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Abstract. This paper deals with the estimation of conditional distribu-
tion function based on the single-index model. The asymptotic normality
of the conditional distribution estimator is established. Moreover, as an
application, the asymptotic (1−γ) confidence interval of the conditional
distribution function is given for 0 < γ < 1.

1 Introduction

The single functional index models have received a considerable attention be-
cause of their wide applications in many areas such as economics, medicine,
financial econometric and so on. The study of these models has been devel-
oped rapidly, see Ait-Saidi et al. (2005, 2008a, 2008b). Recently, Attaoui et
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al. (2011) investigated the kernel estimator of the conditional density of a
scalar response variable Y, given a Hilbertian random variable X when the
observations are from a single functional index model. The pointwise and the
uniform almost complete convergence of the estimator with rates in this model
were obtained for independent observations. Furthermore, Ling et al. (2012)
obtained the asymptotic normality of the conditional density estimator and
the conditional mode estimator for the α-mixing dependence functional time
series data. Ling et al. (2014) investigated the pointwise almost complete con-
sistency and the uniform almost complete convergence of the kernel estimation
with rate for the conditional density in the setting of the α-mixing functional
data, which extend the i.i.d case in Attaoui et al. (2011) to the dependence
setting, the convergence rate of the kernel estimation for the conditional mode
was also obtained.

The main contribution of this paper is to establish the asymptotic normality
for the estimator of conditional distribution function in the i.i.d. case when
the single functional index θ is fixed. As an application, the asymptotic (1−γ)
confidence interval for the conditional density function F(θ, y, x) is presented.
The outline of the present paper is as follows. In section 2, we introduce the
model as well as basic assumptions that are necessary in deriving the main
result of this paper. In section 3, we state the main result of the paper; the
asymptotic normality of the estimator for the conditional distribution function.
As an application, the asymptotic (1−γ) confidence interval of the conditional
distribution function is given for 0 < γ < 1. Finally, the technical proofs are
related to section 4.

2 Model and some basic assumptions

Let {(Xi, Yi), 1 ≤ i ≤ n} be n random variables, identically distributed as
the random pair (X, Y) with values in H × R, where H is a separable real
Hilbert space with the norm ‖.‖ generated by an inner product < ., . >. Under
such topological structure and for a fixed functional θ, we suppose that the
conditional probability distribution of Y given < X, θ >=< x, θ > exists and
is given by

∀y ∈ R, F(θ, y, x) = P(Y ≤ y| < X, θ >=< x, θ > . (1)

The nonparametric kernel estimator F̂(θ, y, x) of F(θ, y, x) is defined as follows,
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F̂(θ, y, x) =

n∑
i=1

K(h−1K (< x− Xi, θ >))H(h
−1
H (y− Yi))

n∑
i=1

K(h−1K (< x− Xi, θ >))

, (2)

where K is a kernel, H is a cumulative distribution function (cdf) and hK =
hK,n(resp,hH = hH,n) is a sequence of positive real numbers which goes to zero
as n tends to infinity, and with the convention 0/0 = 0.

Let, for any x ∈ H, i = 1, . . . , n and y ∈ R

Ki(θ, x) := K(h
−1
K | < x− Xi, θ > |), and Hi(y) := H(h

−1
H (y− Yi)).

We denote by Bθ(x, h) = {X ∈ H/0 < | < x− X, θ > | < h} the ball centered
at x with radius h, let Nx be a fixed neighborhood of x in H, SR will be a fixed
compact subset of R.

Now, we introduce the following basic assumptions that are necessary in
deriving the main result of this paper.

(H1) P(X ∈ Bθ(x, hK)) =: φθ,x(h) > 0, φθ,x(h)→ 0 as h→ 0.

(H2) The conditional cumulative distribution F(θ, y, x) satisfies the Hölder
condition, that is:

∀(y1, y2) ∈ SR × SR , ∀(x1, x2) ∈ Nx ×Nx.

|F(θ, y1, x1)−F(θ, y2, x2)| ≤ Cθ,x(‖x1−x2‖b1+|y1−y2|
b2), b1 > 0, b2 > 0.

(H3) For j = 0, 1, H(j) satisfies the lipschitz conditions and

m := inf
t∈[0,1]

K(t)H ′(t) > 0,

with∫
H ′(t)dt = 1,

∫
H2(t)dt <∞ and

∫
|t|b2H(1)(t)dt <∞

(H4) The kernel K is nonnegative, with compact support [0, 1] of class C1
on [0, 1) such that K(1) > 0 and its derivative K′ exists on [0, 1) and
K′(t) < 0.

(H5) For all u ∈ [0, 1], lim
h→0 φθ,x(uh)φθ,x(h)

= lim
h→0 ξθ,xh (u) = ξθ,x0 (u).
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(H6) The bandwidth hH satisfies,

(i)
logn

nφθ,x(hK)
→ 0, as n→∞.

(ii) nh2Hφ
2
θ,x(hK) −→∞, and

nh3Hφθ,x(hK)

log2 n
−→∞ as n→∞.

(iii) nh2Hφ
3
θ,x(hK) −→ 0, as n→∞.

(H7) (i) φθ,x(h)
n + φx(h) = O( 1n).

(ii)
√
nφθ,x(h)→ 0 as n→∞.

Comments on the assumptions. Assumption (H1) is the same as one given
in Ferraty et al. (2005). Assumption (H2) is a regularity conditions which
characterize the functional space of our model and is needed to evaluate the
bias term of our asymptotic results. Assumptions (H3) and (H5) and (H6) are
technical conditions for the proofs. Assumptions (H4) is classical in functional
estimation for finite or infinite dimension spaces.

Remark 1 Assumption (H5) is known as (for small h) the ”concentration
assumption acting on the distribution of X” in infinite dimensional spaces.

The function ξxh(·) intervening in assumption (H9) is increasing for all fixed
h. Its pointwise limit ξx0(·) plays a determinant role. It is possible to specify
this function (with ξ0(u) := ξ

x
0(u) in the above examples by:

1. ξ0(u) = u
γ,

2. ξ0(u) = δ1(u), where δ1(·) is Dirac function,

3. ξ0(u) = 1]0,1](u).

3 Main results: Asymptotic normality of the esti-
mator F̂(θ, y, x)

In this part of paper, we give the asymptotic normality of the conditional
cumulative distribution function in the single functional index model. The
main result is given in the following theorem.

Theorem 1 Under Assumptions (H1)-(H7) we have√
nφθ,x(hK)

σ2(θ, y, x)
(F̂(θ, y, x) − F(θ, y, x))

D−→ N (0, 1).
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Where

σ2(θ, y, x) =
C2(θ, x)F(θ, y, x)(1− F(θ, y, x))

C21(θ, x)
,

with Cj(θ, x) = Kj(1) −
∫1
0 sK

′(s)βθ,x(s)ds for j = 1, 2, "
D−→ " means the

convergence in distribution.

Proof. Consider, for i = 1, . . . , n,

Ki(θ, x) = K(h
−1
K (< x− Xi, θ >)), Hi(y) = H

(
h−1H (y− Yi)

)
,

F̂N(θ, y, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x)Hi(y),

F̂D(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x),

∆i(x, θ) =
K(h−1K (< x− Xi, θ >))

EK1(θ, x)
.

In order to establish the asymptotic normality of F̂(θ, t, x) we have to con-
sider the following decomposition

F̂(θ, y, x) − F(θ, y, x) =
F̂N(θ, y, x)

F̂D(θ, x)
−
C1(θ, x)F(θ, y, x)

C1(θ, x)

=
1

F̂D(θ, x)

(
F̂N(θ, y, x) − EF̂N(θ, y, x)

)
−

1

F̂D(θ, x)

(
C1(θ, x)F(θ, y, x) − EF̂N(θ, y, x)

)
+
F(θ, y, x)

F̂D(θ, x)

(
C1(θ, x) − E

[
F̂D(θ, x)

])
−
F(θ, y, x)

F̂D(θ, x)

(
F̂D(θ, x) − EF̂D(θ, x)

)
=

1

F̂D(θ, x)
An(θ, y, x) + Bn(θ, y, x) (3)

where

An(θ, y, x) =
1

nEK1(x, θ)

n∑
i=1

{
(Hi(y) − F(θ, y, x))Ki(θ, x)



Asymptotic normality of conditional distribution estimation . . . 167

−E [(Hi(y) − F(θ, y, x))Ki(θ, x)]
}
=

1

nEK1(x, θ)

n∑
i=1

Ni(θ, y, x),

and

Ni(θ, y, x) = (Hi(y) − F(θ, y, x))Ki(θ, x) − E [(Hi(y) − F(θ, y, x))Ki(θ, x)] .

It follows that,

nφθ,x(hK)Var (An(θ, t, x)) =
φθ,x(hK)

E2K1(x, θ)
Var(N1)

+
φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj)

= Vn(θ, t, x) (4)

Then, the rest of the proof is based on the following Lemmas

Lemma 1 Under hypotheses (H1)-(H3), (H5) and (H7), as n→∞ we have

nφθ,x(hK)Var (An(θ, y, x)) −→ V(θ, y, x),

where

V(θ, y, x) =
C2(θ, x)

(C1(θ, x))2
F(θ, y, x) (1− F(θ, y, x)) .

Lemma 2 Under hypotheses (H1)-(H3) and (H5)-(H7), as n→∞ we have(
nφθ,x(hK)

V(θ, y, x)

)1/2
An(θ, y, x)

D−→N (0, 1),

where
D−→ denotes the convergence in distribution.

Lemma 3 Under assumptions (H1)-(H3) and (H5)-(H7); as n→∞ we have√
nφθ,x(hK)Bn(θ, y, x) −→ 0 in Probabilty.

�

Now, because the unknown functions Cj(θ, x) and F(θ, y, x) intervening in
the expression of the variance, we need to estimate the quantities C1(θ, x),
C2(θ, x) and F(θ, y, x), respectively.
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By assumptions (H1)-(H4) we know that aj(θ, x) can be estimated by Ĉj(θ, x)
which is defined as

Ĉj(θ, x) =
1

nφ̂θ,x(hK)

n∑
i=1

K
j
i(θ, x) , j = 1, 2

where

φ̂θ,x(hK) =
1

n

n∑
i=1

I{|<x−Xi,θ>|<hk}.

By applying the kernel estimator of F(θ, y, x) given above, the quantity
σ2(θ, x) can be estimated finally by:

σ̂2(θ, x) =
Ĉ2(θ, x)F̂(θ, y, x)

Ĉ21(θ, x)

∫
H2(t)dt.

Next, we can derive the following corollary:

Corollary 1 Under assumptions of Theorem 1, we have√
nφ̂θ,x(hK)

σ̂2(θ, y, x)
(F̂(θ, y, x) − F(θ, y, x))

D−→ N (0, 1).

Thus, following this Corollary we can approximate (1−γ) confidence interval
of F(θ, y, x) by

F̂(θ, y, x) ± tγ/2 ×
σ̂(θ, x)√
nφ̂θ,x(hK)

, where tγ/2 is the upper γ/2 quantile of

standard Normal N (0, 1).

4 Proofs of technical lemmas

Proof. [Proof of Lemma 1]
Let

Vn(θ, y, x) =
φθ,x(hK)

E2K1(θ, x)
E
[
K21(θ, x) (H1(y) − F(θ, y, x))

2
]

=
φθ,x(hK)

E2K1(θ, x)
E
[
K21(θ, x)E

(
(H1(y) − F(θ, y, x))

2 | < θ,X1 >
)] (5)

Using the definition of conditional variance, we have

E
[(
H(h−1H (y− Y1)) − F(θ, y, x)

)2
| < θ,X1 >

]
= J1n + J2n,

where
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J1n = Var
(
H(h−1H (y− Y1))| < θ,X1 >

)
,

and

J2n =
[
E
(
H(h−1H (y− Y1))| < θ,X1 >

)
− F(θ, y, x)

]2
 Concerning J1n. Let

J1n = E
[
H2
(
y− Y1
hH

)
| < θ, x >

]
−

(
E
[
H

(
y− Y1
hH

)
| < θ,X1 >

])2
= J1 + J2

• By the property of double conditional expectation, we get that

J1 = E
[
H2
(
y− Y1
hH

)
| < θ,X1 >

]
=

∫
R
H2
(
y− v

hH

)
dF(θ, v, X1)

=

∫
R
H2(t)dF(θ, y− hHt, X1). (6)

On the other hand, by integrating by part and under assumption (H3), we
have

J1 =

∫
R
2H(t)H ′(t)F(θ, y− hHt, X1)du

=

∫
R
2H(t)H ′(t) (F(θ, y− hHt, X1) − F(θ, y, x))du

+

∫
R
2H(t)H ′(t)F(θ, y, x)du.

Clearly, we have∫
R
2H(t)H ′(t)F(θ, y, x)du =

[
H2(t)F(θ, y, x)

]+∞
−∞ = F(θ, y, x), (7)

thus ∫
R
H2(t)dF(θ, y− hHt, X1) = F(θ, y, x) +O(hb1K + hb2H ). (8)
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 Concerning J2. Let

I = E (Hi(y)| < X1, θ >)

E
(
H

(
y− Y1
hH

)
| < X1, θ >

)
=

∫
R
H

(
y− u

hH

)
f(θ, y, X1)du,

=

∫
R
H

(
y− u

hH

)
dF(θ, y, X1),

=

∫
R
H ′
(
y− u

hH

)
F(θ, u, X1)du,

=

∫
R
H ′(t) (F(θ, y− hHt, X1) − F(θ, y, x))dt

+F(θ, y, x)

∫
R
H ′(t)dt.

Because H ′ is a probability density and by hypotheses (H2) and (H3), we
can write:

I ≤ Cx,θ

∫
R
H ′(t)

(
hb1K + |t|b2hb2H

)
dt+ F(θ, y, x)

= O
(
hb1K + hb2H

)
+ F(θ, y, x).

Finally, by hypothesis (H3) we get

J2 −→ F2(θ, y, x), as n→∞. (9)

The last equality is due to the fact that H ′ is a probability density, thus we
have by hypothesis (H3)∫
R
H ′(t) (F(θ, y− hHt, X1) − F(θ, y, x))dt ≤

∫
R
H ′(t)

(
|t|b2hb2H + hb1K

)
dt −→

n→∞ 0.
 Concerning J2n.
We have by integration by parts and changing variables

J2n = E (H1(y)| < θ,X1 >)

= E
(
H

(
y− Y1
hH

)
| < θ,X1 >

)
=

∫
H

(
y− v

hH

)
f(θ, v, X1)dv



Asymptotic normality of conditional distribution estimation . . . 171

=

∫
H

(
y− v

hH

)
dF(θ, v, X1)

=

∫
H ′(t)F(θ, y− hHt, X1)dt

= F(θ, y, x)

∫
H ′(t)dt+

∫
H ′(t) (F(θ, y− hHt, x) − F(θ, y, x))dt,

the last equality is due to the fact that H ′ is a probability density.
Thus, we have:

J2n = F(θ, y, x) +O
(
hb1K + hb2H

)
(10)

Finally, we obtain that J2n −→
n→∞ 0.

Meanwhile, by (H1), (H2), (H4) and (H5), it follows that:

φθ,x(hK)EK21(θ, x)
E2K1(θ, x)

−→
n→∞ C2(θ, x)

(C1(θ, x))2
,

Then, by combining equations (5)-(10), it leads to

Vn(θ, y, x) −→
n→∞ C2(θ, x)

(C1(θ, x))2
F(θ, y, x) (1− F(θ, y, x)) . (11)

�

Proof. [Proof of Lemma 2]
We will establish the asymptotic normality of An(θ, t, x) suitably normal-

ized.
We have√

nφθ,x(hK)An(θ, y, x) =

√
nφθ,x(hK)

nEK1(θ, x)

n∑
i=1

Ni(θ, y, x)

=

√
φθ,x(hK)√
nEK1(θ, x)

n∑
i=1

Ni(θ, y, x)

=
1√
n

n∑
i=1

Ξi(θ, y, x) =
1√
n
Sn (12)

Now, we can write,

Ξi =

√
φθ,x(hK)

EK1(θ, x)
Ni,
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Thus

Var(Ξi) =
φθ,x(hK)

E2K1(θ, x)
Var(Ni) = Vn(θ, y, x).

Note that by (11), we have Var(Ξi) −→ V(θ, y, x) as n goes to infinity.
Obviously, we have√

nφθ,x(hK)

V(θ, y, x)
(An(θ, y, x)) = (nV(θ, y, x))−1/2 Sn.

Thus, the asymptotic normality of (nV(θ, y, x))−1/2 Sn, is deduced from the
following results

∣∣∣E{exp
(
izn−1/2Sn

)}
−

n∏
j=0

E
{

exp
(
izn−1/2Ξj

)} ∣∣∣ −→ 0, (13)

1

n

n∑
j=0

E
(
Ξ2j

)
−→ V(θ, y, x), (14)

1

n

n∑
j=0

E
(
Ξ2j1{|Ξj|>ε

√
nV(θ,y,x)}

)
−→ 0, for every ε > 0. (15)

While equations (13) and (14) show that the Υj are asymptotically inde-
pendent, verifying that the sum of their variances tends to V(θ, y, x). Expres-
sion (15) is the Lindeberg-Feller’s condition for a sum of independent terms.
Asymptotic normality of Sn is a consequence of equations (13)-(15).

• Proof of (13) We make use of Volkonskii and Rozanov’s lemma (see
the appendix in Masry (2005) and the fact that the process (Xi) is i.i.d.

Note that using that Vj = exp
(
izn−1/2Sn

)
, we have∣∣∣E{exp

(
izn−1/2Sn

)}
−

n∏
j=0

E
{

exp
(
izn−1/2Ξj

)} ∣∣∣ −→ 0

as n goes to infinity.

• Proof of (14) Note that Var(Sn) −→ V(θ, y, x) by equation (11) and
(12) (by the definition of the Ξi). Then because

E (Sn)
2 = Var (Sn) =

n∑
j=0

Var (Ξj) ,
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and, using the same arguments as those previously used in the proof of
first term of equation (5), we obtain

1

n

n∑
j=1

E
(
Ξ2j

)
= Var (Ξ1) ,

as Var (Ξ1) −→ V(θ, y, x).

• Proof of (15) Recall that

Ξj =

n∑
i=0

Υi.

Finally, to establish (15) it suffices to show that the set

{|Ξj| > ε
√
nV(θ, y, x)}

is negligible for n large enough.

By using assumptions (H4) and (H5), we have∣∣∣Υi∣∣∣ ≤ C (φθ,x(hK))
−1/2 ,

therefore ∣∣∣Ξj∣∣∣ ≤ Cn (φθ,x(hK))
−1/2 ,

which goes to zero as n goes to infinity.

Since
|Hi(y) − F(θ, y, x)| ≤ 1.

Then for n large enough, the set
{
|Ξj| > ε (nV(θ, y, x))

−1/2
}

becomes

empty, this completes the proof and therefore that of the asymptotic
normality of (nV(θ, y, x))−1/2 Sn and the Lemma 2.

�

Proof. [Proof of Lemma 3]
We have√
nφθ,x(hK)Bn(θ, y, x) =

√
nφθ,x(hK)

F̂D(θ, x)

{
EF̂N(θ, y, x) − C1(θ, x)F(θ, y, x)

+F(θ, y, x)
(
C1(θ, x) − EF̂D(θ, x)

)}
.
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Firstly, observe that as n→∞
1

φθ,x(hK)
E
[
Kl
(
< x− Xi, θ >

hK

)]
−→ Cl(θ, x), for l = 1, 2 (16)

E
[
F̂D(θ, x)

]
−→ C1(θ, x), (17)

and

E
[
F̂N(θ, y, x)

]
−→ C1(θ, x)F(θ, y, x), (18)

can be proved in the same way as in Ezzahrioui and Ould Said (2008) cor-
responding to their Lemmas 5.1 and 5.2. Then the proofs of (16)-(18) are
omitted.

Secondly, making use of (16), (17) and (18), we have as n→∞{
EF̂N(θ, y, x) − C1(θ, x)F(θ, y, x) + F(θ, y, x)

(
C1(θ, x) − EF̂D(θ, x)

)}
−→ 0.

On other hand√
nφθ,x(hK)

F̂D(θ, x)
=

√
nφθ,x(hK)F̂(θ, y, x)

F̂D(θ, x)F̂(θ, y, x)
=

√
nφθ,x(hK)F̂(θ, y, x)

F̂N(θ, y, x)
. (19)

Because K(·)H ′(·) is continuous with support on [0, 1], then by hypotheses
(H3) and (H4) ∃ m = inf

t∈[0,1]
K(t)H ′(t) such that

F̂N(θ, y, x) ≥
m

hHφθ,x(hK)

which gives

nφθ,x(hK)

F̂N(θ, y, x)
≤

√
nh2Hφθ,x(hK)

3

m

Finally, using (H6), the proof of Lemma 3 is completed.
�
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