
sds <∞

• (Wt)t∈[0,T ] is a standard Brownian motion independent of H and k.

If we have

meas(t ∈ [0, T ] : kt = 0) = 0 P − a.s

then Z has CFS.

As an application of this result, we show that several popular stochastic
volatility models have the CFS property.

Application to stochastic volatility model:

Let us consider the price process (Pt)t∈[0,T ] in R+ given by :

dPt = Pt(f(t, Vt)dt+ ρg(t, Vt)dBt +
√
1− ρ2g(t, Vt)dWt,

P0 = p0 ∈ R+, where

(a) f, g ∈ C([0, T ]× Rd,R),

(b) (B,W) is a planar Brownian motion,

(c) ρ ∈ (−1, 1),

(d) V is a (measurable) process in Rd s.t. g(t, Vt) 6= 0 a.s. for all t ∈
[0, T ],

(e) (B, V) is independent of W.
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Write using Itô’s formula:

logPt = logP0 +

∫ t
0

(f(s, Vs) −
1

2
g(s, Vs)

2)ds+ ρ

∫ t
0

g(s, Vs)dBs︸ ︷︷ ︸
=Ht

+
√
1− ρ2

∫ t
0

g(s, Vs)dWs︸ ︷︷ ︸
=Ks

.

Since W is independent from B and V, the previous Theorem implies
that logP has CFS, and from the next remark, it follows that P has
CFS.

Remark 1 If I ⊂ R is an open interval and f : R −→ I is a homeo-
morphism, then g 7−→ f ◦ g is a homeomorphism between Cx([0, T ]) and
Cf(x)([0, T ], I).

Hence, for f(X), understood as a process on I, we have

f(X) has F− CFS⇐⇒ X has F− CFS. (5)

Next, we weaken the assumption about independence and consider the
second case:

(2) Progressive integrands and Brownian integrators

Remark 2 In general, the assumption about independence between W
and (H, k) is necessary.

Namely, if e.g.

Ht = 1;kt := e
Wt−

1
2
t; t ∈ [0, T ],

then Z = k = ξ(W), the Dolans exponential of W, which is strictly
positive and thus does not have CFS if the process is considered in R.

Theorem 5 [7] Suppose that

• (Xt)t∈[0,T ] and (Wt)t∈[0,T ] are continuous process,

• h and k are progressive [0, T ]× C([0, T ])2 −→ R,

• ε is a random variable,

• and Ft = σ{ε, Xs,Ws : s ∈ [0, t]}, t ∈ [0, T ]
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If W is an (Ft)t∈[0,T ]-Brownian motion and

• E[eλ
∫T
0
k−2s ds] <∞ for all λ > 0,

• E[e2
∫T
0
k−2s h2sds] <∞ and

•
∫T
0 k

2
sds ≤ K a.s for some constant K ∈ (0,∞),

then the process

Zt = ε+

∫ t
0

hsds+

∫ t
0

ksdws, t ∈ [0, T ]

has CFS.

(3) Independent integrands and general integrators

Since the Brownian motion has CFS, one might wonder if the previous
results can be generalized to the case where the integrator is merely
a continuous process with CFS. While the proofs of these results use
quite heavily methods specific to Brownian motion (martingales, time
changes), so in the case of independent integrands of finite variations,
we are able to prove this conjecture.

Theorem 6 [7] Suppose that

• (Ht)t∈[0,T ] is a continuous process,

• (kt)t∈[0,T ] is a process of finite variation, and

• X = (Xt)t∈[0,T ] is a continuous process independent of H and k.

Let us define

Zt := Ht +

∫ t
0

ksdXs, t ∈ [0, T ].

If X has CFS and

inf
t∈[0,T ]

|kt| > 0 P − a.s.,

then Z has CFS.
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4 Main result

In this part, we will use the following theorem to demonstrate the absence of
arbitration without calculating the risk-neutral probability for the two models
below.

Theorem 7 [4, theorem 1.2] Let (Xt) be an Rd+-valued, continuous adapted
process satisfying (CFS); then X admits an ε-consistent pricing system for all
ε > 0.

4.1 Ornstein-Uhlenbeck process driven by Brownian motion

The (one-dimensional) Gaussian Ornstein-Uhlenbeck process X = (Xt)t ≥ 0
can be defined as the solution to the stochastic differential equation (SDE)

dXt = θ(µ− Xt)dt+ σdWt t > 0.

Where we see

Xt = X0e
−θt + µ(1− e−θt) +

∫ t
0

σeθ(s−t) dWs. t ≥ 0.

It is readily seen that Xt is normally distributed. We have

Xt = X0e
−θt + µ(1− e−θt)︸ ︷︷ ︸

Ht

+

∫ t
0

σeθ(s−t)︸ ︷︷ ︸
Ks

dWs. t ≥ 0. (6)

To establish the property of CFS for this process, the conditions of theorem
3.1 will be applied.

The processes (Hs) and (Ks) in (6) satisfy

1. Process (Hs) is a continuous process,

2. (Ks) is a measurable process such that
∫T
0 K

2
sds <∞, and

3. (Wt) is a standard Brownian motion independent of H and K.

Consequently, the process (Xt) has the property of CFS and there are the
consistent price systems which can be seen as generalization of equivalent
martingale measures.

This shows that this price process doesn’t admit arbitrage opportunities un-
der arbitrary small transaction and using it, we guarantee no-arbitrage without
calculating the risk-neutral probability.
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4.2 Independent integrands and Brownian Bridge integrators.

To state our main result for the application of CFC in which the Brownian
Bridge is the integrator, we need to recall some facts of Brownian bridge.

Let us start with a Brownian motion B = (Bt, t ≥ 0) and its natural filtration

FB. Define a new filtration as G = (Gt, t ≥ 0) with Gt = F (B1)
t = FBt ∨ σ(B1).

In this filtration, the process (Bt, t ≥ 0) is no longer a martingale. It is easy

to be convinced of this by looking at the process (E(B1 | F (B1)
t ), t ≤ 1): this

process is identically equal to B1, not to Bt, hence (Bt; t ≥ 0) is not a G-
martingale. However, (Bt, t ≥ 0) is a G-semi-martingale, as follows from the
next proposition 1.

In general, if H = (Ht, t ≥ 0) is a filtration larger than F = (Ft, t ≥ 0), i.e.,
Ft ⊂ Ht, ∀t ≥ 0 (we shall write F ⊂ H), it is not true that an F-martingale
remains a martingale in the filtration H. It is not even true that F-martingales
remain H-semi-martingales.

Before giving this proposition, we recall the definition of Brownian bridge.

Definition 4 The Brownian bridge (bt; 0 ≤ t ≤ 1) is defined as the condi-
tioned process (Bt; t ≤ 1|B1 = 0).

Note that Bt = (Bt − tB1) + tB1 where, from the Gaussian property, the
process (Bt − tB1; t ≤ 1) and the random variable B1 are independent. Hence

(bt; 0 ≤ t ≤ 1)
law
= (Bt − tB1; 0 ≤ t ≤ 1).

The Brownian bridge process is a Gaussian process, with zero mean and co-
variance function s(1− t); s ≤ t. Moreover, it satisfies b0 = b1 = 0.

Proposition 1 [15] Let F (B1)
t = ∩ε>0Ft+ε ∨ σ(B1). The process

βt = Bt −

∫ t∧1
0

B1 − Bs
1− s

ds

is an F(B1)-martingale, and an F(B1) Brownian motion. In other words,

Bt = βt −

∫ t∧1
0

B1 − Bs
1− s

ds

is the decomposition of B as an F(B1)-semi-martingale.

Example of application: The following example was studied by Monique
Jeanblanc et al. [15], we will later introduce our approach to this application,
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this approach is based on the conditional full support property. M.Jeanblanc et
al. study within the problem occurring in insider trading: existence of arbitrage
using strategies adapted w.r.t. the large filtration.

Our approach is to prove the existence of no arbitrage in the case 0 ≤ t <
1 without calculating the dynamics of wealth and risk neutral probability.

Let
dSt = St(µdt+ σdbt),

where µ and σ are constants and St defines the price of a risky asset. Assume
that the riskless asset has a constant interest rate r.

The wealth of an agent is

dXt = rXtdt+ π̂t(dSt − rStdt) = rXtdt+ πtσXt(dWt + θdt); X0 = x,

where θ = µ−r
σ and π = (π̂St/Xt) assumed to be an FB-adapted process.

Here, π̂ is the number of shares of the risky asset, and π the proportion of
wealth invested in the risky asset. It follows that

ln(Xπ,xT ) = ln x+

∫ T
0

(r−
1

2
π2sσ

2 + θπsσ)ds+

∫ T
0

σπsdWs

Then,

E(ln(Xπ,xT )) = ln x+

∫ T
0

E

(
r−

1

2
π2sσ

2 + θπsσ

)
ds

The solution of maxE(ln(Xπ,xT )) is πs =
θ
σ and

supE(ln(Xπ,xT ) = ln x+ T

(
r+

1

2
θ2
)

Note that, if the coefficients r, µ and σ are F-adapted, the same computation
leads to

supE(ln(Xπ,xT ) = ln x+

∫ T
0

E

(
rt +

1

2
θ2t

)
dt,

where θt =
µt−rt
σt
.

We now enlarge the filtration with S1.
In the enlarged filtration, setting, for t < 1, αt =

B1−Bt
1−t , the dynamics of S

are
dSt = St((µ+ σαt)dt+ σdβt),

and the dynamics of the wealth are

dXt = rXtdt+ πtσXt(dβt + θ̃tdt), X0 = x
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with θ̃t =
µ−r
σ + αt.

The solution of maxE(ln(Xπ,xT )) is πs =
θ̃s
σ .

Then, for T < 1,

ln(Xπ,x,∗T ) = ln x+

∫ T
0

(r+
1

2
θ̃2s)ds+

∫ T
0

σπsdβs

E(ln(Xπ,x,∗T )) = ln x+

∫ T
0

(r+
1

2
(θ2 + E(α2s) + 2θE(αs))ds

= ln x+ (r+
1

2
θ2)T +

1

2

∫ T
0

E(α2s)ds,

where we have used the fact that E(αt) = 0 (if the coefficients r, µ and σ are
F-adapted, α is orthogonal to Ft, hence E(αtθt) = 0).

Let
VF(x) = maxE(ln(Xπ,xT ));π is F admissible
VG(x) = maxE(ln(Xπ,xT ));π is G admissible

Then VG(x) = VF(x) + 1
2E
∫T
0 α

2
sds = V

F(x) − 1
2 ln(1− T).

If T = 1, the value function is infinite: there is an arbitrage opportunity and
there exists no an e.m.m. such that the discounted price process (e−rtSt, t ≤ 1)
is a G-martingale. However, for any ε ∈]0; 1], there exists a uniformly inte-
grable G-martingale L defined as

dLt =
µ− r+ σσt

σ
Ltdβt, t ≤ 1− ε, L0 = 1,

such that, setting dQ |Gt= LtdP |Gt , the process (e−rtSt; t ≤ 1 − ε) is a
(Q,G)-martingale.

This is the main point in the theory of insider trading where the knowledge
of the terminal value of the underlying asset creates an arbitrage opportunity
and this is effective at time 1.

Our approach to this example: We consider the previous example. Let

dSt = St(µdt+ σdbt),

The standard Brownian bridge b(t) is a solution of the following stochastic
equation.

dbt = −
bt

1− t
dt+ dWt; 0 ≤ t < 1

b0 = 0.
(7)
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The solution of the above equation is

bt = (1− t)

∫ t
0

1

1− s
dWs,

We may now verify that S has CFS.

By positivity of S, Itô’s formula yields

logSt = logS0 +

{(
µ−

σ2

2

)
t+ σ

(
1− t

) ∫ t
0

1

1− s
dWs

}
, 0 ≤ t < 1.

We have

logSt = logS0 +

(
µ−

σ2

2

)
t︸ ︷︷ ︸

=:Ht

+

∫ t
0

σ

(
1− t

)
1

1− s︸ ︷︷ ︸
=:Ks

dWs, 0 ≤ t < 1.

1. (Ht) is a continuous process,

2. (Ks) = σ(1− t)
1
1−s is a measurable process s.t.

∫t
0 K

2
sds <∞,

3. (Wt) is a standard Brownian motion independent of H and K,

which clearly satisfy the assumptions of theorem (3.1) and logSt has CFS,
then S has CFS for 0 ≤ t < 1 and there is the consistent price systems and
this is a martingale. Using it, we guarantee no-arbitrage without calculating
the risk-neutral probability.

5 Conclusion

In this paper, we have investigated the conditional full support for two pro-
cesses, the Ornstein Uhlenbeck and the Stochastic integral in which the Brow-
nian Bridge is the integrator, and we have also built the absence of arbitrage
opportunities without calculating the risk-neutral probability in the existence
of the consistent price systems which admit a martingale measure.

Prospects: In mathematical finance, the CoxIngersollRoss model (or CIR
model) describes the evolution of interest rates. It is a type of "one factor
model" (short rate model) as it describes interest rate movements as driven
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by only one source of market risk. The model can be used in the valuation of
interest rate derivatives. It was introduced in 1985 by John C. Cox, Jonathan
E. Ingersoll and Stephen A. Ross as an extension of the Vasicek model. The
CIR model specifies that the instantaneous interest rate follows the stochastic
differential equation, also named the CIR Process:

dXt = θ(µ− Xt)dt+ σ
√
XtdWt t > 0,

where (Wt) is a Wiener process and θ, µ and σ are the parameters. The
parameter θ corresponds to the speed of adjustment, µ to the mean and σ to
volatility. The drift factor θ(µ−Xt) is exactly the same as in the Vasicek model.
It ensures a mean reversion of the interest rate towards the long run value µ,
with speed of adjustment governed by the strictly positive parameter θ.

As prospects, we establish the condition of CFS for the Cox-Ingersoll-Ross
model.
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