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On packing density of growing size circles
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Abstract. For any given natural number an arrangement of growing size
circles, a packing of the plane will be constructed such that its packing
density coincides – in the asymptotical sense – with that of the ’classical’
hexagonal circle packing!

1 The construction

For a natural n ≥ 3 let us define a special circle packing as follows. First, we
circumscribe the unit circle with n circles of the same radius rn,1 such that
they also touch their both neighbours. Thus we get zone one, Zn,1.

Then we draw n circles of the same radius rn,2 such that they touch two
circles from Zn,1 and also their both neighbours with radius rn,2, getting this
way Zn,2, etc.

Denote by Sn,k the set of circles of the first k zones:

Sn,k = ∪ki=1Zn,i,

and let
Sn = ∪∞k=1Sn,k.

Then Sn is a packing of the plane, an infinite set of circles with pairwise disjoint
interiors, and a natural problem is to find the fraction of the plane filled by
the circles making up this packing.
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Figure 1. The set S8,3, i.e. the first three zones for n = 8.

2 The main theorem

The packing density of the arrangement Sn related to a bounded domain
D ⊂ R2 is the ratio ∑

|C ∩D|

|D|
, C ∈ Sn,

where | · | denotes the area of its argument. It is customary to define (see e.g.
Kuperberg [1]) the packing density in an Euclidean space by means of a limit,
taking e.g. balls Br of radius r centered at the origin:

lim
r→∞

∑
|C ∩ Br|
|Br|

, C ∈ Sn.
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However, in our case taking polygons is more capable. Denote by Pn,k the
regular n−gon with vertices at the centres of circles in Zn,k, and let

δn,k =
|Sn ∩ Pn,k|

|Pn,k|
≡ |Sn,k ∩ Pn,k|

|Pn,k|
.

Then,

δn = lim
k→∞ δn,k

is the packing density of Sn, and

δ∗ = lim
n→∞ δn

is the quantity we are interested in.

Theorem 1 With the notations above we have

δ∗ =
π

2
√
3
.

Remark 1 As is known (see e.g. the survey on the first page in [2], showing
the contributions of Lagrange, A. Thue, L. Fejes Tóth to the subject), the
optimal packing density for circles is just this quantity - a curious coincidence!

Remark 2 The interested reader should also consult [3] and [4] for further
information.

3 The proof

Let n, k ∈ N, n ≥ 3 be given. Assume that the centre of one of the circles
belonging to Zn,1 lies on the x-axis, i.e. at An,1 := (1+ rn,1, 0).

Denote by Bn,1 the point, where the half-line y = tan(πn) x is tangent to the
circle chosen. It suffices to consider the ’basic’ sector Bn,1OAn,1, as is seen on
Figure 2 for the case n = 8, k = 3.

It is easy to see that the centre An,i of the i − th circle in the basic sector
lies on the x-axis for i odd, and on the line y = tan(πn) x for i even, and just
reversely for the B ′n,is. Also note that the angles at the B ′n,is are rectangles.
Introduce now the notations

sn = sin
(π
n

)
, tn = tan

(π
n

)
.
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Figure 2. The basic sector for S8,3

The radius rn,1 can be obtained from the triangle Bn,1OAn,1 :

sn =
rn,1

1+ rn,1
⇒ rn,1 =

sn

1− sn

Since An,1Bn,2An,2Bn,1 and An,2Bn,3An,3Bn,2 are similar quadrilaterals (in
fact, both are inscribed quadrilaterals with two rectangles), it follows that
rn,2/rn,1 = rn,3/rn,2, giving in general

rn,k = rn,1 q
k−1
n , qn =

rn,2
rn,1

.

The area of the polygon Pn,k is 2n times the area of triangle OAn,kBn,k, i.e.

|Pn,k| =
n

tn
r2n,k =

nr2n,1
tn

q2k−2n .

The sum of areas of the circles in Sn,k is

nπ

k∑
i=1

r2n,i = nπr
2
n,1

k∑
i=1

q2k−2n = nπr2n,1
q2kn − 1

q2n − 1
.

However, the contribution of the k−th zone to |Zn,k ∩ Pn,k| is only n−2
2 πr

2
n,k,

instead of nπr2n,k. Consequently we have

|Sn,k ∩ Pn,k| = πr2n,1q2k−2n

( n

q2n − 1
+
n− 2

2

)
−
πnr2n,1
q2n − 1

.
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When calculating the limit of δn,k for k→ ∞, the magnitude of the quotient
qn = rn,2

rn,1
is decisive. Introducing the new variable

t = tan
( π
2n

)
(cf. the standard trigonometric substitution t = tan(x2 ) in calculus) we have

sn =
2t

1+ t2
, tn =

2t

1− t2
,

and also

rn,1 =
2t

(1− t)2
, rn,2 =

2t(u+ 2t
√
v)

(1+ t)2(1− t)4
,

where
u = 1+ 4t2 − t4, v = (3− t2)(1+ t2).

The radius rn,2 can be calculated by considering the triangles An,1Bn,2An,2
and OBn,2An,2. Analysing the function t→ rn,2

rn,1
we see that it is greater than

one for 0 < t < 1, or equivalently, that the relation qn > 1 holds for n ≥ 3.
Therefore, in case of k→ ∞ the second (negative) term in |Sn,k ∩ Pn,k| can be
omitted to get

δn =
πtn

r2n,2 − r
2
n,1

(
r2n,1 +

n− 2

2n
(r2n,2 − r

2
n,1)

)
.

With the notation ω = n−2
2n we obviously have 0 < ω < 1 for n ≥ 3, which

yields in a natural way the lower and upper bounds

δ0n < δn < δ
1
n.

Since the difference of these bounds is simply

δ1n − δ
0
n = πtn = O(t) (t→ 0),

we can replace δn e.g. by its lower bound

δ0n =
πtnr

2
n,1

r2n,2 − r
2
n,1

=
π(1− t2)3

2(2tv+ u
√
v)
.

Having gotten rid of the singularity, we can immediately substitute t = 0

(corresponding to n→ ∞) to get the desired result

δ∗ = lim
n→∞ δn.

�

Considering this surprising coincidence, one puts the question: is there a
more general principle, this conclusion can be drawn from?
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