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Abstract. Consider the result of a soccer league competition where n
teams play each other exactly once. A team gets three points for each win
and one point for each draw. The total score obtained by each team vi is
called the f-score of vi and is denoted by fi. The sequences of all f- scores
[fi]

n
i=1 arranged in non-decreasing order is called the f-score sequence of

the competition. We raise the following problem: Which sequences of non-
negative integers in non-decreasing order is a football sequence, that is the
outcome of a soccer league competition. We model such a competition by
an oriented graph with teams represented by vertices in which the teams
play each other once, with an arc from team u to team v if and only if
u defeats v. We obtain some necessary conditions for football sequences
and some characterizations under restrictions.

1 Introduction

Ranking of objects is a typical practical problem. One of the popular ranking
methods is the pairwise comparison of the objects. Many authors describe
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different applications: e.g., biological, chemical, network modeling, economical,
human relation modeling, and sport applications.

A tournament is an irreflexive, complete, asymmetric digraph, and the score
sv of a vertex v in a tournament is the number of arcs directed away from that
vertex. We interpret a tournament as the result of a competition between n
teams with teams represented by vertices in which the teams play each other
once (ties not allowed), with an arc from team u to team v if and only if u
defeats v. A team receives one point for each win. With this scoring system,
team v receives a total of sv points. We call the sequence S = [s1, s2, · · · , sn]
as the score sequence, if si is the score of some vertex vi. Thus a sequence
S = [s1, s2, · · · , sn] of non-negative integers in non-decreasing order is a score
sequence if it realizes some tournament. Landau [21] in 1953 characterized the
score sequences of a tournament.

Theorem 1 [21] A sequence S = [si]
n
1 of non-negative integers in non-decreas-

ing order is a score sequence of a tournament if and only if for each I ⊆ [n] =
{1, 2, · · · , n}, ∑

i∈I
si ≥

(
|I|

2

)
, (1)

with equality when |I| = n, where |I| is the cardinality of the set |I|.

Since s1 ≤ · · · ≤ sn, the inequality (1), called Landau inequalities, are
equivalent to

∑k
i si ≥

(
k
2

)
, for k = 1, 2, · · · , n− 1, and equality for k = n.

There are now several proofs of this fundamental result in tournament the-
ory, clever arguments involving gymastics with subscripts, arguments involving
arc reorientations of properly chosen arcs, arguments by contradiction, argu-
ments involving the idea of majorization, a constructive argument utilizing
network flows, another one involving systems of distinct representatives. Lan-
dau’s original proof appeared in 1953 [21], Matrix considerations by Fulkerson
[15] (1960) led to a proof, discussed by Brauldi and Ryser [10] in (1991). Berge
[7] in (1960) gave a network flow proof and Alway [3] in (1962) gave another
proof. A constructive proof via matrices by Fulkerson [16] (1965), proof of
Ryser (1964) appears in the monograph of Moon (1968). An inductive proof
was given by Brauer, Gentry and Shaw [8] (1968). The proof of Mahmood-
ian [23] given in (1978) appears in the textbook by Behzad, Chartrand and
Lesnik-Foster [6](1979). A proof by contradiction was given by Thomassen [33]
(1981) and was adopted by Chartrand and Lesniak [13] in subsequent revisions
of their 1979 textbook, starting with their 1986 revision. A nice proof was given
by Bang and Sharp [5](1979) using systems of distinct representatives. Three
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years later in 1982, Achutan, Rao and Ramachandra-Rao [1] obtained a proof
as result of some slightly more general work. Bryant [12] (1987) gave a proof
via a slightly different use of distinct representatives. Partially ordered sets
were employed in a proof by Aigner [2] in 1984 and described by Li [22] in
1986 (his version appeared in 1989). Two proofs of sufficiency appeared in a
paper by Griggs and Reid [17] (1996) one a direct proof and the second is self
contained. Again two proofs appeared in 2009 one by Brauldi and Kiernan
[11] using Rado’s theorem from Matroid theory, and another inductive proof
by Holshouser and Reiter [19] (2009). More recently Santana and Reid [32]
(2012) have given a new proof in the vein of the two proofs by Griggs and
Reid (1996).

The following is the recursive method to determine whether or not a se-
quence is the score sequence of some tournament. It also provides an algorithm
to construct the corresponding tournament.

Theorem 2 [21] Let S be a sequence of n non-negative integers not exceeding
n− 1, and let S′ be obtained from S by deleting one entry sk and reducing n−
1−sk largest entries by one. Then S is the score sequence of some tournament
if and only if S′ is the score sequence.

Brauldi and Shen [9] obtained stronger inequalities for scores in tourna-
ments. These inequalities are individually stronger than Landau’s inequalities,
although collectively the two sets of inequalities are equivalent.

Theorem 3 [9] A sequence S = [si]
n
1 of non-negative integers in non-decreasing

order is a score sequence of a tournament if and only if for each subset
I ⊆ [n] = {1, 2, · · · , n}, ∑

i∈I
si ≥

1

2

∑
i∈I

(i− 1) +
1

2

(
|I|

2

)
(2)

with equality when |I| = n

It can be seen that equality can often occur in (2), for example, equality
hold for regular tournaments of odd order n whenever |I| = k and I = {n−k+
1, · · · , n}. Further Theorem 2 is best possible in the sense that, for any real
ε > 0, the inequality∑

i∈I
si ≥ (

1

2
+ ε)

∑
i∈I

(i− 1) + (
1

2
− ε)

(
|I|

2

)
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fails for some I and some tournaments, for example, regular tournaments.
Brauldi and Shen [9] further observed that while an equality appears in (2),
there are implications concerning the strong connectedness and regularity of
every tournament with the score sequence S. Brauldi and Shen also obtained
the upper bounds for scores in tournaments.

Theorem 4 [9] A sequence S = [si]
n
1 of non-negative integers in non-decreasing

order is a score sequence of a tournament if and only if for each subset
I ⊆ [n] = {1, 2, · · · , n},∑

i∈I
si ≤

1

2

∑
i∈I

(i− 1) +
1

4
|I|(2n− |I|− 1),

with equality when |I| = n

An oriented graph is a digraph with no symmetric pairs of directed arcs and
without self loops. IfD is an oriented graph with vertex set V = {v1, v2, · · · , vn},
and if d+(v) and d−(v) are respectively, the outdegree and indegree of a vertex
v, then av = n − 1 + d+(v) − d−(v) is called the score of v. Clearly, 0 ≤
av ≤ 2n − 2. The score sequence A(D) of D is formed by listing the scores
in non-decreasing order. One of the interpretations of an oriented graph is a
competition between n teams in which each team competes with every other
exactly once, with ties allowed. A team receives two points for each win and
one point for each tie. For any two vertices u and v in an oriented graph D,
we have one of the following possibilities.
(i). An arc directed from u to v, denoted by u(1 − 0)v, (ii). An arc directed
from v to u, denoted by u(0− 1)v, (iii). There is no arc from u to v and there
is no arc from v to u, and is denoted by u(0− 0)v.

If d∗(v) is the number of those vertices u in D which have v(0 − 0)u, then
d+(v) + d−(v) + d∗(v) = n − 1. Therefore, av = 2d

+(v) + d∗(v). This implies
that each vertex u with v(1− 0)u contributes two to the score of v. Since the
number of arcs and non-arcs in an oriented graph of order n is

(
n
2

)
, and each

v(0 − 0)u contributes two(one each at u and v) to scores, therefore the sum

total of all the scores is 2(
n
2). With this scoring system, player v receives a

total of av points.
Avery [4] obtained the following characterization of score sequences in ori-

ented graphs.

Theorem 5 [4] A sequence A = [ai]
n
1 of non-negative integers in non-decreas-

ing order is a score sequence of an oriented graph if and only if for each
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I ⊆ [n] = {1, 2, · · · , n}, ∑
i∈I
ai ≥ 2

(
|I|

2

)
, (3)

with equality when |I| = n.

Since a1 ≤ a2 ≤ · · · ≤ an, the inequality (3) are equivalent to

k∑
i

ai ≥ 2
(
k

2

)
, for k = 1, 2, · · · , n− 1

with equality for k = n.
A constructive proof of Avery’s theorem can be seen in Pirzada, Merajuddin

and Samee [29] and another proof in Pirzada et. al [28]. A recursive charac-
terization of score sequences in oriented graphs also appears in Avery [4].

Theorem 6 [4] Let A be a sequence of integers between 0 and 2n−2 inclusive
and let A′ be obtained from A by deleting the greatest entry 2n − 2 − r say,
and reducing each of the greatest r remaining entries in A by one. Then A is
a score sequence if and only if A′ is a score sequence.

Theorem 6 provides an algorithm for determining whether a given non-
decreasing sequence A of non-negative integers is a score sequence of an ori-
ented graph and for constructing a corresponding oriented graph. Pirzada,
Merajuddin and Samee (2008) obtained the stronger inequalities for oriented
graph scores.

An r-digraph is an orientation of a multigraph that is without loops and
contains at most r edges between any pair of distinct vertices. So, 1-digraph
is an oriented graph, and a complete 1-digraph is a tournament. Let D be
an r-digraph with vertex set V = {v1, v2, · · · , vn}, and let d+vi and d−vi denote
the outdegree and indegree, respectively, of a vertex vi. Define pvi (or simply
pi)= r(n − 1) + d+vi − d

−
vi

as the mark (or r-score) of vi, so that 0 ≤ pvi ≤
2r(n − 1). Then the sequence P = [pi]

n
1 in non-decreasing order is called the

mark sequence of D.
An analogous result to Landau ′s theorem on tournament scores [21] is the

following characterization of marks in r-digraphs and is due to Pirzada [27].

Theorem 7 [27] A sequence P = [pi]
n
1 of non-negative integers in non-decreas-

ing order is the mark sequence of an r-digraph if and only∑t
i=1 pi ≥ rt(t− 1),
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for 1 ≤ t ≤ n, with equality when t = n.

Various results on mark sequences in digraphs are given in [25, 27] and we
can find certain stronger inequalities of marks for digraphs in [26] and for
multidigraphs in [30].

2 Football sequences

If D is an oriented graph with vertex set V = {v1, v2, · · · , vn} and if d+(vi)
and d−(vi) are respectively the outdegree and indegree of a vertex vi, define
fvi (or briefly fi) as

fi = n− 1+ 2d+(vi) − d
−(vi)

and call fi as the football score(or briefly f-score) of vi. Clearly

0 ≤ fvi ≤ 3(n− 1).

The f-score sequence F(D) (or briefly F) of D is formed by listing the f-scores
in non-decreasing or non-increasing order. For any two vertices u and v in an
oriented graph D, we have one of the following possibilities.

(i). An arc directed from u to v, denoted by u → v and we write this as
u(1−−0)v.

(ii). An arc directed from v to u, denoted by u ← v and we write this as
u(0−−1)v.

(iii). There is no arc directed from u to v and there is no arc directed from v

to u, denoted by u ∼ v and we write this as u(0−−0)v.

If d∗(v) is the number of those vertices u in D for which we have v(0−−0)u,
then

d+(v) − d−(v) + d∗(v) = n− 1.

Therefore,

fv = d
+(v) − d−(v) + d∗(v) + 2d+(v) − d−(v) = 3d+(v) + d∗(v).

This implies that each vertex u with v(1 − −0)u contributes three to the
f-score of v, and each vertex u with v(0−−0)u contributes one to the f-score
of v.
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Since the number of arcs and non-arcs in an oriented graph of order n is(
n
2

)
, and each v(0 − −0)u contributes two (one each at u and v) to f-scores,

therefore

2

(
n

2

)
≤

n∑
i=1

fi ≤ 3
(
n

2

)
.

We interpret an oriented graph as the result of a football tournament with
teams represented by vertices in which the teams play each other once, with
an arc from team u to team v if and only if u defeats v. A team receives three
points for each win and one point for each draw (tie). With this f-scoring
system, team v receives a total of fv points.

We call the sequence F = [f1, f2, · · · , fn] as the football sequence, if fi is
the f-score of some vertex vi. Thus a sequence F = [f1, f2, · · · , fn] of non-
negative integers in non-decreasing order is a football sequence if it realizes
some oriented graph. Several results on football sequences can be found in
Ivanyi [20].

In an oriented graph the vertex of indegree zero is called a transmitter. This
means that the transmitter represents that team in the game which does not
lose any match.

Theorem 8 If the sequence F = [f1, f2, · · · , fn] of non-negative integers in
non-decreasing order is a football sequence then for 1 ≤ k ≤ n− 1 and 2

(
k
2

)
≤

xk ≤ 3
(
k
2

)
,

k∑
i=1

fi ≥ xk,

and for 2
(
n
2

)
≤ xn ≤ 3

(
n
2

)
n∑
i=1

fi = xn.

Lemma 1 There is no oriented graph with n vertices whose f-score of some
vertex is 3n− 4.

Proof. Let D be an oriented graph with vertex set V = {v1, v2, · · · , vn}. Let
vi be the vertex with f-score fi. In case vi(1 − 0)v to all v ∈ V − {vi}, then
f-score of vi is 3(n−1). If vi(1−0)v for all v ∈ V− {vi, vj}, for some vj ∈ V and
i 6= j, then f-score of vi is 3(n − 2) + 1 = 3n − 5. We note that the possible f
score can be 3(n− 1) or 3(n− 2) + 1. Thus the f-score fi is either 3(n− 1) or
fi ≤ 3(n− 2) + 1 = 3n− 5. These imply that the f-score cannot be 3n− 4. �
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Lemma 2 In an oriented graph with n vertices if the f-score fi and n are of
the same parity, then the vertex vi with f-score fi is not the transmitter.

Proof. Let D(V,A) be an oriented graph with V = {v1, v2, · · · , vn} so that
fvi = fi. Let n and fi be of same parity, that is either (a) n and fi both are
even or (b) n and fi both are odd.

In D, let vi(1 − 0)u, vi(0 − 0)w and vi(0 − 1)z with u ∈ U, w ∈ W, z ∈ Z
and V = U ∪W ∪ Z ∪ {vi}. Further let |U| = x, |W| = y and |Z| = t. Clearly

x+ y+ t = n− 1. (4)

Case (a) n− 1 is odd and fi is even. We have fi = 3x+ y. Since fi is even,
3x+ y is even. Thus either (i) x is odd and y is odd, or (ii) x is even and y is
even. In both cases, it follows from (4) that t is odd.
Case (b) n − 1 is even and fi is odd. So 3x + y is odd. This is possible if

(iii) x is even and y is odd, or (ii) x is odd and y is even. In both cases, again
it follows from (4) that t is odd.

Thus in all cases we have |Z| = t = odd, which implies that |Z| 6= φ so
that there is at least one vertex z such that z(1 − 0)vn. Hence vi is not a
transmitter. �

Lemma 2 shows that if the number of teams n and the f-score fi are both
odd or both even, then the team represented by vi with f-score is not the
transmitter, meaning it loses at least once in the competition.

Theorem 9 In an oriented graph with n vertices the vertex with f-score fi is
a transmitter if (1) n and fi are of different parity and (2) fi ≡ (n−1)(mod 2)
and fi ≡ 3(n− 1)(mod 2).

Proof. Let D(V,A) be the oriented graph with n vertices whose vertex set
is V = {v1, v2, · · · , vn}. Let f-score of vi be fi and let vi be the transmitter.
Then in D, we have either vi(1− 0)vj or vi(0− 0)vj for all all j 6= i. Let U be
the set of vertices for which vi(1− 0)u and W be the set of vertices for which
vi(1− 0)w and let |U| = x and |W| = y. Clearly

x+ y = n− 1 (5)

and
fi = 3x+ y. (6)

Two cases can arise, (a) n is odd or (b) n is even.
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Case (a) n is odd. Then n−1 is even so that x+y is even. This is possible if
either (i) x odd and y odd or (ii) x even and y even. In case of (i) fi = 3x+y =
odd+odd = even and in case of (ii) fi = 3x+y = even+even = even. Thus
we see that n and fi are of different parity.
Case (a) n is even, so that n− 1 is odd and x+y is odd. This is possible if

either (iii) x odd and y even or (ii) x even and y odd. In both cases we observe
that fi is odd. Therefore again we obtain that n and fi are of different parity.

Solving (5) and (6) together for x and y, we get

x =
1

2
[fi − (n− 1)] (7)

y =
1

2
[3(n− 1) − fi]. (8)

Clearly x and y are positive integers, thus the right hand sides of (7) and
(8) are positive integers. This implies that fi − (n − 1) and 3(n − 1) − fn are
both divisible by 2. Hence fn ≡ (n− 1)(mod 2) and fn ≡ 3(n− 1)(mod 2). �
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