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Abstract. The purpose of this paper is to study Ricci solitons on QR-
hypersurfaces M of a quaternionic space form Qn such that the shape
operator A with respect to N has one eigenvalue. We prove that Ricci
soliton on QR- hypersurfaces M with eigenvalue zero is steady and for
eigenvalue nonzero is shrinking.

1 Introduction

A Ricci soliton is defined on a Riemannian manifold (M,g) by

1

2
LVg+ Ric− λg = 0 (1)

where LVg is the Lie-derivative of the metric tensor g with respect to V and
λ is a constant on M. The Ricci soliton is a natural generalization of an
Einstein metric. The Ricci soliton is said to be shrinking, steady and expanding
according as λ > 0, λ = 0 and λ < 0, respectively. Compact Ricci solitons are
the fixed points of the Ricci flow:

∂

∂t
g(t) = −2Ric(g(t)) (2)
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projected from the space of metrics onto its quotient modulo diffeomorphisms
and scalings and often arise as blow-up limits for the Ricci flow on compact
manifolds. We denote a Ricci soliton by (M,g, V ; λ) and call the vector field V
the potential vector field of the Ricci soliton. A trivial Ricci soliton is one for
which V is Killing or zero. If its potential vector field V = ∇f such that f is
some smooth function onM then a Ricci soliton (M,g, V ; λ) is called a gradient
Ricci soliton and the smooth function f is called the potential function. It was
proved by Grigory Perelman in [15] that any compact Ricci soliton is the
sum of a gradient of some smooth function f up to the addition of a Killing
field. Thus compact Ricci solitons are gradient Ricci solitons. In particular,
Perelman applied Ricci solitons to solve the long standing Poincare conjecture
posed in 1904.

Hamilton [7] and Ivey [10] proved that a Ricci soliton on a compact manifold
has constant curvature in dimension 2 and 3, respectively. In [11], Ki proved
that there are no real hypersurfaces with parallel Ricci tensor in a complex
space form M̃n(c) with c 6= 0 when n ≥ 3. Kim [12] proved that when n = 2,
this is also true. In particular, these results give that there is not any Einstein
real hypersurfaces in a non-flat complex space form.

In [13], Chen studied important results on Ricci solitons which occur ob-
viously on some Riemannian submanifolds. He presented several recent new
criterions of trivial compact shrinking Ricci solitons.

Cho and Kimura [3] studied on Ricci solitons of real hypersurfaces in a non-
flat complex space form and showed that a real hypersurface M in a non-flat
complex space form M̃n(c 6= 0) does not admit a Ricci soliton such that the
Reeb vector field ξ is potential vector field. They defined so called η-Ricci
soliton, such that satisfies

1

2
LVg+ Ric− λg− µη⊗ η = 0 (3)

where λ, µ are constants. They first proved that a real hypersurface M of a
non-flat complex space form M̃n(c) which accepts an η-Ricci soliton is a Hopf-
hypersurface and classified that η-Ricci soliton real hypersurfaces in a non-flat
complex space form.

We study Ricci solitons onQR-hypersurfacesM of a quaternionic space form
Qn such that the shape operator A with respect to N has one eigenvalues .
We prove that Ricci soliton on QR- hypersurfaces M with eigenvalue zero is
steady and for eigenvalue nonzero is shrinking.
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2 Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kähler manifold. Then,
by definition, there is a 3-dimensional vector bundle V consisting with tensor
fields of type (1, 1) over M satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood U , there is a local basis {F,G,H} of V such
that

F2 = −I, G2 = −I, H2 = −I, (4)

FG = −GF = H, MGH = −HG = F, HF = −FH = G.

(b) There is a Riemannian metric g which is hermite with respect to all of F,G
and H.
(c) For the Riemannian connection ∇ with respect to g ∇F∇G

∇H

 =

 0 r −q
−r 0 p

q −p 0

 F

G

H

 (5)

where p, q and r are local 1-forms defined in U . Such a local basis {F,G,H} is
called a canonical local basis of the bundle V in U [9].

For canonical local basis {F,G,H} and {F ′, G ′, H ′} of V in coordinate neigh-

borhoods of U and U ′
, it follows that in U ∩ U ′ F ′

G ′

H ′

 =
(
sxy

) F

G

H

 (x, y = 1, 2, 3)

where sxy are local differentiable functions with (sxy) ∈ SO(3) as a consequence
of (4). As is well known [9], every quaternionic Kähler manifold is orientable.
Let M be quaternion Kaehler manifold and M be a real submanifold of M.
Then, M is said QR-submanifold if there exists a vector subbundle ν of the
normal bundle such that we have

Fνx = νx, Gνx = νx, Hνx = νx,

Fν⊥x , Gν⊥x , Hν⊥x ⊂ TxM,

for x ∈ M, where ν⊥ is the complementary orthogonal bundle to ν in TM⊥.
We denote by D the complementary orthogonal distribution to D⊥ in TM.
Then D is invariant with respect to the action of {F,G,H} i.e. we have

FDx = Dx, GDx = Dx, HDx = Dx,

FD⊥
x , GD⊥

x , HD⊥
x ⊂ T⊥x M,
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for any x ∈M, where TM = D⊕D⊥ and TM⊥ = ν⊕ν⊥. D is called quaternion
distribution.
Now let M be an n-dimensional QR-submanifold of maximal QR-dimension,
that is, of (p − 1) QR-dimension isometrically immersed in M. Then by defi-
nition there is a unit normal vector field N such that ν⊥x = span{N} at each
point x in M. We set

FN = −U, GN = −V, HN = −W. (6)

Denoting by Dx the maximal quaternionic invariant subspace

TxM ∩ FTxM ∩GTxM ∩HTxM,

of TxM, we have D⊥
x ⊃ Span {U,V,W}, where D⊥

x means the complementary
orthogonal subspace to Dx in TxM. But, using (4), we can prove that D⊥

x =
Span {U,V,W} [13]. Thus we have

TxM = Dx ⊕ Span {U,V,W}, ∀x ∈M,

which together with (4) and (6) imply

FTxM,GTxM,HTxM ⊂ TxM⊕ Span {ξ}.

Therefore, for any tangent vector field X and for a local orthonormal basis
{Nα}α=1,...,p (N1 := N) of normal vectors to M, we have

FX = ϕX+ u(X)N, GX = ψX+ v(X)N, HX = θX+ω(X)N, (7)

FNα = −Uα + P1Nα, GNα = −Vα + P2Nα,

HNα = −Wα + P3Nα, (α = 1, ..., p). (8)

Then it is easily seen that {ϕ,ψ, θ} and {P1, P2, P3} are skew-symmetric endo-
morphisms acting on TxM and TxM

⊥, respectively.
Moreover, the hermitian property of [F,G,H} implies

g(X,ϕUα) = −u(X)g(N1, P1Nα),

g(X,ψVα) = −v(X)g(N1, P2Nα),

g(X, θWα) = −w(X)g(N1, P3Nα), (α = 1, ..., p). (9)

Also, from the hermitian properties

g(FX,Nα) = −g(X, FNα), g(GX,Nα) = −g(X,GNα),

g(HX,Nα) = −g(X,HNα), (α = 1, ..., p).
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It follows that

g(X,Uα) = u(X)δ1α, g(X,Vα) = v(X)δ1α, g(X,Wα) = w(X)δ1α,

and hence

g(X,U1) = u(X), g(X,V1) = v(X), g(X,W1) = w(X),

Uα = 0, Vα = 0, Wα = 0, (α = 2, ...p). (10)

On the other hand, comparing (6) and (8) with α = 1, we have U1 = U,V1 =
V,W1 =W, which together with (6) and (10) imply

g(X,U) = u(X), g(X,V) = v(X), g(X,W) = w(X),

u(U) = 1, v(V) = 1, w(W) = 1,

FN = −U, GN = −V, HN = −W

FNα=P1Nα , GNα=P2Nα HNα=P3Nα , (α = 2, ..., p).

from which, taking account of the skew-symmetry of P1, P2 and P3 and using
(9), we also have

u(ϕX) = 0, v(ψX) = 0, w(θX) = 0,

ϕU = 0, ψV = 0, θW = 0,

P1N = 0, P2N = 0, P3N = 0, (11)

From the equations of (6), we also have

ψU = −W, v(U) = 0, θU = V, w(U) = 0,

ϕV =W, u(V) = 0, θV = −U, w(V) = 0,

ϕW = −V, u(W) = 0, ψW = U, v(W) = 0. (12)

Now, let ∇ be the Levi-Civita connection onM and ∇⊥ the normal connection
induced from ∇ in the normal bundle TM⊥ of M. The Gauss and Weingarten
formula are given by

∇XY = ∇XY + h(X, Y),

∇XNα = −AαX+∇⊥
XNα, (α = 1, . . . , p), (13)

for any X, Y ∈ χ(M) and Nα ∈ Γ∞(T(M)⊥), (α = 1, . . . , p). h is the second
fundamental form and Aα are shape operator corresponding to Nα.
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Next, differentiating the equations of (6) covariantly and comparing the tan-
gential and normal parts, we have

∇YU = r(Y)V − q(Y)W +ϕA1Y,

∇YV = −r(Y)U+ p(Y)W +ψA1Y,

∇YW = q(Y)U− p(Y)V + θA1Y, (14)

For QR-hypersurfaces M in a quaternionic space form M of quaternionic sec-
tional curvature 4k the Gauss and Codazzi equations are written as follow:

g(R(X, Y)Z,W) = k{g(Y, Z)X− g(X,Z)Y

+ g(ϕY,Z)ϕX− g(ϕX,Z)ϕY − 2g(ϕX, Y)ϕZ

+ g(ψY,Z)ψX− g(ψX,Z)GY − 2g(ψX, Y)ψZ

+ g(θY, Z)θX− g(θX, Z)θY − 2g(θX, Y)θZ}

+ g(AY,Z)AX− g(AX,Z)AY,

(15)

(∇XA)Y − (∇YA)X = k{u(X)ϕY − u(Y)ϕX− 2g(ϕX, Y)U

+ v(X)ψY − v(Y)ψX− 2g(ψX, Y)V

+w(X)θY −w(Y)θX− 2g(θX, Y)W},

(16)

hence the Ricci tensor is obtained as

Ric(X, Y) = k{(4n+ 7)g(X, Y) − 3{u(X)u(Y) + v(X)v(Y) +w(X)w(Y)}}

+ (traceA)g(AX, Y) − g(AX,AY).
(17)

for any tangent vector fields X, Y, Z on M, where R and Ric are the curvature
and Ricci tensors of M, respectively.

3 Ricci soliton on QR hypersurfaces

Let M be a QR-hypersurface of a quaternionic space form M such that the
shape operator A for unit normal vector field N has only one eigenvalue and
let {e1, . . . , e4n−4, U, V,W} be a local orthonormal fram field such that D⊥ =
span {U,V,W} and D = span {e1, . . . , en−1, en = ϕe1, . . . , e2n−2 = ϕen−1, e2n−1
= ψe1, . . . , e3n−3 = ψen−1, e3n−2 = θe1, . . . , e4n−4 = θen−1}.
We first prove

Theorem 1 If the shape operator A with respect to unit normal vector field
N of M has only one eigenvalue, then M is a quaternionic Euclidean space.
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Proof. According to the assumption, it follows that A = 0 or AX = αX for
all X ∈ T(M).
In both cases the Codazzi equation (16), we obtain

(Xα)Y − (Yα)X = k{u(X)ϕY − u(Y)ϕX− 2g(ϕX, Y)U

+ v(X)ψY − v(Y)ψX− 2g(ψX, Y)V

+w(X)θY −w(Y)θX− 2g(θX, Y)W},

(18)

for all X, Y ∈ TM. Putting Y = U, the equation (21) reduces to

(Xα)U− (Uα)X = k{−ϕX+ v(X)W −w(X)V}, (19)

also by putting Y = V and Y =W, we have

(Xα)V − (Vα)X = k{−ψX+w(X)U− u(X)W},

(Xα)W − (Wα)X = k{−θX+ u(X)V − v(X)U}.
(20)

since dim M ≥ 7, we can use X,ϕX,ψX, θX,U, V and W in such a way that
they are linearly independent and thus k = 0. �

Let AX = αX, therefore by the relation (17), we obtain

Ric(ei, ej) = {(4n− 2)α2}δij, (i, j = 1, . . . , 4n− 4),

Ric(U,U) = (4n− 2)α2,

Ric(V,V) = (4n− 2)α2,

Ric(W,W) = (4n− 2)α2,

Ric(U,V) = 0,

Ric(U,W) = 0,

Ric(W,V) = 0,

Ric(ei, U) = 0,

Ric(ei, V) = 0,

Ric(ei,W) = 0, (i = 1, ..., 4n− 4).

(21)

We consider QR-hypersurface M of a quaternionic space form Qn satisfying
Ricci soliton equation

1

2
L
Ṽ
g+ Ric− λg = 0 (22)
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with respect to potential vector field Ṽ on M for constant λ.
First Put

Ṽ := fU, (f :M→ R, f 6= 0) (23)

Then definition of the Lie derivative and the first relation (14) imply

(LfUg)(X, Y) = df(X)u(Y) + df(Y)u(X)
+ f{r(X)v(Y) − q(X)w(Y) + r(Y)v(X) − q(Y)w(X)

+ g((ϕA−Aϕ)Y, X)}

(24)

We compute

(LfUg)(U,U) = 2df(U),
(LfUg)(V,V) = 2fr(V),
(LfUg)(W,W) = −2fq(W),

(LfUg)(U,V) = df(V) + fr(U),
(LfUg)(U,W) = df(W) − fq(U),

(LfUg)(W,V) = f{−q(V) + r(W)},

(LfUg)(U, ei) = df(ei),
(LfUg)(V, ei) = fr(ei),
(LfUg)(W,ei) = −fq(ei), (i = 1, . . . , 4n− 4),

(Lfξg)(ei, ej) = 0 (i, j = 1, . . . , 4n− 4).

(25)

Using relations (21) and (25), Ricci soliton equation (22) is equivalent to

df(U) = λ− (4n− 2)α2,

fr(V) = λ− (4n− 2)α2,

fq(W) = −λ+ (4n− 2)α2,

df(V) = −fr(U),

df(W) = fq(U),

q(V) = r(W),

df(ei) = 0, (i = 1, . . . , 4n− 4),

r(ei) = 0,

q(ei) = 0,

{(4n− 2)α2 − λ}δij = 0, (i, j = 1, . . . , 4n− 4).

(26)
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By the last relation (26), we have λ = (4n − 2)α2 and thus the following
theorem holds:

Theorem 2 Let M be a QR-hypersurface of quternionic space form Qn with
AX = αX. Then a Ricci soliton (M,g, Ṽ, λ) with potential vector field Ṽ := fU
is shrinking Ricci soliton.

Now, let A = 0, using relation (17),it follows that

Ric = 0 (27)

QR-hypersurface M (n ≥ 2) is considered in a quaternionic space form Qn
satisfying Ricci soliton equation.
By relations (27) and (25), Ricci soliton equation (22) is equivalent to

df(U) = λ,

fr(V) = λ,

fq(W) = −λ,

df(V) = −fr(U),

df(W) = fq(U),

q(V) = r(W),

df(ei) = 0, (i = 1, . . . , 4n− 4),

r(ei) = 0,

q(ei) = 0,

λδij = 0, (i, j = 1, . . . , 4n− 4).

(28)

Using the last relation (28), it follows λ = 0 and hence

Theorem 3 Let M be a QR-hypersurface of quaternionic space form Qn with
A = 0. Then a Ricci soliton (M,g, Ṽ, λ) with potential vector field V := fU is
steady Ricci soliton.

hence, similar results were obtained when each structural vector fields {V,W}

of structure quaternionic {U,V,W} be the potential vector field.
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