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Abstract. Erdal Ekici has introduced and studied nearly continuous
multifunctions in [5]. The purpose of the present paper is to introduce and
study upper and lower nearly ω-continuous multifunctions as a weaker
form of upper and lower nearly continuous multifunctions. Basic char-
acterizations, several properties of upper and lower nearly ω-continuous
multifunctions are investigated.

1 Introduction

It is well known that various types of functions play a significant role in the
theory of classical point set topology. A great number of papers dealing with
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such functions have appeared, and a good number of them have been extended
to the setting of multifunctions. This implies that both, functions and mul-
tifunctions are important tools for studying other properties of spaces and
for constructing new spaces from previously existing ones. Several character-
izations and properties of ω-closed sets were provided in [1], [2], [7] and [8].
Recently, Zorlutuna [14] introduced and studied the concept of ω-continuous
multifunctions in topological spaces. In this paper, we introduce and study a
new class of multifunction called near ω-continuous multifunctions in topo-
logical spaces.

2 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) always mean
topological spaces in which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, τ). For a subset A of (X, τ),
Cl(A) and Int(A) denote the closure of A with respect to τ and the interior of
A with respect to τ, respectively. Recently, as generalization of closed sets, the
notion ofω-closed sets were introduced and studied by Hdeib [8]. A point x ∈ X
is called a condensation point of A if for each U ∈ τ with x ∈ U, the set U∩A
is uncountable. A is said to be ω-closed [8] if it contains all its condensation
points. The complement of an ω-closed set is said to be an ω-open set. It
is well known that a subset W of a space (X, τ) is ω-open if and only if for
each x ∈ W, there exists U ∈ τ such that x ∈ U and U\W is countable. The
family of all ω-open subsets of a topological space (X, τ) forms a topology on
X finer than τ, denoted by τω. The ω-closure and the ω-interior, that can be
defined in the same way as Cl(A) and Int(A), respectively, will be denoted
by ωCl(A) and ω Int(A), respectively. We set ωO(X, x) = {A : A ∈ τω and
x ∈ A} the neighborhood system at x in τω. A point x of X is called a θ-cluster
[12] point of S ⊂ X if Cl(U) ∩ S 6= ∅ for every open subset of X containing x.
The set of all θ-cluster points of S is called the θ-closure of S and is denoted
by Clθ(S). A subset S is said to be θ-closed if and only if S = Clθ(S). The
complement of a θ-closed set is said to be a θ-open set. The θ-interior [12] of
A is defined as Intθ(A) = {x ∈ X : Cl(U) ⊂ A for some open set U containing
x}. By a multifunction F : X → Y, we mean a point-to-set correspondence
from X into Y, also we always assume that F(x) 6= ∅ for all x ∈ X. For a
multifunction F : X→ Y, the upper and lower inverse of any subset A of Y by
F+(A) and F−(A), respectively, that is F+(A) = {x ∈ X : F(x) ⊆ A} and F−(A)
= {x ∈ X : F(x) ∩ A 6= ∅}. In particular, F+(y) = {x ∈ X : y ∈ F(x)} for each
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point y ∈ Y.

Definition 1 [14] A multifunction F : (X, τ) → (Y, σ) is said to be

1. upper ω-continuous if F+(V) ∈ ωO(X) for each open set V of Y,

2. lower ω-continuous if F−(V) ∈ ωO(X) for each open set V of Y.

Definition 2 [4] A subset A of a topological space (X, τ) is said to be N-closed
if every cover of A by regular open sets of X has a finite subcover.

Definition 3 [5] A function F : (X, τ) → (Y, σ) is said to be:

1. upper nearly continuous at a point x ∈ X if for each open set V con-
taining F(x) and having N-closed complement, there exists an open set
U containing x such that F(U) ⊂ V.

2. lower nearly continuous at a point x ∈ X if for each open set V of Y
meeting F(x) and having N-closed complement, there exists an open set
U of X containing x such that F(u) ∩ V 6= ∅ for each u ∈ U.

3. upper (resp. lower) nearly continuous on X if it has this property at every
point of X.

3 Upper (Lower) nearlyω-continuous multifunctions

Definition 4 A function F : (X, τ) → (Y, σ) is said to be:

1. upper nearly ω-continuous at a point x ∈ X if for each open set V con-
taining F(x) and having N-closed complement, there exists an ω-open
set U containing x such that F(U) ⊂ V.

2. lower nearly ω-continuous at a point x ∈ X if for each open set V of Y
meeting F(x) and having N-closed complement, there exists an ω-open
set U of X containing x such that F(u) ∩ V 6= ∅ for each u ∈ U.

3. upper (resp. lower) nearly ω-continuous on X if it has this property at
every point of X.

Example 1 Let X = Y = {a, b, c, d}, τX = {∅, X, {a}, {b, c}, {a, b, c}} and σY =
{∅, Y, {a}, {a, b}, {a, b, c}}. Consider the multifunction F : (X, τX) → (Y, σY) de-
fined as follows: F(a) = {c}, F(b) = {a, b}, F(c) = {d}, F(d) = {a, b}. It is easy
to see that: F is upper (resp. lower) nearly ω-continuous on X.
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Example 2 Let < be the set of real numbers with the discrete topology τd.
Consider the multifunction F : (<, τd) → (<, σd) defined as follows: F(x) = {x}

for all x ∈ <. It is easy to see that: F is upper (resp. lower) nearly ω-continuous
on X.

It is clear that every upper (resp. lower) nearly continuous multifunction is
upper (resp. lower) nearly ω-continuous multifunction, but the converse is not
true in general as shown in the following example.

Example 3 In the Example 1, F is upper (resp. lower) nearly ω-continuous
on X but is not upper (resp. lower) nearly continuous on X

Theorem 1 For a multifunction F : (X, τ) → (Y, σ), the following statements
are equivalent:

1. F is upper nearly ω-continuous.

2. F+(V) is ω-open for each open set V of Y having N-closed complement.

3. F−(K) is ω-closed for every N-closed and closed subset K of Y.

4. ωCl(F−(B)) ⊂ F−(Cl(B)) for every subset B of Y having N-closed clo-
sure.

5. F+(Int(B)) ⊂ ω Int(F+(B)) for every subset B of Y such that Y\ Int(B) is
N-closed.

Proof. (1)⇒(2): Let x ∈ F+(V) and V be any open set of Y having N-closed
complement. From (1), there exists an ω-open set Ux containing x such that
Ux ⊂ F+(V). It follows that F+(V) = ∪

x∈F+(V)
Ux. Since any union of ω-open

sets is ω-open, F+(V) is ω-open in (X, τ).
(2)⇒(3): Let K be any N-closed and closed set of Y. Then by (2), F+(Y\K) =
X\F−(K) is an ω-open set. Then it is obtained that F−(K) is an ω-closed set.
(3)⇒(4): Let B be any subset of Y having N-closed closure. By (3), we have
F−(B) ⊂ F−(Cl(B)) = ωCl(F−(Cl(B))). Hence ωCl(F−(B)) ⊂ ωCl(F−(Cl(B)))
= F−(Cl(B)).
(4)⇒(5): Let B be a subset of Y such that Y\ Int(B) is N-closed. Then by (4),
we have X\ω Int(F+(B)) = ωCl(X\F+(B)) = ωCl(F−(Y\B)) ⊂ F−(Cl(Y\B)) =
F−(Y\ Int(B)) = X\F+(Int(B)). Therefore, we obtain F+(Int(B)) ⊂ ω Int(F+(B)).
(5)⇒(1): Let x ∈ X and V be any open set of Y containing F(x) and having N-
closed complement. Then by (5), x ∈ F+(V) = F+(Int(V)) ⊂ ω Int(F+(V)).
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There exists an ω-open set U containing x such that U ⊂ F+(V); hence
F(U) ⊂ V. This shows that F is upper nearly ω-continuous. �

Theorem 2 For a multifunction F : (X, τ) → (Y, σ), the following statements
are equivalent:

1. F is lower nearly ω-continuous.

2. F−(V) is ω-open for each open set V of Y having N-closed complement.

3. F+(K) is ω-closed for every N-closed and closed set K of Y.

4. ωCl(F+(B)) ⊂ F+(Cl(B)) for every subset B of Y having N-closed clo-
sure.

5. F−(Int(B)) ⊂ ω Int(F−(B)) for every subset B of Y such that Y\ Int(B) is
N-closed.

Proof. The proof is similar to that of Theorem 1. �

Corollary 1 A multifunction F : (X, τ) → (Y, σ) is upper nearly ω-continuous
(resp. lower nearly ω-continuous) if F−(K) is ω-closed (resp. F+(K) is ω-
closed) for every N-closed set K of Y.

Proof. Let G be any open set of Y having N-closed complement. Then Y\G
is N-closed. By the hypothesis, X\F+(G) = F−(Y\G) =
ω Int(F−(Y\G)) = ωCl(X\F+(G)) = X\ω Int(F+(G)) and hence, F+(G) =
ω Int(F+(G)). It follows from Theorem 1, that F is upper nearly ω-continuous.
The proof of lower nearly ω-continuity is entirely similar. �

Theorem 3 Let (Y, σ) be a regular space. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

1. F is upper nearly ω-continuous;

2. F−(Clθ(B)) is an ω-closed set in X for every subset B of Y such that
Clθ(B) is N-closed;

3. F−(K) is an ω-closed set in X for every θ-closed and N-closed set K of
Y;

4. F+(V) is an ω-open set in X for every θ-open set V of Y having N-closed
complement.
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Proof. (1)⇒(2): Let B be any subset of Y such that Clθ(V) is N-closed. Then
Clθ(B) is closed and N-closed. By Theorem 1, F−(Clθ(B)) is an ω-closed set
in X.
(2)⇒(3): Let K be any N-closed and θ-closed set of Y. Then K = Clθ(K) is
N-closed. By (2), it follows that F−(K) is an ω-closed set in X
(3)⇒(4): Let V be any θ-open set of Y having N-closed complement. Then Y\V
is θ-closed and N-closed and by (3), F−(Y\V) = ωCl(F−(Y\V)). Therefore,
X\F+(V) = ωCl(X\F+(V)) = X\ω Int(F+(V)). Then F+(V) is an ω-open set
in X.
(4)⇒(1): Let V be any open set of Y having N-closed complement. Since Y is
regular, V is a θ-open set in Y havingN-closed complement and by (4), we have
F+(V) is an ω-open set in X. By Theorem 1, F is upper nearly ω-continuous. �

Theorem 4 Let (Y, σ) be a regular space. For a multifunction F : (X, τ) →
(Y, σ), the following properties are equivalent:

1. F is lower nearly ω-continuous;

2. F+(Clθ(B)) is an ω-closed set in X for every subset B of Y such that
Clθ(B) is N-closed;

3. F+(K) is an ω-closed set in X for every θ-closed and N-closed set K of
Y;

4. F−(V) is an ω-open set in X for every θ-open set V of Y having N-closed
complement.

Proof. The proof is similar to that of Theorem 3. �

Definition 5 A subset A of a topological space (X, τ) is said to be:

(i) α-regular [9] if for each a ∈ A and any open set U of X containing a,
there exists an open set G of X such that a ∈ G ⊂ Cl(G) ⊂ U;

(ii) α-paracompact [13] if every X-open cover A has an X-open refinement
which covers A and is locally finite for each point of X.

For a multifunction F : (X, τ) → (Y, σ), the multifunction Cl F : (X, τ) → (Y, σ)
is defined as follows (Cl F)(x) = Cl(F(x)) for each point x ∈ X. Similarly, we
can define ωCl F.
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Lemma 1 [14] If F : (X, τ) → (Y, σ) be a multifunction such that F(x) is α-
paracompact and α-regular for each x ∈ X, then for each open set V of Y,
(Cl F)+(V) = (ωCl F)+(V) = F+(V).

Theorem 5 Let F : (X, τ) → (Y, σ) be a multifunction such that F(x) is
α-regular and α-paracompact for each x ∈ X. Then F is upper nearly ω-
continuous if and only if G : (X, τ) → (Y, σ) is upper nearly ω-continuous,
where G denotes Cl F or ωCl F.

Proof. Suppose that F is upper nearly ω-continuous multifunction. Let V be
any open set of Y having N-closed complement. Then by Lemma 1 and The-
orem 1, we have G+(V) = F+(V) = ω Int(F+(V)) = ω Int(G+(V)). This shows
that G is upper nearly ω-continuous. Conversely, suppose that G is upper
nearly ω-continuous. Let V be any open set of Y having N-closed complement.
Then by Lemma 1 and Theorem 1, we have F+(V) = G+(V) = ω Int(G+(V)) =
ω Int(F+(V)). By Theorem 1, F is upper nearly ω-continuous. �

Lemma 2 [14] If F : (X, τ) → (Y, σ) be a multifunction such that F(x) is
α-paracompact α-regular for each x ∈ X, then for each open set V of Y,
(Cl F)−(V) = (ωCl F)−(V) = F−(V).

Theorem 6 A multifunction F : (X, τ) → (Y, σ) is lower nearly ω-continuous
if and only if G : (X, τ) → (Y, σ) is lower nearly ω-continuous, where G denotes
Cl F or ωCl F.

Proof. By using Lemma 2, this shown similarly as in Theorem 1. �

Remark 1 It is well known that every upper (lower) ω-continuous multi-
function is upper (lower) nearly ω-continuous, but the converse is not true in
general as we can see in the following example.

Example 4 Let < be the set of real numbers with the finite complement topol-
ogy τf and the discrete topology τd. Consider the multifunction F : (<, τf) →
(<, τd), defined by F(x) = {x}. Observe that F is an upper (lower) nearly ω-
continuous multifunction in < but F is not upper (lower)-continuous multi-
function

Now if we consider some additional condition, we can proof the converse.

Theorem 7 Let F : (X, τ) → (Y, σ) be a multifunction such that (Y, σ) has a
base of sets having N-closed complements. If F is lower nearly ω-continuous,
then F is lower ω-continuous.
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Proof. Let V be any open set of Y. By the hypothesis, V = ∪
i∈I
Vi, where Vi

is an open set having N-closed complement for each i ∈ I. By Theorem 1,
F−(Vi) is ω-open in X for each i ∈ I. Moreover, F−(V) = F−(∪{Vi : i ∈ I}) =
∪{F−(Vi) : i ∈ I}. Therefore, we have F−(V) is ω-open in X. Hence F is lower
ω-continuous. �

Suppose that (X, τ), (Y, σ) and (Z, θ) are topological spaces. If F1 : X→ Y and
F2 : Y → Z are multifunctions, then the composite multifunction F2◦F1 : X→ Z

is defined by (F2 ◦ F1)(x) = F2(F1(x)) for each x ∈ X.

Theorem 8 Let F : (X, τ) → (Y, σ) and G : (Y, σ) → (Z, θ) be multifunctions.
If F is upper ω-continuous (resp. lower ω-continuous) and G is upper nearly
continuous (resp. lower nearly continuous), then G◦F : (X, τ) → (Z, θ) is upper
nearly ω-continuous (resp. lower nearly ω-continuous).

Proof. Let V be any open set of V having N-closed complement. Since G
is upper nearly continuous (resp. lower nearly continuous), by Theorem 2 of
[5], F+(V) (resp. F−(V)) is an open set of y. Since F is upper ω-continuous
(resp. lower ω-continuous), (G ◦ F)+(V) = F+(G+(V)) = ω Int(F+(G+(V))) =
ω Int((G ◦ F)+(V)) (resp. (G ◦ F)−(V) = F−(G−(V)) = ω Int(F−(G−(V))) =
ω Int((G ◦ F)−(V))). By Theorem 1 (resp. Theorem 2), F is upper nearly ω-
continuous (resp. lower nearly ω-continuous). �

Definition 6 A topological space (Y, σ) is said to be N-normal [5] if for each
disjoint closed sets K and H of Y, there exist open sets U and V having N-closed
complement such that K ⊂ U,H ⊂ V and U ∩ V = ∅.

Definition 7 A topological space (X, τ) is said to be ω-T2 [2] if for each dis-
tinct points x, y ∈ X, there exist ω-open sets U and V in X such that x ∈ U,
y ∈ V and U ∩ V = ∅.

Theorem 9 If F : (X, τ) → (Y, σ) is an upper nearly ω-continuous multifunc-
tion satisfying the following conditions:

1. F(x) is closed in Y for each x ∈ X,

2. F(x) ∩ F(y) = ∅ for each distinct points x, y ∈ X,

3. (Y, σ) is an N-normal space,

then (X, τ) is ω-T2.
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Proof. Let x and y be distinct points of X. Then, we have F(x) ∩ F(y) = ∅.
Since F(x) and F(y) are closed and Y is N-normal, there exist disjoint open
sets U and V having N-closed complement such that F(x) ⊂ U and F(y) ⊂ V.
By Theorem 1, we obtain, an ω-open set F+(U) in X containing x and an
ω-open set F+(V) in X containing y and F+(U) ∩ F+(V) = ∅. This shows that
X is ω-T2. �

Theorem 10 Let (X, τ) be a topological space. If for each pair of distinct
points x1 and x2 in X, there exists a multifunction F form (X, τ) into an N-
normal space (Y, σ) satisfying the following conditions:

1. F(x1) and F(x2) are closed in Y,

2. F is upper nearly ω-continuous at x1 and x2, and

3. F(x1) ∩ F(x2) = ∅,

then (X, τ) is ω-T2.

Proof. Let x1 and x2 be distinct points of X. Then, we have F(x1)∩F(x2) = ∅.
Since F(x1) and F(x2) are closed and Y is N-normal, there exist disjoint open
sets V1 and V2 having N-closed complement such that F(x1) ⊂ V1 and F(x2) ⊂
V2. Since F is upper nearly ω-continuous at x1 and x2, there exist U1 and U2
ω-open sets in X containing x1 and x2 respectively, such that F(U1) ⊂ V1 and
F(U2) ⊂ V2. This implies that U1 ∩U2 = ∅. Hence (X, τ) is an ω-T2-space. �

Theorem 11 Let F and G be upper nearly ω-continuous and point closed
multifunctions from a topological space X to a N-normal topological space Y.
Then the set A = {x ∈ X : F(x) ∩G(x) 6= ∅} is ω-closed in X.

Proof. Let x ∈ X\A. Then F(x) ∩ G(x) = ∅. Since F and G are point closed
multifunctions and Y is a N-normal space, it follows that there exists disjoint
open sets U and V having N-closed complements containing F(x) and G(x),
respectively. Since F and G are upper nearlyω-continuous, then the sets F+(U)
and G+(V) are open and contain x. Let H = F+ (U) ∪G+ (V). Then H is an
ω-open set containing x and H\A = ∅. Hence, A is ω-closed in X. �

Definition 8 A topological space (X, τ) is said to be N-connected [6] if X
cannot be written as the union of two disjoint nonempty open sets having N-
closed complements.
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Definition 9 A topological space (X, τ) is said to be ω-connected [2] if X
cannot be written as the union of two disjoint nonempty ω-open sets.

Theorem 12 Let (X, τ) be a topological space. If F : (X, τ) → (Y, σ) is an upper
nearly ω-continuous or lower nearly ω-continuous surjective multifunction
such tat F(x) is connected for each x ∈ x and (X, τ) is ω-connected, then (Y, σ)
is N-connected.

Proof. Suppose that (Y, σ) is not N-connected. There exist nonempty open
sets U and V of Y having N-closed complement such that U ∩ V = ∅ and
U ∪ V = Y. Since F(x) is connected for each x ∈ X, either F(x) ⊂ U or
F(x) ⊂ V. If x ∈ F+(U ∪ V), then F(x) ⊂ U ∪ V and hence x ∈ F+(U) ∪ F+(V).
Moreover, since F is surjective, there exist x and y such that F(x) ⊂ U and
F(y) ⊂ V; hence x ∈ F+(U) and y ∈ F+(V). Therefore, we obtain the following:

1. F+(U) ∪ F+(V) = F+(U ∪ V) = X,

2. F+(U) ∩ F+(V) = ∅,

3. F+(U) 6= ∅ and F+(V) 6= ∅.

Next, we show that F+(U) and F+(V) are ω-open sets in X.
(i) In case F is upper nearly ω-continuous by Theorem 1, F+(U) and F+(V)
are ω-open sets in X.
(ii) In case F is lower nearly ω-continuous by Theorem 2, F+(V) is ω-closed set
in X because U is clopen in (Y, σ), therefore, F+(V) is ω-open in X. Similarly
F+(U) is ω-open in X. Therefore (X, τ) is not ω-connected. �

For a multifunction F : (X, τ) → (Y, σ), we define D+
nω(F) and D−

nω(F) as
follows:
D+
nω(F) = {x ∈ X : F is not upper nearly ω-continuous at x}.

D−
nω(F) = {x ∈ X : F is not lower nearly ω-continuous at x}.

Theorem 13 For a multifunction F : (X, τ) → (Y, σ), the following properties
hold:

D+
nω = ∪

G∈σNC
{F+(G)\ω Int(F+(G))}

= ∪
B∈iNC

{F+(Int(B))\ω Int(F+(B))}

= ∪
B∈NC

{ωCl(F−(B))\F−(Cl(B))}

= ∪
H∈F

{ωCl(F−(H))\F−(H)}, where
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σNC is the family of all σ-open sets of Y having N-closed complement,
iNC is the family of all subsets B of Y such that Y\ Int(B) is N-closed,
NC is the family of all subsets B of Y having the N-closed closure,
F is the family of all closed and N-closed sets of (Y, σ).

Proof. We shall only proof the first equality and the last equality since the
proofs of other are similar to the first.
Let x ∈ D+

nω(F). Then, by Theorem 1, there exists an open set V of Y con-
taining F(x) and having N-closed complement such that x ∈ ω Int(F+(V)).
Therefore, x ∈ F+(V)\ω Int(F+(V)) ⊂ ∪

G∈σNC
{F+(G)\ω Int(F+(G))}.

Conversely, let x ∈ ∪
G∈σNC

{F+(G)\ω Int(F+(G))}. Then there exists an open set

V of Y having N-closed complement such that x ∈ F+(V)\ω Int(F+(V)). By
Theorem 1, x ∈ D+

nω(F). We prove the last equality.

∪
H∈F

{ωCl(F−(H))\F−(H)} ⊂ ∪
B∈NC

{ωCl(F−(B))\F−(Cl(B))} = D+
nω(F).

Conversely, we haveD+
nω(F) = ∪

B∈NC
{ωCl(F−(B))∪ ∪

H∈F
{ωCl(F−(H))\F−(H)}. �

Theorem 14 For a multifunction F : (X, τ) → (Y, σ), the following properties
hold:

D−
nω = ∪

G∈σNC
{F−(G)\ω Int(F−(G))}

= ∪
B∈iNC

{F−(Int(B))\ω Int(F−(B))}

= ∪
B∈NC

{ωCl(F+(B))\F+(Cl(B))}

= ∪
H∈F

{ωCl(F+(H))\F+(H)}.

Proof. The proof is similar to that of Theorem 13 �

Definition 10 Let (X, τ) be a bitopological space and A be a subset of X. The
ω-frontier of A, ωFr(A), is defined by ωFr(A) = ωCl(A) ∩ ωCl(X\A) =
ωCl(A)\ω Int(A).

Theorem 15 For a multifunction F : (X, τ) → (Y, σ), D+
nω(F) (resp. D−

nω(F))
is identical with the union of ω-frontiers of the upper (resp. lower) inverse
images of σi open sets containing (resp. meeting) F(x) and having N-closed
complement.

Proof. We shall prove the first case since the proof of the second is similar.
Let x ∈ D+

nω(F). Then, there exists an open set V of Y containing F(x) and
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having N-closed complement such that U ∩ (X\F+(V)) 6= ∅ for every open
set U containing x. Then x ∈ ωCl(X\F+(V)). On the other hand, since x ∈
F+(V) ⊂ ωCl(F+(V)) and hence x ∈ ωFr(F+(V)). Conversely, suppose that
F is upper nearly ω-continuous at x ∈ X. Then, for any open set V of Y
containing F(x) and having N-closed complement, there exists an ω-open set
containing x such that F(U) ⊂ V; hence x ∈ U ⊂ F+(V). Therefore, we have
x ∈ U ⊂ ω Int(F+(V)). This contradicts to the fact that x ∈ ωFr(F+(V)). �
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