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Abstract. Let A be a Banach ∗-algebra. By SA we denote the set
of all self-adjoint elements of A and by OA we denote the set of those
elements in A which can be represented as finite real-linear combinations
of mutually orthogonal projections. The main purpose of this paper is to
prove the following result:
Suppose that OA = SA and {dn} is a sequence of uniformly bounded
linear mappings satisfying dn(p) =

∑n
k=0 dn−k(p)dk(p), where p is an

arbitrary projection in A. Then dn(A) ⊆
⋂
ϕ∈ΦA

kerϕ for each n ≥ 1.
In particular, if A is semi-prime and further, dim(

⋂
ϕ∈ΦA

kerϕ) ≤ 1,
then dn = 0 for each n ≥ 1.

1 Introduction and preliminaries

In this paper, A represents a Banach ∗-algebra over the complex field C. If A is
unital, then 1 will stand for its unit element. Moreover, A is called semi-prime
if aAa = {0} implies that a = 0. A non-zero linear functional ϕ is called a
character if ϕ(ab) = ϕ(a)ϕ(b) for every a, b ∈ A. By ΦA we denote the set
of all characters on A. It is well known that, kerϕ the kernel of ϕ is a maximal
ideal of A, where ϕ is an arbitrary element of ΦA. We denote the set of all self-
adjoint projections inA by PA (i.e., PA = {p ∈ A | p2 = p, p∗ = p}), and by SA
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we denote the set of all self-adjoint elements of A (i.e., SA = {a ∈ A | a∗ = a}).
Next, the set of these elements in A which can be represented as finite real-
linear combinations of mutually orthogonal self-adjoint projections, is denoted
by OA. Hence, we have PA ⊆ OA ⊆ SA. Note that if A is a von Neumann
algebra, then OA is norm dense in SA. More generally, the same is true for
AW∗-algebras. Recall that a C∗-algebra is a Banach ∗-algebra in which, for
every a, ‖a∗a‖ = ‖a‖2. A W∗-algebra is a weakly closed self-adjoint algebra of
operators on a Hilbert space, and an AW∗-algebra is a C∗-algebra satisfying:
i) In the partially ordered set of projections, any set of orthogonal projections
has a least upper bound (LUB),
ii) Any maximal commutative self-adjoint subalgebra is generated by its self-
adjoint projections. That is, it is equal to the smallest closed subalgebra con-
taining its self-adjoint projections.
When A is an AW∗-algebras it can be proved that each maximal commutative
∗-subalgebra of A is monotone complete and A is unital.
The above-mentioned definitions and results can all be found in [1], [5] and
[10] and reader is referred to this sources for more general information on W∗-
algebras and AW∗-algebras. In this paper, similar to Brešar [1], the author’s
attention is concentrated on Banach ∗-algebras in which OA is norm dense in
SA, i.e. OA = SA.

A linear mapping d : A→ A is called a derivation if it satisfies the Leibnitz’s
rule d(ab) = d(a)b+ ad(b) for all a, b ∈ A. An additive mapping d : A→ A
is called a Jordan derivation if d(a2) = d(a)a + ad(a) holds for all a ∈ A. If
we define a sequence {dn} of linear mappings on A by d0 = I and dn = dn

n! ,
where I is the identity mapping on A, then the Leibnitz’s rule ensures us that
dn’s satisfy the condition

dn(ab) =

n∑
k=0

dn−k(a)dk(b) (1)

for each a, b ∈ A and each non-negative integer n. This motivates us to con-
sider the sequences {dn} of linear mappings on an algebraA satisfying (1). Such
a sequence is called a higher derivation. A sequence {dn} of linear mappings on
an algebra A satisfying dn(p) =

∑n
k=0 dn−k(p)dk(p), where p is an arbitrary

element of PA, is called a pre-higher derivation. A pre-higher derivation {dn}

is called uniformly bounded if there exists an M > 0 such that ‖dn‖ ≤ M

for each n. In current note, the focus of attention is on uniformly bounded
pre-higher derivations. The question under which conditions all derivations
are zero on a given ∗-algebra have attracted much attention of authors (for
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instance, see [3], [4], [6], [8], [9], and [12]). In this paper, we also concentrate
on this topic. Let us provide a background of our study. In 1955, Singer and
Wermer [11] achieved a fundamental result which started investigation into
the range of derivations on Banach algebras. The result states that if A is a
commutative Banach algebra and d : A → A is a bounded derivation, then
d(A) ⊆ rad(A), where rad(A) denotes the Jacobson radical of A. It is evi-
dent that if A is semi-simple, i.e. rad(A) = {0}, then d is zero. In this paper,
we prove that there is not any non-zero bounded derivation from A into A
without considering the commutativity and semi-simplicity assumptions for
A. Indeed, we prove the following result:
Suppose that A is a semi-prime Banach ∗-algebra so that OA is norm dense in
SA, and d : A→ A is a bounded derivation. If dim(

⋂
ϕ∈ΦA

kerϕ) ≤ 1, then d
is identically zero. In this case, it is possible that rad(A) 6= {0}, and it means
that A is not semi-simple.

Let {dn} be a uniformly bounded pre-higher derivation (i.e., ‖dn‖ ≤M for
some positive number M) and p be an arbitrary element of PA. Then, the
function F given by F(t) =

∑∞
n=0 dn(p)t

n is well defined for |t| < 1. Indeed,

‖
∞∑
n=0

dn(p)t
n‖ ≤

∞∑
n=0

‖dn(p)tn‖ =
∞∑
n=0

‖dn(p)‖|tn|

≤
∞∑
n=0

‖dn‖‖p‖|tn| ≤
∞∑
n=0

M‖p‖|tn| <∞.
Moreover, the m-th derivative of F exists and is given by the formula
F(m)(t) :=

∑∞
n=m

n!
(n−m)!dn(p)t

n−m. There is a good match between F(t) and

the uniformly bounded pre-higher derivation {dn}. Using F(t) the following
main result is proved:
Let A be a Banach ∗-algebra such that OA = SA. Suppose that {dn} is a
uniformly bounded pre-higher derivation. Then, dn(A) ⊆

⋂
ϕ∈ΦA

kerϕ for
each n ≥ 1. In particular, if A is semi-prime and further, dim(

⋂
ϕ∈ΦA

kerϕ) ≤
1, then dn = 0 for each n ≥ 1.

2 Results and proofs

Before proving the main results, we present the following lemma:

Lemma 1 [[1], Lemma 1] Let A be a normed complex ∗-algebra. If a linear
mapping δ of A into a normed A-bimodule M satisfies δ(p) = δ(p)p+ pδ(p)
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for all p ∈ PA, then δ(w2) = δ(w)w+wδ(w) holds for all w ∈ OA. Moreover,
if OA is dense in SA and δ is continuous, then δ is a Jordan derivation.

Note that each member of ΦA is continuous (see [2]). Since the case ΦA = ∅
makes everything trivial, so we will assume that ΦA is a non-empty set.

Theorem 1 Let A be a Banach ∗-algebra such that OA = SA. Suppose that
{dn} be a uniformly bounded pre-higher derivation. Then dn(A) ⊆

⋂
ϕ∈ΦA

kerϕ
for each n ≥ 1. In particular, if A is semi-prime and
dim(

⋂
ϕ∈ΦA

kerϕ) ≤ 1, then dn = 0 for each n ≥ 1.

Proof. Let p be an arbitrary element of PA. We know that the function
F(t) =

∑∞
n=0 dn(p)t

n is well-defined for |t| < 1. Note that

F(t)F(t) =

( ∞∑
n=0

dn(p)t
n

)( ∞∑
n=0

dn(p)t
n

)
=

∞∑
n=0

(
n∑
k=0

dn−k(p)dk(p)

)
tn

=

∞∑
n=0

dn(p)t
n = F(t).

Hence, ϕ(F(t)) = 0 or ϕ(F(t)) = 1, where ϕ is an arbitrary fixed element of
ΦA. LetG(t) := ϕ(F(t)). We haveG(t) = ϕ(

∑∞
n=0 dn(p)t

n) =
∑∞
n=0ϕ(dn(p))t

n.
It is observed that G(t) is a power series in C. Thus, the m-th derivative of
G exists and is given by the formula G(m)(t) :=

∑∞
n=m

n!
(n−m)!ϕ(dn(p))t

n−m.
Since the function G is constant, we have
G(m)(t) = 0 for every m ∈ N\{0} and every |t| < 1. We have ϕ(d1(p)) +
2ϕ(d2(p))t+ 3ϕ(d3(p))t

2 + 4ϕ(d4(p))t
3 + . . . = G(1)(t) = 0. Putting t = 0 in

the former equation, we obtain that ϕ(d1(p)) = 0. Using an argument similar
to what was described concerning ϕ(d1(p)), we conclude that ϕ(d2(p)) = 0.
By continuing this procedure, we prove that ϕ(dn(p)) = 0 for all n ≥ 1. Our
next task is to show that ϕ(dn(a)) = 0 for every a ∈ A. Let x be an ar-
bitrary element of OA. Hence, x =

∑m
i=1 ripi, where p1, p2, . . . , pm are mutu-

ally orthogonal self-adjoint projections and r1, r2, . . . , rm are real numbers. We
have ϕ(dn(x)) = ϕ(dn(

∑m
i=1 ripi)) =

∑m
i=1 riϕ(dn(pi)) = 0. Since OA = SA,

ϕ(dn(a)) = 0 for every a ∈ SA. It is well-known that each a in A can be repre-
sented as a = a1 + ia2, a1, a2 ∈ SA; therefore, ϕ(dn(a)) = ϕ(dn(a1 + ia2)) =
ϕ(dn(a1)) + iϕ(dn(a2)) = 0 for all n ≥ 1, a ∈ A and ϕ ∈ ΦA. It means
that dn(A) ⊆

⋂
ϕ∈ΦA

kerϕ. Now, suppose that dim(
⋂
ϕ∈ΦA

kerϕ) ≤ 1. It
is obvious that if dim(

⋂
ϕ∈ΦA

kerϕ) = 0, then dn(A) = {0} for all n ≥ 1.
Assume that dim(

⋂
ϕ∈ΦA

kerϕ) = 1. First we reduce our discussion to the
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case d1 = 0. Since dim(
⋂
ϕ∈ΦA

kerϕ) = 1, there exists a non-zero element
x0 of A such that

⋂
ϕ∈ΦA

kerϕ = {αx0 | α ∈ C}. Let a0 be an element
of A so that d1(a0) 6= 0. We have d1(a0) = ψ(a0)x0, where ψ is a func-
tion from A into the complex numbers. Having put b = 1

ψ(a0)
a0, we obtain

d1(b) = d1(
1

ψ(a0)
a0) =

1
ψ(a0)

ψ(a0)x0 = x0 and it implies that ψ(b) = 1. First
we will show ax0 + x0a is a scalar multiple of x0 for any a in A. Let a be an
element of A. Then, d1(a

2) = ψ(a2)x0 (*). Lemma 1 is just what we need
to tell us that d1 is a Jordan derivation, i.e. d1(a

2) = d1(a)a+ ad1(a) for all
a ∈ A. Using the fact that d1 is a Jordan derivation and the identity ab+ba =
(a+ b)2 − a2 − b2, we get d1(ab+ ba) = d1(a)b+ ad1(b) + d1(b)a+ bd1(a)
for all a, b ∈ A. Since d1 is a Jordan derivation and dim(

⋂
ϕ∈ΦA

kerϕ) = 1,

we have d1(a
2) = d1(a)a + ad1(a) = ψ(a)x0a + aψ(a)x0 = ψ(a)(x0a + ax0)

(**). Comparing (*) and (**) , we find that ψ(a2)x0 = ψ(a)(ax0 + x0a). If

ψ(a) 6= 0, then ax0 + x0a = ψ(a2)
ψ(a) x0. But if ψ(a) = 0, then we have

ψ(ab+ ba)x0 = d1(ab+ ba)

= d1(a)b+ ad1(b) + d1(b)a+ bd1(a)

= ψ(a)x0b+ aψ(b)x0 +ψ(b)x0a+ bψ(a)x0

= ax0 + x0a.

It means that ax0 + x0a is a scalar multiple of x0 for any a in A. Next, it will
be shown that x20 = 0. Suppose that ψ(x0) = 0. We have ψ(b2)x0 = d1(b

2) =
d1(b)b + bd1(b) = ψ(b)x0b + bψ(b)x0 = x0b + bx0. Applying d1 on this
equality and then using the fact that d1(x0) = ψ(x0)x0 = 0, we obtain that
x20 = 0. Now, suppose ψ(x0) 6= 0. We therefore have

ψ(x20)x0 = d1(x
2
0) = d1(x0)x0 + x0d1(x0) = 2ψ(x0)x

2
0. (2)

If ψ(x20) = 0, then it follows from previous equality that x20 = 0. Assume that

ψ(x20) 6= 0; so x20 =
ψ(x20)

2ψ(x0)
x0. Simplifying the notation, we put λ =

ψ(x20)

2ψ(x0)
.

Replacing x20 by λx0 in 2ψ(x0)x
2
0 = d1(x

2
0), we have 2ψ(x0)λx0 = λd1(x0) =

λψ(x0)x0. Since ψ(x0) 6= 0, λx0 = 0 and it implies that either λ = 0 or
x0 = 0, which is a contradiction. This contradiction shows that ψ(x20) = 0

and by using (2) it is obtained that x20 = 0. We know that x0a + ax0 = µx0,
where µ ∈ C. Multiplying the previous equality by x0 and using the fact
that x20 = 0, we see that x0ax0 = 0 for any a in A. Since A is semi-prime,
x0 = 0. From this contradiction we deduce that d1 = 0. Hence, d2(p) =
d2(p)p + pd2(p) + (d1(p))

2 = d2(p)p + pd2(p) for every p ∈ PA. Reusing
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Lemma 1, we get d2 is a Jordan derivation. Now, by a procedure similar to
what was described concerning d1, we obtain that d2 = 0. Consequently, by
continuing this procedure, we prove that dn = 0 for all n ≥ 1. �

An immediate but noteworthy corollary to Theorem 1 is:

Corollary 1 Let A be a semi-prime Banach ∗-algebra such that OA = SA.
If dim(

⋂
ϕ∈ΦA

kerϕ) ≤ 1, then every bounded linear mapping d : A → A
satisfying d(p) = d(p)p+ pd(p) for all p ∈ PA, is identically zero.

Proof. First, let us define a sequence {dn} of linear mappings on A by d0 =
I and dn = dn

n! , where I is the identity mapping on A. A straightforward
verification shows that dn(p) =

∑n
k=0 dn−k(p)dk(p) for all p ∈ PA. We have

‖dn‖ = ‖
dn

n!
‖ ≤ 1

n!
‖d‖n <

∞∑
n=0

‖d‖n

n!
= e‖d‖

for each non-negative integer n. It means that {dn} is a uniformly bounded pre-
higher derivation. It follows from Theorem 1 that 0 = d1 = d. Furthermore,
Lemma 1 implies that every bounded Jordan derivation from A into A is
zero. �

Remark 1 Let {dn} be a higher derivation on an algebra A with d0 = I,
where I is the identity mapping on A. Based on Proposition 2.1 of [7] there is
a sequence {δn} of derivations on A such that

(n+ 1)dn+1 =

n∑
k=0

δk+1dn−k

for each non-negative integer n. Therefore, we have

d0 = I,

d1 = δ1,

2d2 = δ1d1 + δ2d0 = δ1δ1 + δ2,

d2 =
1

2
δ21 +

1

2
δ2,

3d3 = δ1d2 + δ2d1 + δ3d0 = δ1(
1

2
δ21 +

1

2
δ2) + δ2δ1 + δ3,

d3 =
1

6
δ31 +

1

6
δ1δ2 +

1

3
δ2δ1 +

1

3
δ3.
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Now, assume that {dn} is a bounded higher derivation (i.e., dn is a bounded
linear map for every non-negative integer n). Obviously, δ1 = d1 is bounded.
Hence, δ2 = 2d2 − δ21 is also bounded. Based on the d3 formula, we have
δ3 = 3d3 −

1
2δ
3
1 −

1
2δ1δ2 − δ2δ1. Using the boundedness of d3, δ1 and δ2, we

obtain that δ3 is a bounded derivation. In the next step, we will show that
every δn is a bounded derivation for every n ∈ N. To reach this aim, we use
induction on n. According to the above-mentioned discussion, δ1, δ2 and δ3 are
bounded derivations. Now, suppose that δk is a bounded derivation for k ≤ n.
We will show that δn+1 is also a bounded derivation. Based on the proof of
Theorem 2.3 in [7], we have

δn+1 = (n+ 1)dn+1 −

n+1∑
i=2

( ∑
∑i
j=1 rj=n+1

(n+ 1)ar1,...,riδr1 . . . δri

)
, (3)

where the inner summation is taken over all positive integers rj with
∑i
j=1 rj =

n+ 1. From
∑i
j=1 rj = r1 + r2 + . . .+ ri = n+ 1 along with the condition that

rj is a positive integer for every 1 ≤ j ≤ i, we find that 1 ≤ rj ≤ n for every
1 ≤ j ≤ i. Since we are assuming dn and δk are bounded linear mappings
for all non-negative integer n and k ≤ n, it follows from (3) that δn+1 is a
bounded derivation.

We are now ready for Corollary 2.

Corollary 2 Let A be a semi-prime Banach ∗-algebra such that OA = SA,
and {dn} be a bounded higher derivation from A into A.
If dim(

⋂
ϕ∈ΦA

kerϕ) ≤ 1, then dn = 0 for all n ∈ N.

Proof. Let {dn} be the above-mentioned higher derivation. According to The-
orem 2.3 of [7] there exists a sequence {δn} of derivations on A such that

dn =

n∑
i=1

( ∑
∑i
j=1 rj=n

( i∏
j=1

1

rj + . . .+ ri

)
δr1 . . . δri

)
, where the inner summation is taken over all positive integers rj with

∑i
j=1 rj =

n. It follows from Remark 1 that δn is a bounded derivation for every positive
integer n. At this point, Corollary 1 completes the proof. �

Corollary 3 Let A be a semi-prime Banach ∗-algebra such that OA = SA. If
dim(

⋂
ϕ∈ΦA

kerϕ) ≤ 1, then A is commutative.
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Proof. Let x0 be a non-zero arbitrary fixed element of A. Define dx0 : A→ A
by dx0(a) = ax0−x0a. Obviously, dx0 is a bounded derivation. It follows from
Corollary 1 that dx0(a) = 0, i.e. ax0 = x0a for all a ∈ A. Since x0 is arbitrary,
A is commutative. �

The above results lead us to the following conjecture:

Conjecture 1 Let A be a semi-prime Banach ∗-algebra such that OA = SA.
If dim(

⋂
ϕ∈ΦA

kerϕ) < ∞, then every bounded derivation from A into A is
zero.
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