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Abstract. In this paper, we study the existence of periodic and non-
negative periodic solutions of the nonlinear neutral differential equation

d

dt
x (t) = −a (t)h (x (t))+

d

dt
Q (t, x (t− τ (t)))+G (t, x (t) , x (t− τ (t))) .

We invert this equation to construct a sum of a completely continuous
map and a large contraction which is suitable for applying the modifica-
tion of Krasnoselskii’s theorem. The Caratheodory condition is used for
the functions Q and G.
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1 Introduction

Theory of functional differential equations with delay has undergone a rapid
development in the previous fifty years. We refer the readers to [1]-[6], [8]-[15]
and references therein for a wealth of reference materials on the subject. More
recently researchers have given special attentions to the study of equations
in which the delay argument occurs in the derivative of the state variable as
well as in the independent variable, so-called neutral differential equations. In
particular, qualitative analysis such as periodicity and positivity of solutions
of neutral differential equations has been studied extensively by many authors.

Recently, in [1], the authors discussed the existence and positivity of periodic
solutions for the first-order delay differential equation

x′ (t) = −a (t)h (x (t)) +G (t, x (t− τ (t))) , (1)

by employing the Krasnoselskii-Burton’s fixed point theorem, the authors ob-
tained existence results for periodic and positive periodic solutions.

In [14], the Krasnoselskii-Burton’s fixed point theorem was used to estab-
lish the existence of periodic solutions for the first-order nonlinear neutral
differential equation

d

dt
x (t) = −a (t)h (x (t)) + c (t) x′ (t− τ (t)) +G (t, x (t) , x (t− τ (t))) . (2)

In [8], the authors used Krasnoselskii’s fixed point theorem to establish the
existence of periodic solutions for the nonlinear neutral differential equation

d

dt
x (t) = −a (t) x (t) +

d

dt
Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) . (3)

Also, the authors used the contraction mapping principle to show the unique-
ness of periodic solutions and stability of the zero solutions of (3).

In the current paper, we are interested in the analysis of qualitative theory of
periodic and nonnegative periodic solutions of neutral differential equations.
Inspired and motivated by the works mentioned above and the papers [1]-
[6], [8]-[15] and the references therein, we study the existence of periodic and
nonnegative periodic solutions of the nonlinear neutral differential equation

d

dt
x (t) = −a (t)h (x (t)) +

d

dt
Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) ,

(4)
where a is a positive continuous real-valued function. The function h : R→ R
is continuous, Q : R × R → R and G : R × R × R → R satisfying the
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Caratheodory condition. Our purpose here is to use a modification of Kras-
noselskii’s fixed point theorem due to Burton (see [7], Theorem 3) to show
the existence and nonnegativity of periodic solutions for equation (4). Clearly,
the present problem is totally nonlinear so that the variation of parameters
can not be applied directly. Then, we resort to the idea of adding and sub-
tracting a linear term. As noted by Burton in [7], the added term destroys the
contraction but it replaces with a so called large contraction which is suitable
for fixed point theory. During the process we have to transform (4) into an
integral equation written as a sum of two mappings, one is a large contraction
and the other is completely continuous. After that, we use a variant of Kras-
noselskii’s fixed point theorem, to show the existence and nonnegativity of a
periodic solution.

Note that in our consideration the neutral term d
dtQ (t, x (t− τ (t))) of (4)

produces nonlinearity in the derivative term d
dtx (t− τ (t)). The neutral term

d
dtx (t− τ (t)) of (2) in [14] enters linearly. As a consequence, our analysis is
different from that in [14].

The organization of this paper is as follows. In Section 2, we present the
inversion of totally nonlinear neutral differential equation (4), some definitions
and Krasnoselskii-Burton’s fixed point theorem. For details on Krasnoselskii-
Burton’s theorem we refer the reader to [7]. In Sections 3 and 4, we present
our main results on existence of periodic and nonnegative periodic solutions
of (4).

2 Preliminaries

For T > 0 define PT = {φ : φ ∈ C (R,R) , φ (t+ T) = φ (t)} where C (R,R) is
the space of all real valued continuous functions. Then PT is a Banach space
when it is endowed with the supremum norm

‖x‖ = max
t∈[0,T ]

|x (t) |.

In this paper we assume that

a (t− T) = a (t) , τ (t− T) = τ (t) , τ (t) ≥ τ∗ > 0, (5)

with τ continuously and τ∗ is constant, a is positive and

1− e−
∫t
t−T

a(s)ds ≡ 1

η
6= 0. (6)
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The functions Q (t, x) and G (t, x, y) are periodic in t of period T . That is

Q (t− T, x) = Q (t, x) , G (t− T, x, y) = G (t, x, y) . (7)

The following lemma is fundamental to our results.

Lemma 1 Suppose (5)–(7) hold. If x ∈ PT , then x is a solution of equation
(4) if and only if

x (t)

= η

∫ t
t−T

κ (t, u)a (u) [x(u) − h (x (u))]du+Q (t, x (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u, x (u− τ (u))) +G (u, x (u) , x (u− τ (u)))]du,

(8)

where

κ (t, u) = e−
∫t
u
a(s)ds. (9)

Proof. Let x ∈ PT be a solution of (4). Rewrite the equation (4) as

d

dt
[x (t) −Q (t, x (t− τ (t)))] + a (t) [x (t) −Q (t, x (t− τ (t)))]

= a (t) x (t) − a (t)h (x (t)) − a (t)Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t)))

= a (t) [x (t) − h (x (t))] − a (t)Q (t, x (t− τ (t))) +G (t, x (t) , x (t− τ (t))) .

Multiply both sides of the above equation by e
∫t
0
a(s)ds and then integrate from

t− T to t to obtain∫ t
t−T

[
(x (u) −Q (u, x (u− τ (u)))) e

∫u
0
a(s)ds

]′
du

=

∫ t
t−T

a (u) [x (u) − h (x (u))] e
∫u
0
a(s)dsdu

+

∫ t
t−T

[−a (u)Q (u, x (u− τ (u))) +G (u, x (u) , x (u− τ (u)))] e
∫u
0
a(s)dsdu.
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As a consequence, we arrive at

(x (t) −Q (t, x (t− τ (t)))) e
∫t
0
a(s)ds

− (x (t− T) −Q (t− T, x (t− T − τ (t− T)))) e
∫t−T
0

a(s)ds

=

∫ t
t−T

a (u) [x (u) − h (x (u))] e
∫u
0
a(s)dsdu

+

∫ t
t−T

[G (u, x (u) , x (u− τ (u))) − a (u)Q (u, x (u− τ (u)))] e
∫u
0
a(s)dsdu.

By dividing both sides of the above equation by exp(
∫t
0 a (s)ds) and using the

fact that x (t) = x (t− T), we obtain

x (t) −Q (t, x (t− τ (t)))

= η

∫ t
t−T

a (u) [x (u) − h (x (u))] e−
∫t
u
a(s)dsdu

+ η

∫ t
t−T

[G (u, x (u) , x (u− τ (u))) − a (u)Q (u, x (u− τ (u)))] e
∫u
0
a(s)dsdu.

(10)

The converse implication is easily obtained and the proof is complete. �

Now, we give some definitions which we are going to use in what follows.

Definition 1 The map f : [0, T ] × Rn → R is said to satisfy Carathéodory
conditions with respect to L1 [0, T ] if the following conditions hold.
(i) For each z ∈ Rn, the mapping t 7→ f (t, z) is Lebesgue measurable.
(ii) For almost all t ∈ [0, T ], the mapping z 7→ f (t, z) is continuous on Rn.
(iii) For each r > 0, there exists αr ∈ L1 ([0, T ] ,R) such that for almost all

t ∈ [0, T ] and for all z such that |z| < r, we have |f (t, z)| ≤ αr (t).

T. A. Burton observed that Krasnoselskii’s result (see [12]) can be more
attractive in applications with certain changes and formulated Theorem 1
below (see [7] for the proof).

Definition 2 Let (M, d) be a metric space and assume that B : M → M.
B is said to be a large contraction, if for ϕ, ψ ∈ M, with ϕ 6= ψ, we have
d(Bϕ,Bψ) < d(ϕ,ψ), and if ∀ε > 0, ∃δ < 1 such that

[ϕ,ψ ∈M, d (ϕ,ψ) ≥ ε] =⇒ d (Bϕ,Bψ) < δd (ϕ,ψ) .



260 M. B. Mesmouli, A. Ardjouni, A. Djoudi

It is proved in [7] that a large contraction defined on a closed bounded and
complete metric space has a unique fixed point.

Theorem 1 (Krasnoselskii-Burton) Let M be a closed bounded convex
nonempty subset of a Banach space (B, ‖.‖). Suppose that A and B map M
into M such that
(i) A is completely continuous,
(ii) B is large contraction,
(ii) x, y ∈M, implies Ax+ By ∈M.

Then there exists z ∈M with z = Az+ Bz.

3 Existence of periodic solutions

To apply Theorem 1, we need to define a Banach space B, a closed bounded
convex subset M of B and construct two mappings; one is a completely con-
tinuous and the other is large contraction. So, we let (B, ‖.‖) = (PT , ‖.‖) and

M = {ϕ ∈ PT , ‖ϕ‖ ≤ L} (11)

with L ∈ (0, 1]. For x ∈M, let the mapping H be defined by

H (x) = x− h (x) , (12)

and by (8), define the mapping S : PT → PT by

(Sϕ) (t)

= η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du+Q (t, ϕ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ϕ (u− τ (u))) +G (u,ϕ (u) , ϕ (u− τ (u)))]du.

(13)

Therefore, we express the above equation as

(Sϕ) (t) = (Aϕ) (t) + (Bϕ) (t) ,

where A,B : PT → PT are given by

(Aϕ) (t)

= Q (t, ϕ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ϕ (u− τ (u))) +G (u,ϕ (u) , ϕ (u− τ (u)))]du.

(14)
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and

(Bϕ) (t) = η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du. (15)

We will assume that the following conditions hold.

(H1) a ∈ L1 [0, T ] is bounded.

(H2) Q, G satisfies Carathéodory conditions with respect to L1 [0, T ].

(H3) There exists periodic functions q1, q2 ∈ L1 [0, T ], with period T , such
that

|Q(t, x)| ≤ q1(t)|x|+ q2(t).

(H4) There exists periodic functions g1, g2, g3 ∈ L1 [0, T ], with period T , such
that

|G (t, x, y)| ≤ g1 (t) |x|+ g2 (t) |y|+ g3 (t) .

Now, we need the following assumptions

q1 (t)L+ q2 (t) ≤
γ1
2
L, (16)

g1 (t)L+ g2 (t)L+ g3 (t) ≤ γ2La (t) , (17)

J (γ1 + γ2) ≤ 1, (18)

where γ1, γ2 and J are positive constants with J ≥ 3.

Lemma 2 For A defined in (14), suppose that (5)–(7), (16)–(18) and (H1)–
(H4) hold. Then A :M→M.

Proof. Let A be defined by (14). Obviously, Aϕ is continuous. First by (5)
and (7), a change of variable in (14) shows that (Aϕ) (t+ T) = (Aϕ) (t). That
is, if ϕ ∈ PT then Aϕ is periodic with period T . Next, let ϕ ∈M, by (16)–(18)
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and (H1)–(H4) we have

|(Aϕ) (t)|

≤ |Q (t, ϕ (t− τ (t)))|

+ η

∫ t
t−T

κ (t, u) (a (u) |Q (u,ϕ (u− τ (u)))|+ |G (u,ϕu,ϕ (u− τ (u)))|)du

≤ q1 (t) |ϕ (t− τ (t))|+ q2 (t)

+ η

∫ t
t−T

κ (t, u)a (u) [q1 (u) |ϕ (u− τ (u)) |+ q2 (u)]du

+ η

∫ t
t−T

κ (t, u) [g1 (u) |ϕ (u) |+ g2 (u) |ϕ (u− τ (u)) |+ g3 (u)]du

≤ γ1L+ γ2L ≤
L

J
≤ L.

That is Aϕ ∈M. �

Lemma 3 For A :M→M defined in (14), suppose that (5)–(7), (16)–(18)
and (H1)–(H4) hold. Then A is completely continuous.

Proof. We show that A is continuous in the supremum norm, Let ϕn ∈ M
where n is a positive integer such that ϕn → ϕ as n→∞. Then

|(Aϕn) (t) − (Aϕ) (t)|

≤ |Q (t, ϕn (t− τ (t))) −Q (t, ϕ (t− τ (t)))|

+ η

∫ t
t−T

κ (t, u)a (u) |Q (u,ϕn (u− τ (u))) −Q (u,ϕ (u− τ (u)))|du

+ η

∫ t
t−T

κ (t, u) |G (u,ϕn(u), ϕn (u− τ (u))) −G (u,ϕ (u) , ϕ (u− τ (u)))|du

By the Dominated Convergence Theorem, limn→∞ |(Aϕn) (t) − (Aϕ) (t)| = 0.
Then A is continuous.

We next show that A is completely continuous. Let ϕ ∈M, then, by Lemma
2, we see that

‖Aϕ‖ ≤ L.
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And so the family of functions Aϕ is uniformly bounded. Again, let ϕ ∈ M.
Without loss of generality, we can pick ω < t such that t−ω < T . Then

|(Aϕ) (t) − (Aϕ) (ω)|

≤ |Q (t, ϕ (t− τ (t))) −Q (ω,ϕ (ω− τ (ω)))|

+ η

∣∣∣∣∫ t
t−T

κ (t, u)a (u)Q (u,ϕ (u− τ (u)))du

−

∫ω
ω−T

κ (ω,u)a (u)Q (u,ϕ (u− τ (u)))du

∣∣∣∣
+ η

∣∣∣∣∫ t
t−T

κ (t, u)G (u,ϕ (u) , ϕ (u− τ (u)))du

−

∫ω
ω−T

κ (ω,u)G (u,ϕ (u) , ϕ (u− τ (u)))du

∣∣∣∣
≤ |Q (t, ϕ (t− τ (t))) −Q (ω,ϕ (ω− τ (ω)))|

+ 2ηκ0

∫ t−T
ω−T

[
a (u)qL (u) + g√2L (u)

]
du

+ η

∫ω
ω−T

|κ (t, u) − κ (ω,u)|
[
a (u)qL (u) + g√2L (u)

]
du

≤ |Q (t, ϕ (t− τ (t))) −Q (ω,ϕ (ω− τ (ω)))|

+ 2ηκ0

∫ t
ω

[
a (u)qL (u) + g√2L (u)

]
du

+ η

∫ T
0

|κ (t, u) − κ (ω,u)|
[
a (u)qL (u) + g√2L (u)

]
du,

where κ0 = maxu∈[t−T,t] {κ (t, u)}, then by the Dominated Convergence Theo-
rem |(Aϕ) (t) − (Aϕ) (ω)| → 0 as t −ω → 0 independently of ϕ ∈ M. Thus
(Aϕ) is equicontinuous. Hence by Ascoli-Arzela’s theorem A is completely
continuous. �

Now, we state an important result see [1, Theorem 3.4] and for convenience
we present below its proof, we deduce by this theorem that the following are
sufficient conditions implying that the mapping H given by (12) is a large
contraction on the set M.

(H5) h : R→ R is continuous on [−L, L] and differentiable on (−L, L),

(H6) the function h is strictly increasing on [−L, L],

(H7) supt∈(−L,L) h
′ (t) ≤ 1.
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Theorem 2 Let h : R → R be a function satisfying (H5)–(H7). Then the
mapping H in (12) is a large contraction on the set M.

Proof. Let ϕ,ψ ∈M with ϕ 6= ψ. Then ϕ (t) 6= ψ (t) for some t ∈ R. Let us
denote the set of all such t by D (ϕ,ψ), i.e.,

D (ϕ,ψ) = {t ∈ R : ϕ (t) 6= ψ (t)} .

For all t ∈ D (ϕ,ψ), we have

|(Hϕ) (t) − (Hψ) (t)|

≤ |ϕ (t) −ψ (t) − h (ϕ (t)) + h (ψ (t))|

≤ |ϕ (t) −ψ (t)|

∣∣∣∣1− h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)

∣∣∣∣ . (19)

Since h is a strictly increasing function we have

h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)
> 0 for all t ∈ D (ϕ,ψ) . (20)

For each fixed t ∈ D (ϕ,ψ) define the interval It ⊂ [−L, L] by

It =

{
(ϕ (t) , ψ (t)) if ϕ (t) < ψ (t) ,
(ψ (t) , ϕ (t)) if ψ (t) < ϕ (t) .

The Mean Value Theorem implies that for each fixed t ∈ D (ϕ,ψ) there exists
a real number ct ∈ It such that

h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)
= h′ (ct) .

By (H6) and (H7) we have

0 ≤ inf
u∈(−L,L)

h′ (u) ≤ inf
u∈It

h′ (u) ≤ h′ (ct) ≤ sup
u∈It

h′ (u) ≤ sup
u∈(−L,L)

h′ (u) ≤ 1.

(21)
Hence, by (19)–(21) we obtain

|(Hϕ) (t) − (Hψ) (t)| ≤ |ϕ (t) −ψ (t)|

∣∣∣∣1− inf
u∈(−L,L)

h′ (u)

∣∣∣∣ , (22)

for all t ∈ D (ϕ,ψ). This implies a large contraction in the supremum norm. To
see this, choose a fixed ε ∈ (0, 1) and assume that ϕ and ψ are two functions
in M satisfying

ε ≤ sup
t∈(−L,L)

|ϕ (t) −ψ (t)| = ‖ϕ−ψ‖ .
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If |ϕ (t) −ψ (t)| ≤ ε
2 for some t ∈ D (ϕ,ψ), then we get by (21) and (22) that

|(Hϕ) (t) − (Hψ) (t)| ≤ |ϕ (t) −ψ (t)| ≤ 1
2
‖ϕ−ψ‖ . (23)

Since h is continuous and strictly increasing, the function h
(
u+ ε

2

)
− h (u)

attains its minimum on the closed and bounded interval [−L, L]. Thus, if ε2 ≤
|ϕ (t) −ψ (t)| for some t ∈ D (ϕ,ψ), then by (H6) and (H7) we conclude that

1 ≥ h (ϕ (t)) − h (ψ (t))

ϕ (t) −ψ (t)
> λ,

where

λ :=
1

2L
min
{
h
(
u+

ε

2

)
− h (u) : u ∈ [−L, L]

}
> 0.

Hence, (19) implies

|(Hϕ) (t) − (Hψ) (t)| ≤ (1− λ) ‖ϕ−ψ‖ . (24)

Consequently, combining (23) and (24) we obtain

|(Hϕ) (t) − (Hψ) (t)| ≤ δ ‖ϕ−ψ‖ , (25)

where

δ = max

{
1

2
, 1− λ

}
.

The proof is complete. �

The next result shows the relationship between the mappings H and B in
the sense of large contractions. Assume that

max {|H (−L)| , |H (L)|} ≤ 2L
J
. (26)

Lemma 4 Let B be defined by (15), suppose (H5)–(H6) hold. Then B :M→
M is a large contraction.

Proof. Let B be defined by (15). Obviously, Bϕ is continuous and it is easy
to show that (Bϕ)(t+ T) = (Bϕ)(t). Let ϕ ∈M

|(Bϕ) (t)| ≤
∫ t
t−T

κ (t, u)a (u)max {|H (−L)| , |H (L)|}du

≤ 2L
J
< L,
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which implies B :M→M.
By Theorem 2, H is large contraction on M, then for any ϕ,ψ ∈ M, with

ϕ 6= ψ and for any ε > 0, from the proof of that Theorem, we have found a
δ < 1, such that

|(Bϕ) (t) − (Bψ) (t)| =

∣∣∣∣η ∫ t
t−T

κ (t, u)a (u) [H (ϕ (u)) −H (ψ (u))]du

∣∣∣∣
≤ ‖ϕ−ψ‖η

∫ t
t−T

κ (t, u)a (u)du ≤ δ ‖ϕ−ψ‖ .

The proof is complete. �

Theorem 3 Suppose the hypothesis of Lemmas 2, 3 and 4 hold. LetM defined
by (11). Then the equation (4) has a T -periodic solution in M.

Proof. By Lemma 2, 3, A is continuous and A (M) is contained in a compact
set. Also, from Lemma 4, the mapping B is a large contraction. Next, we show
that if ϕ,ψ ∈M, we have ‖Aψ+ Bϕ‖ ≤ L. Let ϕ,ψ ∈M with ‖ϕ‖ , ‖ψ‖ ≤ L.
By (16)–(18)

‖Aψ+ Bϕ‖ ≤ (γ1 + γ2)L+
2

J
L

≤ L

J
+
2L

J
≤ L.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (4). Hence (4) has a T -periodic solution. �

4 Existence of nonnegative periodic solutions

In this section we obtain the existence of a nonnegative periodic solution of
(4). By applying Theorem 1, we need to define a closed, convex, and bounded
subset M of PT . So, let

M = {φ ∈ PT : 0 ≤ φ ≤ K} . (27)

where K is positive constant. To simplify notation, we let

m = min
u∈[t−T,t]

e−
∫t
u
a(s)ds, M = max

u∈[t−T,t]
e−

∫t
u
a(s)ds. (28)
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It is easy to see that for all (t, u) ∈ [0, 2T ]2,

m ≤ κ (t, u) ≤M. (29)

Then we obtain the existence of a nonnegative periodic solution of (4) by
considering the two cases;

(1) Q (t, y) ≥ 0 ∀t ∈ [0, T ] , y ∈M.

(2) Q (t, y) ≤ 0 ∀t ∈ [0, T ] , y ∈M.

In the case one, we assume for all t ∈ [0, T ], x, y ∈ M, that there exist a
positive constant c1 such that

0 ≤ Q (t, y) ≤ c1y, (30)

c1 < 1, (31)

0 ≤ −a (t)Q (t, y) +G (t, x, y) (32)

a (t)H (ϕ (t)) − a (t)Q (t, y) +G (t, x, y) ≤ K (1− c1)

MηT
. (33)

Lemma 5 Let A, B given by (14), (15) respectively, assume (30)–(33) hold.
Then A,B : M→M.

Proof. Let A defined by (15). So, for any ϕ ∈M, we have

0 ≤ (Aϕ) (t) ≤ Q (t, ϕ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ϕ (u− τ (u))) +G (u,ϕ (u) , ϕ (u− τ (u)))]du

≤ η
∫ t
t−T

M
K (1− c1)

MηT
du+ c1K = K,

That is Aϕ ∈M.
Now, let B defined by (15). So, for any ϕ ∈M, we have

0 ≤ (Bϕ) (t) ≤ η
∫ t
t−T

M
K (1− c1)

MηT
du ≤ ηMT K

MηT
= K.

That is Bϕ ∈M. �
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Theorem 4 Suppose the hypothesis of Lemmas 3, 4 and 5 hold. Then equation
(4) has a nonnegative T -periodic solution x in the subset M.

Proof. By Lemma 3, A is completely continuous. Also, from Lemma 4, the
mapping B is a large contraction. By Lemma 5, A,B : M→M. Next, we show
that if ϕ,ψ ∈M, we have 0 ≤ Aψ+Bϕ ≤ K. Let ϕ,ψ ∈M with 0 ≤ ϕ,ψ ≤ K.
By (30)–(33)

(Aψ) (t) + (Bϕ) (t)

= η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du+Q (t, ψ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ψ (u− τ (u))) +G (u,ψ (u) , ψ (u− τ (u)))]du

≤ η
∫ t
t−T

κ (t, u)
K (1− c1)

MηT
du+ c1K

≤ η
∫ t
t−T

M
K (1− c1)

MηT
du+ c1K = K.

On the other hand,

(Aψ) (t) + (Bϕ) (t) ≥ 0.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (4) and the proof is complete. �

In the case two, we substitute conditions (30)–(33) with the following con-
ditions respectively. We assume that there exist a negative constant c2 such
that

c2y ≤ Q (t, y) ≤ 0, (34)

− c2 < 1, (35)

−c2K

MηT
≤ a(t)H (ϕ(t)) − a (t)Q (t, y) +G (t, x, y) . (36)

a(t)H (ϕ(t)) − a (t)Q (t, y) +G (t, x, y) ≤ K

MηT
. (37)

Theorem 5 Suppose (34)–(37) and the hypothesis of Lemmas 2, 3 and 4 hold.
Then equation (4) has a nonnegative T -periodic solution x in the subset M.
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Proof. By Lemma 2, 3, A is completely continuous. Also, from Lemma 4, the
mapping B is a large contraction. To see that, it is easy to show as in Lemma
5 A,B : M→M. Next, we show that if ϕ,ψ ∈M, we have 0 ≤ Aψ+Bϕ ≤ K.
Let ϕ,ψ ∈M with 0 ≤ ϕ,ψ ≤ K. By (34)–(37)

(Aψ) (t) + (Bϕ) (t)

= η

∫ t
t−T

κ (t, u)a (u)H (ϕ (u))du+Q (t, ψ (t− τ (t)))

+ η

∫ t
t−T

κ (t, u) [−a (u)Q (u,ψ (u− τ (u))) +G (u,ψ (u) , ψ (u− τ (u)))]du

≤ η
∫ t
t−T

κ (t, u)
K

MηT
du = η

∫ t
t−T

M
K

MηT
du = K.

On the other hand,

(Aψ) (t) + (Bϕ) (t) ≥ η
∫ t
t−T

M
−c2K

MηT
du+ c2K = 0.

Clearly, all the hypotheses of the Krasnoselskii-Burton’s theorem are satisfied.
Thus there exists a fixed point z ∈ M such that z = Az + Bz. By Lemma 1
this fixed point is a solution of (4) and the proof is complete. �
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