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Abstract. All paper is related with the non-zero continuous solutions
f : G→ C of the functional equation

f(xσ(y)) + f(τ(y)x) = 2f(x)f(y), x, y ∈ G,

where σ, τ are continuous automorphism or continuous anti-automorphism
defined on a compact group G and possibly non-abelian, such that σ2 =
τ2 = id. The solutions are given in terms of unitary characters of G.

1 Introduction

Let G be a compact group, let σ, τ be continuous automorphism or continu-
ous anti-automorphism such that σ2 = τ2 = id. We consider the functional
equation

f(xσ(y)) + f(τ(y)x) = 2f(x)f(y), x, y ∈ G, (1)
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where f : G → C is the function to determine. This equation, in the case
where G is abelian, has been studied by many authors (see, e.g., Shin’ya [7,
Corollary 3.12], and Stetkær [8, Theorem 14.9]). Eq. (1) is a generalization of
the following variant of d’Alembert’s functional equation

f(xy) + f(σ(y)x) = 2f(x)f(y), x, y ∈ G, (2)

which was introduced and solved on semi-groups by Stetkær in [9]. Some in-
formation, applications and numerous references concerning (2), d’Alembert’s
functional equation

f(x+ y) + f(x− y) = 2f(x)f(y), x, y ∈ R, (3)

and their further generalizations can be found e.g. in ([5, 3, 4, 1, 8, 9, 10, 11]).
The purpose of the present paper is to solve the functional equation (1) in

the case where G is a compact group and possibly non-abelian. Our approach
uses the harmonic analysis and the representation theory on compact groups.
We note that the idea of using Fourier analysis for solving (1) goes back to
[2].

Throughout the rest of this paper, G is a compact group with identity
element e. By solutions (resp. representations), we always mean continuous
solutions (resp. continuous representations).

2 Preliminaries

In this section, we set up some notation and conventions and briefly review
some fundamental facts in Fourier analysis which will be used later.

Let dx denotes the normalized Haar measure on G. Let Ĝ stand for the set
of equivalence classes irreducible unitary representations of G. For [π] ∈ Ĝ,
the notation dπ denotes the dimension of the representation space of π and
Eπ = span{

√
πij : i, j = 1, . . . , dπ} the linear span of the matrix elements of π.

For f ∈  L2(G), the Fourier transform of f is defined by

f̂(π) =

∫
G

f(x)π(x)−1dx ∈Mdπ(C) for all [π] ∈ Ĝ,

where Mdπ(C) is the space of all dπ × dπ complex matrix.
As usual, the left and right regular representations of G in  L2(G) are defined

by
(Lyf)(x) = f(y

−1x) and (Ryf)(x) = f(yx),



An extension of a variant of d’Alembert functional equation . . . 47

respectively, where f ∈  L2(G) and x, y ∈ G.
The following properties will be useful later

(̂Lyf)(π) = f̂(π)π(y)
−1 and (̂Ryf)(π) = π(y)f̂(π)

for all y ∈ G, and π ∈ Ĝ.

3 Main result

The following Lemmas will be used in the proof of Theorem 1.

Lemma 1 Let G be a compact group and π be a unitary irreducible represen-
tation of G. Suppose every x ∈ G, there is cx ∈ C such that

π(σ(x)) + π(τ(x)) = cxIdπ , (4)

then dπ = 1.

Proof. Let (H; 〈 , 〉) denote the complex Hilbert space on which the represen-
tation π acts. We will consider two cases, π ◦ σ ' π ◦ τ or not.

In the first case. From (4) we get that

π(σ(x))ij + π(τ(x))ij = 0 for i 6= j, 1 ≤ i, j ≤ dπ, x ∈ G.

Since π ◦ σ 6' π ◦ τ we have Eπ◦σ⊥Eπ◦τ. Hence (π ◦ σ)ij = 0 for i 6= j, so π ◦ σ
is a diagonal matrix. Since π ◦ σ is irreducible we have dπ = 1.

In the second case, i.e., π ◦ σ ' π ◦ τ, there exists a unitary operator T on
H such that

π ◦ σ(x) = T∗π ◦ τ(x)T, x ∈ G.

Since T is a unitary matrix, by the spectral theorem for normal operators
applied to T, we infer that T is diagonalizable. Then H has an orthonormal
basis (e1, e2, . . . , edπ) consisting of eigenvectors of T. We write Tei = λiei where
λi ∈ C for i = 1, 2, . . . , dπ. Actually |λi| = 1, because T is unitary. For any
i = 1, 2, . . . , dπ, we compute that

(π ◦ σ(x))ii = 〈π ◦ σ(x)ei, ei〉 = 〈(T)∗π(τ(x))ei, ei〉
= 〈π(τ(x))Tei, Tei〉 = 〈λiπ(τ(x))ei, λiei〉
= λiλi 〈π(τ(x))ei, ei〉 = |λi|

2(π ◦ τ(x))ii = (π ◦ τ(x))ii,

for all x ∈ G. From (4), we infer that

2(π ◦ τ(x))ii = 2f(x), (5)
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for all i = 1, . . . , dπ and x ∈ G. Then dπ = 1. Indeed, if dπ > 1, then (5)
implies that (π ◦ τ)ii = (π ◦ τ)11 for all i = 2 . . . , dπ. But if you use Schur’s
orthogonality relations which say 1

dπ
(π ◦ τ)ii is an orthonormal basis, we get a

contradiction. Then dπ = 1. �

Lemma 2 Let f : G → C be a non-zero solution of (1). Then exists [π] ∈ Ĝ
such that f̂(π) is invertible.

Proof. Reformulate (3) to

2f(x)f = Rσ(x)f+ Lτ(x−1)f, x ∈ G.

Taking the Fourier transform to the last equation and using the identities
given in section 2, we have

f̂(π)π(τ(x)) + π(σ(x))f̂(π) = 2f(x)f̂(π), x ∈ G. (6)

Since f 6≡ 0, there exists [π] ∈ Ĝ with f̂(π) 6= 0. Now, let v be a vector in
ker f̂(π). From (6), we infer that f̂(π)π(τ(x))v = 0 for all x ∈ G, this implies
that f̂(π)π(x)v = 0 for all x ∈ G. So π(x) ker f̂(π) ⊂ ker f̂(π) for all x ∈ G.
Since π is irreducible and f̂(π) 6= 0, we have ker f̂(π) = {0}. This implies that
f̂(π) is bijective, thus invertible as a matrix. �

Lemma 3 Let f : G→ C be a non-zero solution of (1). Then f is central.

Proof. Using Lemma 2 and equality (6), we see that there exists [π] ∈ Ĝ such
that

π(σ(x)) + f̂(π)−1π(τ(x))f̂(π) = 2f(x)Idπ , x ∈ G. (7)

Taking the trace on both sides of (7) we obtain that

tr(π(σ(x))) + tr(π(τ(x))) = 2dπf(x), x ∈ G,

which abbreviates to

f(x) =
1

2dπ
(tr(π(σ(x))) + tr(π(τ(x)))), x ∈ G. (8)

Each terms on the right hand side of (8) is a central function, because trace
is a central function. Hence f is central. �

By help of the previous lemmas, we now describe the complete solution of
(1) on an arbitrary compact group. It is clear that f ≡ 0 is a solution of (1), so
in the following theorem we are only concerned with the non-zero solutions.
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Theorem 1 The non-zero solutions f : G→ C of (1) are the functions of the
form f = (χ+ χ ◦ σ ◦ τ)/2, where χ : G→ C is a character such that:

1. χ ◦ σ ◦ τ = χ ◦ τ ◦ σ, and

2. χ is σ-even and/or τ-even (i.e., χ ◦ σ = χ and/or χ ◦ τ = χ).

Proof. We have f is central. This implies that f̂(π) is an intertwining operator
for π. But π is irreducible, so f̂(π) = µIdπ for some µ ∈ C by Schur’s lemma.

Actually µ 6= 0, because f̂(π) 6= 0. Now Eq. (7) coalesce into

π(σ(x)) + π(τ(x)) = 2f(x)Idπ , x ∈ G. (9)

From dπ = 1, we see that π is a unitary character, say π = χ, so

f =
χ ◦ σ+ χ ◦ τ

2
.

If χ ◦ σ = χ ◦ τ, then letting χ := χ ◦ σ we have f = χ. Substituting f = χ

into (1) we get that χ ◦ σ + χ ◦ τ = 2χ. So χ = χ ◦ σ = χ ◦ τ. Then f has the
desired form.

If χ ◦ σ 6= χ ◦ τ, substituting f = (χ ◦ σ + χ ◦ τ)/2 into (1) we find after a
reduction that

χ ◦ σ(x)[χ(y) + χ ◦ σ ◦ τ(y) − χ ◦ σ(y) − χ ◦ τ(y)] + χ ◦ τ(x)[χ ◦ τ ◦ σ(y)
+χ ◦ τ ◦ τ(y) − χ ◦ σ(y) − χ ◦ τ(y)] = 0

for all x, y ∈ G. Since χ ◦ σ 6= χ ◦ τ we get from the theory of multiplicative
functions (see for instance [9, Theorem 3.18]) that both terms are 0, so{

χ ◦ σ(x)[χ(y) + χ ◦ σ ◦ τ(y) − χ ◦ σ(y) − χ ◦ τ(y)] = 0
χ ◦ τ(x)[χ ◦ τ ◦ σ(y) + χ(y) − χ ◦ σ(y) − χ ◦ τ(y)] = 0

(10)

for all x, y ∈ G. Since χ ◦ σ 6= χ ◦ τ at least one of χ ◦ σ and χ ◦ τ is not zero.
We have χ ◦ σ 6= 0 and χ ◦ τ 6= 0. From (1), we have

χ ◦ σ+ χ ◦ τ = χ+ χ ◦ σ ◦ τ = χ ◦ τ ◦ σ+ χ.

Using χ+ χ ◦ σ ◦ τ = χ ◦ τ ◦ σ+ χ and the fact that χ ◦ σ 6= χ ◦ τ, we see that
χ = χ and χ ◦ σ ◦ τ = χ ◦ τ ◦ σ. Thus

χ ◦ τ = χ ◦ σ ◦ τ ◦ σ.
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We now use χ ◦ σ+ χ ◦ τ = χ+ χ ◦ σ ◦ τ, we get that χ is σ-even or τ-even.
Finally, in view of these cases we deduce that f has the form stated in

Theorem 1. �

Similarly to Theorem 1, we can get the solution of functional equation (1)
when σ, τ are continuous anti-automorphism such that σ2 = τ2 = id.

Theorem 2 The non-zero solutions f : G→ C of (1) are the functions of the
form f = (χ+ χ ◦ σ ◦ τ)/2, where χ : G→ C is a character such that:

1. χ ◦ σ ◦ τ = χ ◦ τ ◦ σ, and

2. χ is σ-even and/or τ-even (i.e., χ ◦ σ = χ and/or χ ◦ τ = χ).

Proof. The proof is similar to the proof of Theorem 1. �

4 Some applications of the main result

As immediate consequences of Theorems 1 and 2, we have the following corol-
laries.

Corollary 1 Let G be a compact group and σ be a continuous homomorphism
or continuous anti-homomorphism such that σ◦σ = id. The non-zero solutions
f : G→ C of of the functional equation

f(xσ(y)) + f(σ(y)x) = 2f(x)f(y), x, y ∈ G,

are the functions of the form f = χ, where χ : G→ C is a character such that
χ is σ-even.

Proof. It suffices to take σ(x) = τ(x) for all x ∈ G in Theorem 1 or in Theorem
2. �

Corollary 2 Let G be a compact group and σ be a continuous homomorphism
such that σ ◦ σ = id. The non-zero solutions f : G → C of of the functional
equation

f(xσ(y)) + f(yx) = 2f(x)f(y), x, y ∈ G,

are the functions of the form f = (χ+χ◦σ)/2, where χ : G→ C is a character.

Proof. It suffices to take τ(x) = x for all x ∈ G in Theorem 1. �
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Corollary 3 Let G be a compact group and τ be a continuous homomorphism
such that τ ◦ τ = id. The non-zero solutions f : G → C of of the functional
equation

f(xy) + f(τ(y)x) = 2f(x)f(y), x, y ∈ G,
are the functions of the form f = (χ+χ◦τ)/2, where χ : G→ C is a character.

Proof. It suffices to take σ(x) = x for all x ∈ G in Theorem 1. �

Corollary 4 Let G be a compact group and σ be a continuous anti-homomorphism
such that σ ◦ σ = id. The non-zero solutions f : G → C of of the functional
equation

f(xσ(y)) + f(y−1x) = 2f(x)f(y), x, y ∈ G,
are the functions of the form f = (χ+χ ◦ σ)/2, where χ : G→ C is a character
such that χ is σ-even and/or χ = χ.

Proof. It suffices to take τ(x) = x−1 for all x ∈ G in Theorem 2. �

Corollary 5 Let G be a compact group and τ be a continuous anti-homomorphism
such that τ ◦ τ = id. The non-zero solutions f : G → C of of the functional
equation

f(xy−1) + f(τ(y)x) = 2f(x)f(y), x, y ∈ G,
are the functions of the form f = (χ+χ ◦ τ)/2, where χ : G→ C is a character
such that χ is τ-even and/or χ = χ.

Proof. It suffices to take σ(x) = x−1 for all x ∈ G in Theorem 2. �

Corollary 6 The non-zero solutions f : G→ C of the functional equation

f(xy) + f(yx) = 2f(x)f(y), x, y ∈ G,

are the functions of the form f = χ, where χ : G→ C is a unitary character.

Proof. It suffices to take σ(x) = τ(x) = x for all x ∈ G in Theorem 1. �

Corollary 7 The non-zero solutions f : G→ C of the functional equation

f(xy−1) + f(y−1x) = 2f(x)f(y), x, y ∈ G,

are the functions of the form f = χ, where χ : G → C is a unitary character
such that χ = χ.

Proof. It suffices to take σ(x) = τ(x) = x−1 for all x ∈ G in Theorem 2. �
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