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Abstract. The purpose of this paper is to study Ricci solitons on QR-
hypersurfaces M of a quaternionic space form Q™ such that the shape
operator A with respect to N has one eigenvalue. We prove that Ricci
soliton on QR- hypersurfaces M with eigenvalue zero is steady and for
eigenvalue nonzero is shrinking.

1 Introduction

A Ricci soliton is defined on a Riemannian manifold (M, g) by

%Evg +Ric—Ag=0 (1)
where Lyg is the Lie-derivative of the metric tensor g with respect to V and
A is a constant on M. The Ricci soliton is a natural generalization of an
FEinstein metric. The Ricci soliton is said to be shrinking, steady and expanding
according as A > 0, A =0 and A < 0, respectively. Compact Ricci solitons are
the fixed points of the Ricci flow:

S 9(t) = —2Ric(g(t)) @)
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projected from the space of metrics onto its quotient modulo diffeomorphisms
and scalings and often arise as blow-up limits for the Ricci flow on compact
manifolds. We denote a Ricci soliton by (M, g, V;A) and call the vector field V
the potential vector field of the Ricci soliton. A trivial Ricci soliton is one for
which V is Killing or zero. If its potential vector field V = Vf such that f is
some smooth function on M then a Ricci soliton (M, g, V;A) is called a gradient
Ricci soliton and the smooth function f is called the potential function. It was
proved by Grigory Perelman in [15] that any compact Ricci soliton is the
sum of a gradient of some smooth function f up to the addition of a Killing
field. Thus compact Ricci solitons are gradient Ricci solitons. In particular,
Perelman applied Ricci solitons to solve the long standing Poincare conjecture
posed in 1904.

Hamilton [7] and Ivey [10] proved that a Ricci soliton on a compact manifold
has constant curvature in dimension 2 and 3, respectively. In [11], Ki proved
that there are no real hypersurfaces with parallel Ricci tensor in a complex
space form M™(c) with ¢ # 0 when n > 3. Kim [12] proved that when n = 2,
this is also true. In particular, these results give that there is not any Einstein
real hypersurfaces in a non-flat complex space form.

In [13], Chen studied important results on Ricci solitons which occur ob-
viously on some Riemannian submanifolds. He presented several recent new
criterions of trivial compact shrinking Ricci solitons.

Cho and Kimura [3] studied on Ricci solitons of real hypersurfaces in a non-
flat complex space form and showed that a real hypersurface M in a non-flat
complex space form M™(c # 0) does not admit a Ricci soliton such that the
Reeb vector field & is potential vector field. They defined so called n-Ricci
soliton, such that satisfies

]
Eﬁvg—i-Ric—?\g—p.n@n:O (3)

where A, p are constants. They first proved that a real hypersurface M of a
non-flat complex space form M™(c) which accepts an n-Ricci soliton is a Hopf-
hypersurface and classified that n-Ricci soliton real hypersurfaces in a non-flat
complex space form.

We study Ricci solitons on QR-hypersurfaces M of a quaternionic space form
Q™ such that the shape operator A with respect to N has one eigenvalues .
We prove that Ricci soliton on QR- hypersurfaces M with eigenvalue zero is
steady and for eigenvalue nonzero is shrinking.
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2 Preliminaries

Let M be a real (n + p)-dimensional quaternionic Kihler manifold. Then,
by definition, there is a 3-dimensional vector bundle V consisting with tensor
fields of type (1,1) over M satisfying the following conditions (a), (b) and (c):
(a) In any coordinate neighborhood I, there is a local basis {F, G, H} of V such
that

F =1, G2 =1, HE =1, (4)
FG = —-GF =H, MGH = —HG =F, HF = —FH =G.
(b) There is a Riemannian metric g which is hermite with respect to all of F, G

and H.
(c) For the Riemannian connection V with respect to g

VF 0 r —q\ [F
ve|l=(—+ o pl||c (5)
VH q —p O H

where p, q and 1 are local 1-forms defined in /. Such a local basis {F, G, H} is
called a canonical local basis of the bundle V in I [9].

For canonical local basis {F, G,H} and {F’, G’, H’} of V in coordinate neigh-
borhoods of U and 27/, it follows that in U NU

P F
G |=(w)|G (x,2y =1,2,3)
H’ H

where sy are local differentiable functions with (sy,) € SO(3) as a consequence
of (4). As is well known [9], every quaternionic Kéhler manifold is orientable.
Let M be quaternion Kaehler manifold and M be a real submanifold of M.
Then, M is said QR-submanifold if there exists a vector subbundle v of the
normal bundle such that we have

Fvy = vy, Gvy = Vy, Hvy = vy,

Fvy Gvy, Hvy € TM,

X))

for x € M, where v* is the complementary orthogonal bundle to v in TM*.
We denote by D the complementary orthogonal distribution to D+ in TM.
Then D is invariant with respect to the action of {F, G, H} i.e. we have

FD, = Dy, GD, = D;, HD, = D,,
D, GDy, HDy € TIM,
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for any x € M, where TM = D@D and TM' = v@v'. D is called quaternion
distribution.

Now let M be an n-dimensional QR-submanifold of maximal QR-dimension,
that is, of (p — 1) QR-dimension isometrically immersed in M. Then by defi-
nition there is a unit normal vector field N such that vi = span{N} at each
point x in M. We set

FN=-U, GN=-V, HN=-W. (6)
Denoting by Dy the maximal quaternionic invariant subspace
TMNFLM N GTM N HTM,

of TyM, we have D,Jg D Span{U, V, W}, where D% means the complementary
orthogonal subspace to Dy in T,M. But, using (4), we can prove that D} =
Span{U, V; W} [13]. Thus we have

TcM = Dy @ Span{U, V,W}, Vx € M,
which together with (4) and (6) imply
FTM, GTM, HT,M C TuyM & Span{&}.

Therefore, for any tangent vector field X and for a local orthonormal basis
{Nota=1,..,p (N7 :=N) of normal vectors to M, we have

FX = X +u(X)N, GX=u9X+v(X)N, HX=0X+ w(X)N, (7)

FNa:_ua+P1Naa GNy = — oc+P2Noca

HNg = —Wa + P3Ny, (@ =1,.0,p). (8)
Then it is easily seen that {@,{, 0} and {P;, P2, P3} are skew-symmetric endo-
morphisms acting on Ty;M and T,M*, respectively.
Moreover, the hermitian property of [F, G, H} implies

9(X, eUy) = —u(X)g(Ny, P1Ng),

g(X>1|)v¢X) = —V(X)Q(N1 ) PZNOL))

g(Xy ewﬁx) :_W(X)Q(N1)P3No¢)) (‘X: 1>>'P) (9>

Also, from the hermitian properties

Q(FX»ch) = _g(X) FNO()) g(GX)N(x) = _g(X) GN(X))
Q(HX>ch) = —Q(X» HN(X)a ((X = 1)»'P)
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It follows that
9(X> uoc) = U(X)é](x, g(X) Voc) ZV(X)éhxa Q(X» WO() = W(X)éloo
and hence

g(X,Uy) =u(X), g(X, Vi) =v(X), g(X,W;) =w(X),

utxzo) V(XZO) (XZO) ( (10)

8
I
N
=

On the other hand, comparing (6) and (8) with « =1, we have U; = U, V; =
V,W; = W, which together with (6) and (10) imply

LL(U):1, V(V):1) W(W) :]>
FN = U, GN =V, HN = —W
FNoc:P1No¢> GNoc:PzN‘X HNO(:P3ND() ((X:Z,...,p).

from which, taking account of the skew-symmetry of P;, P, and P3 and using
(9), we also have

U =0, WV =0, oW — 0,
P1N =0, P2N =0, P3N =0, (11)

From the equations of (6), we also have

Ppu =-w, v(U) =0 U=V, w(U) =0,
eV =W, u(Vv) =0, oV = -1, w(V) =0,
oW = -V, u(w) =0, YW =1, v(W) =0. (12)

Now, let V be ihe Levi-Civita connection on M and V= the normal connection
induced from V in the normal bundle TM* of M. The Gauss and Weingarten
formula are given by

ﬁXY =VxY + h(X) Y))
VxNo = —AX+ VN, (x=1,...,p), (13)

for any X,Y € x(M) and Ny € T°(T(M)1), (x =1,...,p). h is the second
fundamental form and A, are shape operator corresponding to N.
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Next, differentiating the equations of (6) covariantly and comparing the tan-
gential and normal parts, we have

VyU =1(Y)V —q(Y)W + @AY,
VyV =—rY)U+p(Y)W + DAY,
VYW = q(Y)U — p(Y)V + BAY, (14)

For QR-hypersurfaces M in a quaternionic space form M of quaternionic sec-
tional curvature 4k the Gauss and Codazzi equations are written as follow:

g(R(X,Y)Z,W) =K{g(Y, Z)X — g(X, Z)Y
+9(eY, Z)oX — g(eX,Z)oY — 2g(0X,Y)@Z
gy, Z) X — g(bX, Z)GY — 2g(bX, Y)bZ (15)
+ (Y, Z)0X — g(6X, Z)0Y — 2g(6X,Y)0Z}
g(AY, Z)AX — g(AX, Z)AY,

(VxA)Y — (VYA)X = k{u(X) @Y —u(Y)oX — 2g(@X, Y)U
+ V(XY —v(Y)PX —2g(bX, V)V (16)
—I—W(X)BY—W(Y)BX—29(6X,Y)W},

hence the Ricci tensor is obtained as

Ric(X,Y) =K{(4n + 7)g(X,Y) = 3{u(X)u(Y) + v(X)v(Y) + w(XIw(Y)}}

(17)
+ (trace A)g(AX,Y) — g(AX, AY).

for any tangent vector fields X,Y,Z on M, where R and Ric are the curvature
and Ricci tensors of M, respectively.

3 Ricci soliton on QR hypersurfaces

Let M be a QR-hypersurface of a quaternionic space form M such that the
shape operator A for unit normal vector field N has only one eigenvalue and
let {e1,...,em—_4, U, V,W} be a local orthonormal fram field such that D+ =
span{U,V,W} and D = span{ej,...,en_1,en = @€1,...,€2n_2 = QP€n_1,€m_1
=1ei,...,e3n3 =Peq 1,e3n 2 = 0ey,...,e4m 4 = Oen 1}

We first prove

Theorem 1 If the shape operator A with respect to unit normal vector field
N of M has only one eigenvalue, then M is a quaternionic Euclidean space.



Ricci solitons on QR-hypersurfaces of a quaternionic space form Q™ 277

Proof. According to the assumption, it follows that A = 0 or AX = aX for
all X € T(M).
In both cases the Codazzi equation (16), we obtain

(XY — (Ya) X = k{u(X)tpY u(Y)oX —2g(eX, YJU

(X)tb —v(Y)PX =2g(¥X,Y)V (18)
W(X)OY — w(Y)0X — 2g(0X, Y)W},

for all X;Y € TM. Putting Y = U, the equation (21) reduces to
(XU — (U)X = K{—9X + (X)W —w(X)V}, (19)
also by putting Y =V and Y = W, we have

(Xa)V — (Vo)X = K{—pX + w(X)U — u(X)W},

(X)W — (Wa)X = k{—0X + u(X)V —v(X)U}. (20)

since dim M > 7, we can use X, X, X, 0X, U,V and W in such a way that
they are linearly independent and thus k = 0. O

Let AX = X, therefore by the relation (17), we obtain

o
s
0
-
|
—
—
~
3
N
—
N
—
[eg]
Ky

(i,j=1,...,4n —4),

(21)
Ric(U, W) =0,
Ric(W, V) =0,
Ric(e;, U) =0,
Ric(ei, V) =0,
Ric(e;, W) =0, i=1,...,4n—4).

We consider QR-hypersurface M of a quaternionic space form Q" satisfying
Ricci soliton equation

1
5L79+ Ric—Ag =0 (22)
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with respect to potential vector field V on M for constant A.
First Put

V= fU, (f:M =R, f+#0) (23)
Then definition of the Lie derivative and the first relation (14) imply

(Lrug)(X,Y) = df(X)u(Y) + df(Y)u(X)
+ fr(Xv(Y) — g(X)w(Y) + r(Y)v(X) — q(Y)w(X)  (24)
+g((eA —A@)Y, X)}

We compute

(25)

W ei) = —fq(ey), i=1,...,4n—4),
Lizg)(ei, ) =0 (i,j=1,...,4n —4).

Using relations (21) and (25), Ricci soliton equation (22) is equivalent to

df(U) = A — (4n — 2)o?,
fr(V) =A— (4n — 2)o?,
fq(W) = —A + (4n — 2) o,

(26)

{(4n — 2)o> — N}dy; = 0, (i,j=1,...,4n —4).
)
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By the last relation (26), we have A = (4n — 2)o and thus the following
theorem holds:

Theorem 2 Let M be a QR-hypersurface of quternionic space form Q™ with
AX = a«X. Then a Ricci soliton (M, g, V,A) with potential vector field V := fU
is shrinking Ricct soliton.

Now, let A =0, using relation (17),it follows that
Ric = 0 (27)

QR-hypersurface M (n > 2) is considered in a quaternionic space form Q"
satisfying Ricci soliton equation.
By relations (27) and (25), Ricci soliton equation (22) is equivalent to

(28)

)\61]':0, (i,j:1,...,4n—4).
Using the last relation (28), it follows A = 0 and hence

Theorem 3 Let M be a QR-hypersurface of quaternionic space form Q" with
A =0. Then a Ricci soliton (M, g, V,\) with potential vector field V := fU is
steady Ricci soliton.

hence, similar results were obtained when each structural vector fields {V, W}
of structure quaternionic {U, V, W} be the potential vector field.
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