DOI: 10.1515/ausm-2017-0011

Some conditions under which derivations are zero on Banach *-algebras

Amin Hosseini

Department of Mathematics, Kashmar Higher Education Institute, Iran email: A.hosseini@mshdiau.ac.ir, hosseini.amin82@gmail.com

Abstract. Let \mathcal{A} be a Banach *-algebra. By $\mathcal{S}_{\mathcal{A}}$ we denote the set of all self-adjoint elements of \mathcal{A} and by $\mathcal{O}_{\mathcal{A}}$ we denote the set of those elements in \mathcal{A} which can be represented as finite real-linear combinations of mutually orthogonal projections. The main purpose of this paper is to prove the following result:

Suppose that $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$ and $\{d_n\}$ is a sequence of uniformly bounded linear mappings satisfying $d_n(p) = \sum_{k=0}^n d_{n-k}(p)d_k(p)$, where p is an arbitrary projection in \mathcal{A} . Then $d_n(\mathcal{A}) \subseteq \bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi$ for each $n \ge 1$. In particular, if \mathcal{A} is semi-prime and further, $\dim(\bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi) \le 1$, then $d_n = 0$ for each $n \ge 1$.

1 Introduction and preliminaries

In this paper, \mathcal{A} represents a Banach *-algebra over the complex field \mathbb{C} . If \mathcal{A} is unital, then 1 will stand for its unit element. Moreover, \mathcal{A} is called semi-prime if $a\mathcal{A}a = \{0\}$ implies that a = 0. A non-zero linear functional φ is called a *character* if $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in \mathcal{A}$. By $\Phi_{\mathcal{A}}$ we denote the set of all characters on \mathcal{A} . It is well known that, ker φ the kernel of φ is a maximal ideal of \mathcal{A} , where φ is an arbitrary element of $\Phi_{\mathcal{A}}$. We denote the set of all self-adjoint projections in \mathcal{A} by $\mathcal{P}_{\mathcal{A}}$ (i.e., $\mathcal{P}_{\mathcal{A}} = \{p \in \mathcal{A} \mid p^2 = p, p^* = p\}$), and by $\mathcal{S}_{\mathcal{A}}$

²⁰¹⁰ Mathematics Subject Classification: 17B40, 47B48

Key words and phrases: (Jordan) derivation, pre-higher derivation, Banach *-algebra

we denote the set of all self-adjoint elements of \mathcal{A} (i.e., $\mathcal{S}_{\mathcal{A}} = \{a \in \mathcal{A} \mid a^* = a\}$). Next, the set of these elements in \mathcal{A} which can be represented as finite reallinear combinations of mutually orthogonal self-adjoint projections, is denoted by $\mathcal{O}_{\mathcal{A}}$. Hence, we have $\mathcal{P}_{\mathcal{A}} \subseteq \mathcal{O}_{\mathcal{A}} \subseteq \mathcal{S}_{\mathcal{A}}$. Note that if \mathcal{A} is a von Neumann algebra, then $\mathcal{O}_{\mathcal{A}}$ is norm dense in $\mathcal{S}_{\mathcal{A}}$. More generally, the same is true for $\mathcal{A}W^*$ -algebras. Recall that a C*-algebra is a Banach *-algebra in which, for every a, $||a^*a|| = ||a||^2$. A W*-algebra is a weakly closed self-adjoint algebra of operators on a Hilbert space, and an $\mathcal{A}W^*$ -algebra is a C*-algebra satisfying: i) In the partially ordered set of projections, any set of orthogonal projections has a least upper bound (LUB),

ii) Any maximal commutative self-adjoint subalgebra is generated by its selfadjoint projections. That is, it is equal to the smallest closed subalgebra containing its self-adjoint projections.

When \mathcal{A} is an \mathcal{AW}^* -algebras it can be proved that each maximal commutative *-subalgebra of \mathcal{A} is monotone complete and \mathcal{A} is unital.

The above-mentioned definitions and results can all be found in [1], [5] and [10] and reader is referred to this sources for more general information on W^* -algebras and AW^* -algebras. In this paper, similar to Brešar [1], the author's attention is concentrated on Banach *-algebras in which $\mathcal{O}_{\mathcal{A}}$ is norm dense in $\mathcal{S}_{\mathcal{A}}$, i.e. $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$.

A linear mapping $d: \mathcal{A} \to \mathcal{A}$ is called a derivation if it satisfies the Leibnitz's rule d(ab) = d(a)b + ad(b) for all $a, b \in \mathcal{A}$. An additive mapping $d: \mathcal{A} \to \mathcal{A}$ is called a Jordan derivation if $d(a^2) = d(a)a + ad(a)$ holds for all $a \in \mathcal{A}$. If we define a sequence $\{d_n\}$ of linear mappings on \mathcal{A} by $d_0 = I$ and $d_n = \frac{d^n}{n!}$, where I is the identity mapping on \mathcal{A} , then the Leibnitz's rule ensures us that d_n 's satisfy the condition

$$d_{n}(ab) = \sum_{k=0}^{n} d_{n-k}(a)d_{k}(b)$$
(1)

for each $a, b \in \mathcal{A}$ and each non-negative integer n. This motivates us to consider the sequences $\{d_n\}$ of linear mappings on an algebra \mathcal{A} satisfying (1). Such a sequence is called a higher derivation. A sequence $\{d_n\}$ of linear mappings on an algebra \mathcal{A} satisfying $d_n(p) = \sum_{k=0}^n d_{n-k}(p)d_k(p)$, where p is an arbitrary element of $\mathcal{P}_{\mathcal{A}}$, is called a pre-higher derivation. A pre-higher derivation $\{d_n\}$ is called uniformly bounded if there exists an M > 0 such that $\|d_n\| \leq M$ for each n. In current note, the focus of attention is on uniformly bounded pre-higher derivations. The question under which conditions all derivations are zero on a given *-algebra have attracted much attention of authors (for

instance, see [3], [4], [6], [8], [9], and [12]). In this paper, we also concentrate on this topic. Let us provide a background of our study. In 1955, Singer and Wermer [11] achieved a fundamental result which started investigation into the range of derivations on Banach algebras. The result states that if \mathcal{A} is a commutative Banach algebra and $\mathbf{d} : \mathcal{A} \to \mathcal{A}$ is a bounded derivation, then $\mathbf{d}(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$, where $\operatorname{rad}(\mathcal{A})$ denotes the Jacobson radical of \mathcal{A} . It is evident that if \mathcal{A} is semi-simple, i.e. $\operatorname{rad}(\mathcal{A}) = \{0\}$, then \mathbf{d} is zero. In this paper, we prove that there is not any non-zero bounded derivation from \mathcal{A} into \mathcal{A} without considering the commutativity and semi-simplicity assumptions for \mathcal{A} . Indeed, we prove the following result:

Suppose that \mathcal{A} is a semi-prime Banach *-algebra so that $\mathcal{O}_{\mathcal{A}}$ is norm dense in $\mathcal{S}_{\mathcal{A}}$, and $d: \mathcal{A} \to \mathcal{A}$ is a bounded derivation. If $\dim(\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi) \leq 1$, then d is identically zero. In this case, it is possible that $\operatorname{rad}(\mathcal{A}) \neq \{0\}$, and it means that \mathcal{A} is not semi-simple.

Let $\{d_n\}$ be a uniformly bounded pre-higher derivation (i.e., $||d_n|| \leq M$ for some positive number M) and p be an arbitrary element of \mathcal{P}_A . Then, the function F given by $F(t) = \sum_{n=0}^{\infty} d_n(p)t^n$ is well defined for |t| < 1. Indeed,

$$\begin{split} \|\sum_{n=0}^{\infty} d_n(p) t^n\| &\leq \sum_{n=0}^{\infty} \|d_n(p) t^n\| = \sum_{n=0}^{\infty} \|d_n(p)\| |t^n| \\ &\leq \sum_{n=0}^{\infty} \|d_n\| \|p\| |t^n| \leq \sum_{n=0}^{\infty} M \|p\| |t^n| < \infty. \end{split}$$

Moreover, the m-th derivative of F exists and is given by the formula $F^{(m)}(t) := \sum_{n=m}^{\infty} \frac{n!}{(n-m)!} d_n(p) t^{n-m}$. There is a good match between F(t) and the uniformly bounded pre-higher derivation $\{d_n\}$. Using F(t) the following main result is proved:

Let \mathcal{A} be a Banach *-algebra such that $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$. Suppose that $\{d_n\}$ is a uniformly bounded pre-higher derivation. Then, $d_n(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi$ for each $n \geq 1$. In particular, if \mathcal{A} is semi-prime and further, $\dim(\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi) \leq 1$, then $d_n = 0$ for each $n \geq 1$.

2 Results and proofs

Before proving the main results, we present the following lemma:

Lemma 1 [[1], Lemma 1] Let \mathcal{A} be a normed complex *-algebra. If a linear mapping δ of \mathcal{A} into a normed \mathcal{A} -bimodule \mathcal{M} satisfies $\delta(p) = \delta(p)p + p\delta(p)$

for all $p \in \mathcal{P}_{\mathcal{A}}$, then $\delta(w^2) = \delta(w)w + w\delta(w)$ holds for all $w \in \mathcal{O}_{\mathcal{A}}$. Moreover, if $\mathcal{O}_{\mathcal{A}}$ is dense in $\mathcal{S}_{\mathcal{A}}$ and δ is continuous, then δ is a Jordan derivation.

Note that each member of $\Phi_{\mathcal{A}}$ is continuous (see [2]). Since the case $\Phi_{\mathcal{A}} = \emptyset$ makes everything trivial, so we will assume that $\Phi_{\mathcal{A}}$ is a non-empty set.

Theorem 1 Let \mathcal{A} be a Banach *-algebra such that $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$. Suppose that $\{d_n\}$ be a uniformly bounded pre-higher derivation. Then $d_n(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi$ for each $n \geq 1$. In particular, if \mathcal{A} is semi-prime and $\dim(\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi) \leq 1$, then $d_n = 0$ for each $n \geq 1$.

Proof. Let p be an arbitrary element of $\mathcal{P}_{\mathcal{A}}$. We know that the function $F(t) = \sum_{n=0}^{\infty} d_n(p)t^n$ is well-defined for |t| < 1. Note that

$$\begin{split} F(t)F(t) &= \left(\sum_{n=0}^{\infty} d_n(p)t^n\right) \left(\sum_{n=0}^{\infty} d_n(p)t^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n d_{n-k}(p)d_k(p)\right)t^n \\ &= \sum_{n=0}^{\infty} d_n(p)t^n = F(t). \end{split}$$

Hence, $\varphi(F(t)) = 0$ or $\varphi(F(t)) = 1$, where φ is an arbitrary fixed element of $\Phi_{\mathcal{A}}$. Let $G(t) := \varphi(F(t))$. We have $G(t) = \varphi(\sum_{n=0}^{\infty} d_n(p)t^n) = \sum_{n=0}^{\infty} \varphi(d_n(p))t^n$. It is observed that G(t) is a power series in \mathbb{C} . Thus, the m-th derivative of G exists and is given by the formula $G^{(m)}(t) := \sum_{n=m}^{\infty} \frac{n!}{(n-m)!} \varphi(d_n(p))t^{n-m}$. Since the function G is constant, we have

$$\begin{split} & G^{(m)}(t) = 0 \text{ for every } m \in \mathbb{N} \setminus \{0\} \text{ and every } |t| < 1. \text{ We have } \phi(d_1(p)) + 2\phi(d_2(p))t + 3\phi(d_3(p))t^2 + 4\phi(d_4(p))t^3 + \ldots = G^{(1)}(t) = 0. \text{ Putting } t = 0 \text{ in the former equation, we obtain that } \phi(d_1(p)) = 0. \text{ Using an argument similar to what was described concerning } \phi(d_1(p)), we conclude that <math>\phi(d_2(p)) = 0. \text{ By continuing this procedure, we prove that } \phi(d_n(p)) = 0 \text{ for all } n \geq 1. \text{ Our next task is to show that } \phi(d_n(a)) = 0 \text{ for every } a \in \mathcal{A}. \text{ Let } x \text{ be an arbitrary element of } \mathcal{O}_{\mathcal{A}}. \text{ Hence, } x = \sum_{i=1}^{m} r_i p_i, \text{ where } p_1, p_2, \ldots, p_m \text{ are mutually orthogonal self-adjoint projections and } r_1, r_2, \ldots, r_m \text{ are real numbers. We have } \phi(d_n(a)) = 0 \text{ for every } a \in \mathcal{S}_{\mathcal{A}}. \text{ It is well-known that each } a \text{ in } \mathcal{A} \text{ can be represented as } a = a_1 + ia_2, a_1, a_2 \in \mathcal{S}_{\mathcal{A}}; \text{ therefore, } \phi(d_n(a)) = \phi(d_n(a_1 + ia_2)) = \phi(d_n(a_1)) + i\phi(d_n(a_2)) = 0 \text{ for all } n \geq 1, a \in \mathcal{A} \text{ and } \phi \in \Phi_{\mathcal{A}}. \text{ It means that } d_n(\mathcal{A}) \subseteq \bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi. \text{ Now, suppose that } \dim(\bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi) \leq 1. \text{ It is obvious that if } \dim(\bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi) = 0, \text{ then } d_n(\mathcal{A}) = \{0\} \text{ for all } n \geq 1. \text{ Assume that } \dim(\bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi) = 1. \text{ First we reduce our discussion to the } 0 \text{ for all } n \geq 1. \text{ for all } n \geq 1.$$

case $d_1 = 0$. Since $\dim(\bigcap_{\phi \in \Phi_A} \ker \phi) = 1$, there exists a non-zero element x_0 of \mathcal{A} such that $\bigcap_{\phi \in \Phi_A} \ker \phi = \{\alpha x_0 \mid \alpha \in \mathbb{C}\}$. Let a_0 be an element of \mathcal{A} so that $d_1(a_0) \neq 0$. We have $d_1(a_0) = \psi(a_0)x_0$, where ψ is a function from \mathcal{A} into the complex numbers. Having put $b = \frac{1}{\psi(a_0)}a_0$, we obtain $d_1(b) = d_1(\frac{1}{\psi(a_0)}a_0) = \frac{1}{\psi(a_0)}\psi(a_0)x_0 = x_0$ and it implies that $\psi(b) = 1$. First we will show $ax_0 + x_0a$ is a scalar multiple of x_0 for any a in \mathcal{A} . Let a be an element of \mathcal{A} . Then, $d_1(a^2) = \psi(a^2)x_0$ (*). Lemma 1 is just what we need to tell us that d_1 is a Jordan derivation, i.e. $d_1(a^2) = d_1(a)a + ad_1(a)$ for all $a \in \mathcal{A}$. Using the fact that d_1 is a Jordan derivation and the identity $ab + ba = (a + b)^2 - a^2 - b^2$, we get $d_1(ab + ba) = d_1(a)b + ad_1(b) + d_1(b)a + bd_1(a)$ for all $a, b \in \mathcal{A}$. Since d_1 is a Jordan derivation and $\dim(\bigcap_{\phi \in \Phi_\mathcal{A}} \ker \phi) = 1$, we have $d_1(a^2) = d_1(a)a + ad_1(a) = \psi(a)x_0a + a\psi(a)x_0 = \psi(a)(x_0a + ax_0)$ (**). Comparing (*) and (**), we find that $\psi(a^2)x_0 = \psi(a)(ax_0 + x_0a)$. If $\psi(a) \neq 0$, then $ax_0 + x_0a = \frac{\psi(a^2)}{\psi(a)}x_0$. But if $\psi(a) = 0$, then we have

$$\begin{split} \psi(ab + ba)x_0 &= d_1(ab + ba) \\ &= d_1(a)b + ad_1(b) + d_1(b)a + bd_1(a) \\ &= \psi(a)x_0b + a\psi(b)x_0 + \psi(b)x_0a + b\psi(a)x_0 \\ &= ax_0 + x_0a. \end{split}$$

It means that $ax_0 + x_0 a$ is a scalar multiple of x_0 for any a in \mathcal{A} . Next, it will be shown that $x_0^2 = 0$. Suppose that $\psi(x_0) = 0$. We have $\psi(b^2)x_0 = d_1(b^2) = d_1(b)b + bd_1(b) = \psi(b)x_0b + b\psi(b)x_0 = x_0b + bx_0$. Applying d_1 on this equality and then using the fact that $d_1(x_0) = \psi(x_0)x_0 = 0$, we obtain that $x_0^2 = 0$. Now, suppose $\psi(x_0) \neq 0$. We therefore have

$$\psi(x_0^2)x_0 = d_1(x_0^2) = d_1(x_0)x_0 + x_0d_1(x_0) = 2\psi(x_0)x_0^2.$$
(2)

If $\psi(x_0^2) = 0$, then it follows from previous equality that $x_0^2 = 0$. Assume that $\psi(x_0^2) \neq 0$; so $x_0^2 = \frac{\psi(x_0^2)}{2\psi(x_0)}x_0$. Simplifying the notation, we put $\lambda = \frac{\psi(x_0^2)}{2\psi(x_0)}$. Replacing x_0^2 by λx_0 in $2\psi(x_0)x_0^2 = d_1(x_0^2)$, we have $2\psi(x_0)\lambda x_0 = \lambda d_1(x_0) = \lambda\psi(x_0)x_0$. Since $\psi(x_0) \neq 0$, $\lambda x_0 = 0$ and it implies that either $\lambda = 0$ or $x_0 = 0$, which is a contradiction. This contradiction shows that $\psi(x_0^2) = 0$ and by using (2) it is obtained that $x_0^2 = 0$. We know that $x_0a + ax_0 = \mu x_0$, where $\mu \in \mathbb{C}$. Multiplying the previous equality by x_0 and using the fact that $x_0^2 = 0$, we see that $x_0ax_0 = 0$ for any a in \mathcal{A} . Since \mathcal{A} is semi-prime, $x_0 = 0$. From this contradiction we deduce that $d_1 = 0$. Hence, $d_2(p) = d_2(p)p + pd_2(p) + (d_1(p))^2 = d_2(p)p + pd_2(p)$ for every $p \in \mathcal{P}_{\mathcal{A}}$. Reusing

Lemma 1, we get d_2 is a Jordan derivation. Now, by a procedure similar to what was described concerning d_1 , we obtain that $d_2 = 0$. Consequently, by continuing this procedure, we prove that $d_n = 0$ for all $n \ge 1$.

An immediate but noteworthy corollary to Theorem 1 is:

Corollary 1 Let \mathcal{A} be a semi-prime Banach *-algebra such that $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$. If dim $(\bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi) \leq 1$, then every bounded linear mapping $d : \mathcal{A} \to \mathcal{A}$ satisfying d(p) = d(p)p + pd(p) for all $p \in \mathcal{P}_{\mathcal{A}}$, is identically zero.

Proof. First, let us define a sequence $\{d_n\}$ of linear mappings on \mathcal{A} by $d_0 = I$ and $d_n = \frac{d^n}{n!}$, where I is the identity mapping on \mathcal{A} . A straightforward verification shows that $d_n(p) = \sum_{k=0}^n d_{n-k}(p)d_k(p)$ for all $p \in \mathcal{P}_{\mathcal{A}}$. We have

$$\|d_n\| = \|\frac{d^n}{n!}\| \le \frac{1}{n!} \|d\|^n < \sum_{n=0}^{\infty} \frac{\|d\|^n}{n!} = e^{\|d\|}$$

for each non-negative integer n. It means that $\{d_n\}$ is a uniformly bounded prehigher derivation. It follows from Theorem 1 that $0 = d_1 = d$. Furthermore, Lemma 1 implies that every bounded Jordan derivation from \mathcal{A} into \mathcal{A} is zero.

Remark 1 Let $\{d_n\}$ be a higher derivation on an algebra \mathcal{A} with $d_0 = I$, where I is the identity mapping on \mathcal{A} . Based on Proposition 2.1 of [7] there is a sequence $\{\delta_n\}$ of derivations on \mathcal{A} such that

$$(n+1)d_{n+1} = \sum_{k=0}^n \delta_{k+1}d_{n-k}$$

for each non-negative integer n. Therefore, we have

$$\begin{split} &d_0 = I, \\ &d_1 = \delta_1, \\ &2d_2 = \delta_1 d_1 + \delta_2 d_0 = \delta_1 \delta_1 + \delta_2, \\ &d_2 = \frac{1}{2} \delta_1^2 + \frac{1}{2} \delta_2, \\ &3d_3 = \delta_1 d_2 + \delta_2 d_1 + \delta_3 d_0 = \delta_1 (\frac{1}{2} \delta_1^2 + \frac{1}{2} \delta_2) + \delta_2 \delta_1 + \delta_3, \\ &d_3 = \frac{1}{6} \delta_1^3 + \frac{1}{6} \delta_1 \delta_2 + \frac{1}{3} \delta_2 \delta_1 + \frac{1}{3} \delta_3. \end{split}$$

Now, assume that $\{d_n\}$ is a bounded higher derivation (i.e., d_n is a bounded linear map for every non-negative integer n). Obviously, $\delta_1 = d_1$ is bounded. Hence, $\delta_2 = 2d_2 - \delta_1^2$ is also bounded. Based on the d_3 formula, we have $\delta_3 = 3d_3 - \frac{1}{2}\delta_1^3 - \frac{1}{2}\delta_1\delta_2 - \delta_2\delta_1$. Using the boundedness of d_3 , δ_1 and δ_2 , we obtain that δ_3 is a bounded derivation. In the next step, we will show that every δ_n is a bounded derivation for every $n \in \mathbb{N}$. To reach this aim, we use induction on n. According to the above-mentioned discussion, δ_1 , δ_2 and δ_3 are bounded derivations. Now, suppose that δ_k is a bounded derivation for $k \leq n$. We will show that δ_{n+1} is also a bounded derivation. Based on the proof of Theorem 2.3 in [7], we have

$$\delta_{n+1} = (n+1)d_{n+1} - \sum_{i=2}^{n+1} \left(\sum_{\sum_{j=1}^{i} r_j = n+1} (n+1)a_{r_1,\dots,r_i}\delta_{r_1}\dots\delta_{r_i} \right), \quad (3)$$

where the inner summation is taken over all positive integers r_j with $\sum_{j=1}^{i} r_j = n + 1$. From $\sum_{j=1}^{i} r_j = r_1 + r_2 + \ldots + r_i = n + 1$ along with the condition that r_j is a positive integer for every $1 \leq j \leq i$, we find that $1 \leq r_j \leq n$ for every $1 \leq j \leq i$. Since we are assuming d_n and δ_k are bounded linear mappings for all non-negative integer n and $k \leq n$, it follows from (3) that δ_{n+1} is a bounded derivation.

We are now ready for Corollary 2.

Corollary 2 Let \mathcal{A} be a semi-prime Banach *-algebra such that $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$, and $\{d_n\}$ be a bounded higher derivation from \mathcal{A} into \mathcal{A} . If dim $(\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi) \leq 1$, then $d_n = 0$ for all $n \in \mathbb{N}$.

Proof. Let $\{d_n\}$ be the above-mentioned higher derivation. According to Theorem 2.3 of [7] there exists a sequence $\{\delta_n\}$ of derivations on \mathcal{A} such that

$$d_n = \sum_{i=1}^n \big(\sum_{\sum_{j=1}^i r_j = n} \big(\prod_{j=1}^i \frac{1}{r_j + \ldots + r_i}\big)\delta_{r_1}\ldots \delta_{r_i}\big)$$

, where the inner summation is taken over all positive integers r_j with $\sum_{j=1}^{\iota} r_j = n$. It follows from Remark 1 that δ_n is a bounded derivation for every positive integer n. At this point, Corollary 1 completes the proof.

Corollary 3 Let \mathcal{A} be a semi-prime Banach *-algebra such that $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$. If $\dim(\bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi) \leq 1$, then \mathcal{A} is commutative.

Proof. Let x_0 be a non-zero arbitrary fixed element of \mathcal{A} . Define $d_{x_0} : \mathcal{A} \to \mathcal{A}$ by $d_{x_0}(\mathfrak{a}) = \mathfrak{a} x_0 - x_0 \mathfrak{a}$. Obviously, d_{x_0} is a bounded derivation. It follows from Corollary 1 that $d_{x_0}(\mathfrak{a}) = 0$, i.e. $\mathfrak{a} x_0 = x_0 \mathfrak{a}$ for all $\mathfrak{a} \in \mathcal{A}$. Since x_0 is arbitrary, \mathcal{A} is commutative. \Box

The above results lead us to the following conjecture:

Conjecture 1 Let \mathcal{A} be a semi-prime Banach *-algebra such that $\overline{\mathcal{O}_{\mathcal{A}}} = \mathcal{S}_{\mathcal{A}}$. If dim $(\bigcap_{\phi \in \Phi_{\mathcal{A}}} \ker \phi) < \infty$, then every bounded derivation from \mathcal{A} into \mathcal{A} is zero.

Acknowledgements

The author is greatly indebted to the referee for his/her valuable suggestions and careful reading of the paper.

References

- M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra, 152 (1992), 454–462.
- [2] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Series, 24, Oxford University Press, New York, 2000.
- [3] A. Hosseini, M. Hassani, A. Niknam, On the Range of a Derivation, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014), 111–115.
- [4] G. H. Kim, A result concerning derivations in noncommutative Banach algebras, Sci. Math. Jpn., 4 (2001), 193–196.
- [5] I. Kaplansky, Projections in Banach Algebras, Ann. of Math., 53 (2) (1951), 235–249.
- [6] M. Mathieu, Where to find the image of a derivation, Banach Center Publ., 30 (1994), 237–249.
- [7] M. Mirzavaziri, Characterization of higher derivations on algebras, *Comm. Algebra*, **38** (3) (2010), 981–987.
- [8] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100.

- [9] N. Shahzad, Jordan and Left Derivations on Locally C*-algebras, Southeast Asian Bull. Math., 31 (2007), 1183–1190.
- [10] K. Saitô, J. D. Maitland Wright, On Defining AW*-algebras and rickart C*-algebras, arXiv: 1501.02434v1 [math. OA] 11 Jan 2015.
- [11] I. M. Singer, J. Wermer, Derivations on commutative normed algebras, Math. Ann., 129 (1955), 260–264.
- [12] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc., 116 (1992), 877–884.

Received: April 26, 2017