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Abstract. Let A be a Banach x-algebra. By S4 we denote the set
of all self-adjoint elements of A and by O 4 we denote the set of those
elements in A which can be represented as finite real-linear combinations
of mutually orthogonal projections. The main purpose of this paper is to
prove the following result:

Suppose that O4 = S4 and {d,} is a sequence of uniformly bounded
linear mappings satisfying dn(p) = Y 1_y dn—k(p)dk(p), where p is an
arbitrary projection in A. Then dn(A) C (\,cq , ker ¢ for each n > 1.
In particular, if A is semi-prime and further, dim(ﬂgpequ kerp) < 1,
then d, =0 for each n > 1.

1 Introduction and preliminaries

In this paper, A represents a Banach x-algebra over the complex field C. If A is
unital, then 1 will stand for its unit element. Moreover, A is called semi-prime
if aAa = {0} implies that a = 0. A non-zero linear functional ¢ is called a
character if @(ab) = @(a)@(b) for every a,b € A. By ® 4 we denote the set
of all characters on A. It is well known that, kere the kernel of ¢ is a maximal
ideal of A, where @ is an arbitrary element of @ 4. We denote the set of all self-
adjoint projections in A by P4 (i.e., P4 ={p € A|p? =p, p* =p}), and by S4
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we denote the set of all self-adjoint elements of A (i.e., S4 ={a € A| a* = a}).
Next, the set of these elements in .4 which can be represented as finite real-
linear combinations of mutually orthogonal self-adjoint projections, is denoted
by O 4. Hence, we have P4 C O4 C S4. Note that if A is a von Neumann
algebra, then O 4 is norm dense in S 4. More generally, the same is true for
AW?*-algebras. Recall that a C*-algebra is a Banach x-algebra in which, for
every a, ||[a*al| = ||a||*>. A W*-algebra is a weakly closed self-adjoint algebra of
operators on a Hilbert space, and an AW*-algebra is a C*-algebra satisfying:
i) In the partially ordered set of projections, any set of orthogonal projections
has a least upper bound (LUB),

ii) Any maximal commutative self-adjoint subalgebra is generated by its self-
adjoint projections. That is, it is equal to the smallest closed subalgebra con-
taining its self-adjoint projections.

When A is an AW*-algebras it can be proved that each maximal commutative
x-subalgebra of A is monotone complete and A is unital.

The above-mentioned definitions and results can all be found in [1], [5] and
[10] and reader is referred to this sources for more general information on W*-
algebras and AW*-algebras. In this paper, similar to Bresar [1], the author’s
attention is concentrated on Banach *-algebras in which O 4 is norm dense in
Sy, ie. Oq=384.

A linear mapping d : A — A is called a derivation if it satisfies the Leibnitz’s
rule d(ab) = d(a)b + ad(b) for all a,b € A. An additive mapping d: A — A
is called a Jordan derivation if d(a?) = d(a)a + ad(a) holds for all a € A. If
we define a sequence {d,} of linear mappings on A by dy = I and d,, = %l,
where I is the identity mapping on A, then the Leibnitz’s rule ensures us that
dn’s satisfy the condition

dn(ab) = Y dn x(a)di(b) (1)
k=0

for each a,b € A and each non-negative integer n. This motivates us to con-
sider the sequences {dy} of linear mappings on an algebra A satisfying (1). Such
a sequence is called a higher derivation. A sequence {d,} of linear mappings on
an algebra A satisfying dn(p) = ) }_o dn—k(p)dx(p), where p is an arbitrary
element of P4, is called a pre-higher derivation. A pre-higher derivation {d;,}
is called uniformly bounded if there exists an M > 0 such that ||d,|| < M
for each n. In current note, the focus of attention is on uniformly bounded
pre-higher derivations. The question under which conditions all derivations
are zero on a given *-algebra have attracted much attention of authors (for
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instance, see [3], [4], [6], [8], [9], and [12]). In this paper, we also concentrate
on this topic. Let us provide a background of our study. In 1955, Singer and
Wermer [11] achieved a fundamental result which started investigation into
the range of derivations on Banach algebras. The result states that if A is a
commutative Banach algebra and d : A — A is a bounded derivation, then
d(A) C rad(A), where rad(A) denotes the Jacobson radical of A. It is evi-
dent that if A is semi-simple, i.e. rad(A) = {0}, then d is zero. In this paper,
we prove that there is not any non-zero bounded derivation from A into A
without considering the commutativity and semi-simplicity assumptions for
A. Indeed, we prove the following result:
Suppose that A is a semi-prime Banach x-algebra so that O 4 is norm dense in
S4,and d: A — A is a bounded derivation. If dim(ﬂ(peq)A ker @) <1, then d
is identically zero. In this case, it is possible that rad(A) # {0}, and it means
that A is not semi-simple.

Let {dn} be a uniformly bounded pre-higher derivation (i.e., ||[dn|| < M for
some positive number M) and p be an arbitrary element of P4. Then, the
function F given by F(t) = 3 2, dn(p)t™ is well defined for |t| < 1. Indeed,

1Y da@)t™ <D dn(@)t™] =D lldn(p)llIt"]
n=0 n=0 n=0

<D dallliplliE™ < >~ Mipllit"] < oo.
n=0 n=0

Moreover, the m-th derivative of F exists and is given by the formula

Fiml(t) == Yo (nfiin)!dn(p)t“_m. There is a good match between F(t) and
the uniformly bounded pre-higher derivation {d,}. Using F(t) the following
main result is proved:

Let A be a Banach x-algebra such that O4 = S4. Suppose that {d,} is a
uniformly bounded pre-higher derivation. Then, d,(A) C ﬂ(pGCDA ker ¢ for
each n > 1. In particular, if A is semi-prime and further, dim(|) pe , ker @) <
1, then d,, =0 for each n > 1.

2 Results and proofs
Before proving the main results, we present the following lemma:

Lemma 1 [[1], Lemma 1] Let A be a normed complex x-algebra. If a linear
mapping & of A into a normed A-bimodule M satisfies 8(p) = d(p)p + pd(p)
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for allp € P4, then d(W?) = 5(w)w+wd(w) holds for allw € O 4. Moreover,
if O4 is dense in S4 and b is continuous, then d is a Jordan derivation.

Note that each member of @ 4 is continuous (see [2]). Since the case ® 4 =0
makes everything trivial, so we will assume that @ 4 is a non-empty set.

Theorem 1 Let A be a Banach x-algebra such that O 4 = S4. Suppose that
{dn} be a uniformly bounded pre-higher derivation. Then d(A) C ﬂ(pedDA ker ¢
for each n > 1. In particular, if A is semi-prime and

dim(ﬂ(peq)A ker @) < 1, then dn, =0 for each n > 1.

Proof. Let p be an arbitrary element of P4. We know that the function
F(t) =Y 7 dn(p)t"™ is well-defined for [t| < 1. Note that

(Z dn(p)t“> (Z dn(p)tn) -y (Z dnk(p)dk(p)>t“
n=0 n=0 k=0

n=0

F(t)F(t)

Y da(p)t™ = F(v).

n=0

Hence, @(F(t)) = 0 or @(F(t)) = 1, where ¢ is an arbitrary fixed element of
@ 4. Let G(t) := @(F(t)). Wehave G(t) = @(}_22, dn(p)t) = Y32, @(dn(p))t™
It is observed that G(t) is a power series in C. Thus, the m-th derivative of
G exists and is given by the formula G™(t) :== ¥ %° (ni‘iin]l(p(dn(p))t“_m.
Since the function G is constant, we have

GM(t) = 0 for every m € N\{0} and every [t| < 1. We have @(d;(p)) +
20(da(p))t + 3@(dz(p))t2 +4e(ds(p))t3 +... = G (t) = 0. Putting t = 0 in
the former equation, we obtain that @(d;(p)) = 0. Using an argument similar
to what was described concerning @(d;(p)), we conclude that ¢@(d(p)) = 0.
By continuing this procedure, we prove that ¢@(dn(p)) =0 for all n > 1. Our
next task is to show that ¢(dn(a)) = O for every a € A. Let x be an ar-
bitrary element of O 4. Hence, x = Y, 1ipi, where py,p2,...,Ppm are mutu-
ally orthogonal self-adjoint projections and 71,72, ..., Ty are real numbers. We
have @(dn(x)) = @(dn (S ripi)) = X i (dn(pi)) = 0. Since O4 = Sa,
@(dn(a)) =0 for every a € S4. It is well-known that each a in A can be repre-
sented as a = aj +1iay, aj, a; € Sy; therefore, @(dn(a)) = @(dn(a; +iay)) =
@(dn(ar)) +i@p(dn(az)) =0 foralln > 1, a € A and ¢ € ®4. It means
that dn(A) C m(pECDA ker @. Now, suppose that dim(ﬂ(peq,A kero) < 1. It
is obvious that if dim(ﬂ(peq)A ker @) = 0, then d,(A) = {0} for all n > 1.

Assume that dim(ﬂ(peq)A ker @) = 1. First we reduce our discussion to the
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case d; = 0. Since dim(ﬂ(pE(DA ker @) = 1, there exists a non-zero element
xo of A such that m(pECDA kero = {axo | « € C}. Let ap be an element
of A so that dj(ag) # 0. We have d;(ap) = W(ag)xg, where 1 is a func-
tion from A into the complex numbers. Having put b = mao, we obtain
di(b) = di(Grezy @) = mll)(ao)xo — %o and it implies that P (b) = 1. First
we will show axo + xpa is a scalar multiple of xo for any a in A. Let a be an
element of A. Then, dj(a?) = P(a?)xy (*). Lemma 1 is just what we need
to tell us that d; is a Jordan derivation, i.e. di(a?) = dj(a)a + ad;(a) for all
a € A. Using the fact that d; is a Jordan derivation and the identity ab+ba =
(a+b)2—a?—b?, we get dj(ab+ba) = dj(a)b+ ad;(b) +d;(b)a+bdi(a)
for all a,b € A. Since d; is a Jordan derivation and dim(ﬂ(peq)A ker @) =1,
we have dj(a?) = dj(a)a + ad;(a) = P(a)xga + ap(a)xe = P(a)(xga + axg)
(**). Comparing (*) and (**) , we find that {(a?)xo = P(a)(axe + xpa). If

a) # 0, then axg + xpa = 15)(((1:)) (a) =0, then we have

P(ab + ba)xg = di(ab + ba)

= di(a)b+ ad;(b) + di(b)a+ bdi(a)

=1 (a)xeb + ap(b)xg +P(b)xpa + bp(a)xe
= axp + xpa.

It means that axp+ xpa is a scalar multiple of xo for any a in A. Next, it will
be shown that x(z) = 0. Suppose that P(xo) = 0. We have P(b?)xg = d;(b?) =
d;(b)b + bd;(b) = P(b)xeb + b (b)xg = xob + bxg. Applying d; on this
equality and then using the fact that dj(xo) = P(xg)xo = 0, we obtain that
xé = 0. Now, suppose P(xq) # 0. We therefore have

B(x§)x0 = di(x§) = di(x0)x0 + xod1(x0) = 2 (x0)x3- (2)

If ll)(Xé) =0, then it follows from previous equality that Xo = 0. Assume that
2
Zlfl)(()i?o))'
Replacing xé by Axo in Ztl)(xo)xo = d; (xo), we have 20 (xo)Axo = Ad;(xg) =
Mp(x0)x0. Since P(xg) # 0, Axg = 0 and it implies that either A = 0 or
xo = 0, which is a contradiction. This contradiction shows that tl)(xé) =0
and by using (2) it is obtained that x(z) = 0. We know that xpa + axg = uxo,
where © € C. Multiplying the previous equality by xo and using the fact
that xé = 0, we see that xpaxo = 0 for any a in A. Since A is semi-prime,
xo = 0. From this contradiction we deduce that d; = 0. Hence, d;(p) =

da(p)p + pda(p) + (di(p))* = da(p)p + pda(p) for every p € P4. Reusing

w(x%) % 0; so xé = 215)(( Xo. Simplifying the notation, we put A =
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Lemma 1, we get d, is a Jordan derivation. Now, by a procedure similar to
what was described concerning d;, we obtain that d, = 0. Consequently, by
continuing this procedure, we prove that d,, =0 for all n > 1. O

An immediate but noteworthy corollary to Theorem 1 is:

Corollary 1 Let A be a semi-prime Banach x-algebra such that O4 = S4.
If dim(ﬂ(peq)A ker @) < 1, then every bounded linear mapping d : A — A
satisfying d(p) = d(p)p + pd(p) for all p € P4, is identically zero.

Proof. First, let us define a sequence {d,} of linear mappings on A by dy =
I and dy = %, where [ is the identity mapping on A. A straightforward
verification shows that dn(p) = Y [_y dnx(p)dk(p) for all p € P4. We have

] o 4|
ldall = 1= 1F < Sl < > == clal
n=0

for each non-negative integer n. It means that {d,, } is a uniformly bounded pre-
higher derivation. It follows from Theorem 1 that 0 = d; = d. Furthermore,
Lemma 1 implies that every bounded Jordan derivation from A into A is
Z€ro. O

Remark 1 Let {d,} be a higher derivation on an algebra A with dog = 1,
where 1 is the identity mapping on A. Based on Proposition 2.1 of [7] there is
a sequence {dn} of derivations on A such that

n
M+ 1)dny = Z dkr1dnk
k=0

for each non-negative integer n. Therefore, we have

do =1,
d = 61)
2d; = 61dy + 62do = 8181 + &y,
1, 1
dz - 26] + 562,
1 1
3d3; = d1dy + 02d7 + d3dp = &4 (75% + =067) + 8287 + 83,

2 2
1

1 1 1
= 83+ =815, + = 58,81 + =83.
ds 61+612+321+33
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Now, assume that {dn} is a bounded higher derivation (i.e., dn is a bounded
linear map for every non-negative integer n). Obviously, &1 = d; is bounded.
Hence, 6, = 2d; — 6% is also bounded. Based on the d3 formula, we have
03 = 3d; — %6‘;’ — %6162 — 8281. Using the boundedness of dz, &1 and &), we
obtain that 83 is a bounded derivation. In the next step, we will show that
every by is a bounded derivation for every n € N. To reach this aim, we use
mnduction on n. According to the above-mentioned discussion, &1, 6, and b3 are
bounded derivations. Now, suppose that 0y is a bounded derivation for k < n.
We will show that dn11 is also a bounded derivation. Based on the proof of
Theorem 2.3 in [7], we have

n+1
6n+1:(n+1)dn+1—z< > (n+1)aﬁ,,,,,r.15ﬁ...5“), (3)

i=2 Z;‘:] Tj=n+1

where the inner summation is taken over all positive integers Ty with 2;21 T =
n+1. From Z}:] Ty =71 +72+...+ 1 =n+1 along with the condition that
Tj 48 a positive integer for every 1 <j < i, we find that 1 < 15 < n for every
1 < j < i. Since we are assuming dn and &¢ are bounded linear mappings
for all non-negative integer n and k < m, it follows from (3) that dn11 is a
bounded derivation.

We are now ready for Corollary 2.

Corollary 2 Let A be a semi-prime Banach *-algebra such that O 4 = Sy,
and {dn} be a bounded higher derivation from A into A.
If dim(ﬂ(pe(DA ker @) <1, then dy =0 for alln € N.

Proof. Let {d,,} be the above-mentioned higher derivation. According to The-
orem 2.3 of [7] there exists a sequence {0n} of derivations on A such that

, where the inner summation is taken over all positive integers rj with 2}21 T =
n. It follows from Remark 1 that &, is a bounded derivation for every positive
integer n. At this point, Corollary 1 completes the proof. O

Corollary 3 Let A be a semi-prime Banach x-algebra such that O, = S4. If
dim(ﬂ(ped)A ker @) < 1, then A is commutative.
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Proof. Let xo be a non-zero arbitrary fixed element of A. Define d,, : A — A
by dy,(a) = axo—xpa. Obviously, dy, is a bounded derivation. It follows from
Corollary 1 that dy,(a) =0, i.e. axp = xpa for all a € A. Since xg is arbitrary,
A is commutative. O

The above results lead us to the following conjecture:

Conjecture 1 Let A be a semi-prime Banach *-algebra such that O 4 = S4.
If dim(ﬂ(peq)A ker @) < oo, then every bounded derivation from A into A is
zero.
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