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Abstract. We define perpendicularity in an Abelian group G as a binary
relation satisfying certain five axioms. Such a relation is maximal if it is
not a subrelation of any other perpendicularity in G. A motivation for
the study is that the poset (P,⊆) of all perpendicularities in G is a lattice
if G has a unique maximal perpendicularity, and only a meet-semilattice
if not. We study the cardinality of the set of maximal perpendicularities
and, on the other hand, conditions on the existence of a unique maximal
perpendicularity in the following cases: G ∼= Zn, G is finite, G is finitely
generated, and G = Z ⊕ Z ⊕ · · · . A few such conditions are found and
a few conjectured. In studying Rn, we encounter perpendicularity in a
vector space.

1 Introduction

Over the years, the concept of “perpendicular” has been considered axiomat-
ically from several different perspectives. Perhaps the most well-known ax-
iomatic description of perpendicularity is presented in the classical textbook

2010 Mathematics Subject Classification: 20K99, 20K01, 20K25
Key words and phrases: Abelian group, perpendicularity

235



236 M. Mattila, J. Merikoski, P. Haukkanen, T. Tossavainen

[1] by Bachmann. This approach is designed for the construction of plane ge-
ometry and it is based on studying reflections in the metric plane which is a
notion to serve as a common basis of Euclidean, hyperbolic and elliptic planes.

Davis [2, 3] studied rings and Abelian groups with orthogonality relations.
In his approach, the aim of defining an orthogonality relation on an Abelian
group was to generalize the concept of a disjointness relation on a linear space
introduced earlier by Veksler [7].

A more recent axiomatization of perpendicularity and parallelism is given
in [4]. This axiom system was originally constructed for educational purposes
and it is applicable enough for the examination of the geometry of perpen-
dicular and parallel lines in the Euclidean plane, and certain other non-trivial
planar or numeric models, too.

The present approach to defining algebraic perpendicularity was originally
laid down in [5]; this article is a sequel to that. Our definition is based on the
idea of describing the additive properties of the elements of an inner product
space for which the inner product is zero in terms of the binary operation of
an Abelian group.

Following the notation of [5], let G = (G,+) be an Abelian group, G 6= {0},
and let ⊥ be a perpendicularity in G, that is, a binary relation satisfying

(A1) ∀a ∈ G : ∃b ∈ G : a ⊥ b,

(A2) ∀a ∈ G \ {0} : a 6⊥ a,

(A3) ∀a, b ∈ G : a ⊥ b⇒ b ⊥ a,

(A4) ∀a, b, c ∈ G : a ⊥ b∧ a ⊥ c⇒ a ⊥ (b+ c),

(A5) ∀a, b ∈ G : a ⊥ b⇒ a ⊥ −b.

The trivial perpendicularity

a ⊥ b ⇐⇒ a = 0∨ b = 0

always exists. A perpendicularity ⊥ is minimal if it is not a superrelation of
any other perpendicularity in G. This clearly happens if and only if ⊥ is trivial;
hence, minimal perpendicularity is always unique. Similarly, a perpendicularity
is maximal if it is not a subrelation of any other perpendicularity in G.

A few results on minimal and maximal perpendicularities follow easily.

Proposition 1 If G is cyclic, then it has a unique maximal perpendicularity.
If G is cyclic and infinite, then it has only the trivial perpendicularity.
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Proof. See [5, Theorem 14] and [5, Example 8]. �

Maximal perpendicularity is not necessarily unique even if G is finite. For
example [5, Example 7], the Klein four group has three nontrivial perpendic-
ularities, all of them maximal.

Proposition 2 A maximal perpendicularity always exists.

Proof. If ⊥1⊆⊥2⊆ . . . are perpendicularities in G, then ∪∞i=1 ⊥i is clearly a
perpendicularity in G. So, the claim follows from Zorn’s lemma. �

Let (P,⊆) be the poset (partially ordered set) of all perpendicularities in G.
(In fact, every nonempty family of sets is a poset under subset relation.)

Proposition 3 A perpendicularity in G is maximal if and only if it is a maxi-
mal element of P. There is a unique maximal perpendicularity in G if and only
if there is a largest element in P. The trivial perpendicularity is the unique
minimal perpendicularity of G, in other words, the smallest element of P.

Proof. Easy and omitted. �

A motivation for the present study is that P is a lattice if G has a unique
maximal perpendicularity, and only a meet-semilattice if not. Below we survey
the uniqueness of maximal perpendicularity in the following cases: G ∼= Zn
(Section 2), G is finite (Section 3), G is finitely generated (Section 4), and
G ∼= Z⊕ Z⊕ · · · ∼= (Q+, ·) (Sections 5 and 6). In addition to solving the ques-
tion about the uniqueness in certain cases, we shall conjecture a few equivalent
conditions for the existence of a unique maximal perpendicularity. We com-
plete our paper by regarding Rn both as an additive group and as a vector
space.

2 G ∼= Zn, n > 1

If G ∼= Z, then it has only the trivial perpendicularity by Proposition 1. The
case of G ∼= Zn = Z⊕ · · · ⊕ Z (n copies, n > 1) is hence more interesting.

Let us choose g1, . . . , gn ∈ G such that

g1 = (1, 0, 0, 0, . . . , 0),

g2 = (γ21, 1, 0, 0, . . . , 0),

g3 = (γ31, γ32, 1, 0, . . . , 0),

...

gn = (γn1, γn2, . . . , γn.n−1, 1), (1)
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where the γij’s are integers. Denote by 〈·〉 the generated subgroup.

Lemma 1 If G ∼= Zn and g1, . . . , gn are as in (1), then

G = 〈g1〉 ⊕ · · · ⊕ 〈gn〉. (2)

Proof. For any x ∈ G, there obviously are unique ξ1, . . . , ξn ∈ Z satisfying

x = ξ1g1 + · · ·+ ξngn.

�

Let g1, . . . , gn, n > 1, be as above. Also choose g ′
1, . . . , g

′
n ∈ G as in (1) such

that g ′
i 6= gi for at least one i ∈ N = {1, . . . , n}. So, there is m ∈ N with

g1 = g
′
1 , . . . , gm−1 = g

′
m−1, gm 6= g ′

m. (3)

Let a, b ∈ G. Then, by Lemma 1,

a = a1 + · · ·+ an = a ′
1 + · · ·+ a ′

n, b = b1 + · · ·+ bn = b ′
1 + · · ·+ b ′

n, (4)

where ai, bi ∈ 〈gi〉 and a ′
i, b

′
i ∈ 〈g ′

i〉 for all i ∈ N.

Define now the relations ⊥0 and ⊥ ′
0 by

a ⊥0 b ⇐⇒ ∀i ∈ N : ai = 0∨ bi = 0,

a ⊥ ′
0 b ⇐⇒ ∀i ∈ N : a ′

i = 0∨ b
′
i = 0.

(5)

These relations are clearly perpendicularities in G.

Lemma 2 Let ⊥0 and ⊥ ′
0 be as in (5). A maximal perpendicularity ⊥max

in G ∼= Zn, n > 1, cannot contain both of them.

Proof. We proceed by contradiction. Suppose that

⊥max⊇⊥0 ∪ ⊥ ′
0 . (6)

We have gm ⊥0 g1, . . . , gm−1 and g ′
m ⊥ ′

0 g
′
1, . . . , g

′
m−1 implying that g ′

m ⊥ ′
0

g1, . . . , gm−1 by (3). Therefore

gm, g
′
m ⊥max g1, . . . , gm−1

by (6). Now, applying (A3), (A4) and (A5) yields that

(gm − g ′
m) ⊥max (ξ1g1 + · · ·+ ξm−1gm−1)

for all ξ1, . . . , ξm−1 ∈ Z.
But d = gm − g ′

m = (δ1, . . . , δn) has δm = · · · = δn = 0, which implies that
there are ξ1, . . . , ξm−1 ∈ Z such that d = ξ1g1+ · · ·+ξm−1gm−1. So, d ⊥max d

violating (A2) because d 6= 0 by (3). �
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Theorem 1 There are infinitely many maximal perpendicularities in G ∼= Zn,
n > 1.

Proof. There are infinitely many choices of the gi’s in (1). Different choices
give different ⊥0’s in (5). Hence, the claim follows from Lemma 2. �

Is ⊥0 defined by (5) maximal? The answer is negative. Namely, let a, b ∈ G
and write them as

a = α1g1 + · · ·+ αngn, b = β1g1 + · · ·+ βngn,

where the αi’s and βi’s are integers. Define ⊥1 by

a ⊥1 b ⇐⇒ α1β1 + · · ·+ αnβn = 0. (7)

Obviously ⊥1 is a perpendicularity and ⊥0 is its proper subset. But then, is
⊥1 maximal? This question remains open, yet we conjecture as follows.

Conjecture 1 A perpendicularity in G ∼= Zn, n > 1, is maximal if and only
if it is of the form (7).

We encounter another open question concerning the cardinality of the set S
of maximal perpendicularities inG ∼= Zn, n > 1. Denoting by |·| the cardinality,
Theorem 1 yields that |S| ≥ ℵ0. On the other hand, |Zn × Zn| = ℵ0, so, the
cardinality of the set of all binary relations in G ∼= Zn is 2ℵ0 . Consequently,
|S| ≤ 2ℵ0 .

But which of these inequalities is equality? The following proposition tells
what we already know.

Proposition 4 If Conjecture 1 is true, then the set of maximal perpendicu-
larities in G ∼= Zn, n > 1, has cardinality ℵ0.

Proof. A maximal perpendicularity is of the form (5) by the conjecture. Be-
cause there are countably infinite choices of each gi, i > 1, in (1), there are
also countably infinite choices of the sequence (g1, . . . , gn). �

3 Finite G

In this section, we assume that G is also finite (in addition to being Abelian).
If G is cyclic, then it has a unique maximal perpendicularity by Proposition 1.
So, in the rest of this section, suppose that G be noncyclic if not mentioned
otherwise. We begin by describing its structure.
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Theorem 2 If G is noncyclic and finite, then it has cyclic subgroups H1, . . . , Hr,
r > 1, of prime power order such that

G = H1 ⊕ · · · ⊕Hr. (8)

These orders are unique. All decompositions (8) have the same number of
summands of each order.

Proof. See [6, p. 394, Theorem 1]. �

Let a, b ∈ G, and let H1, . . . , Hr be as in (8). Analogously to (4),

a = a1 + · · ·+ ar, b = b1 + · · ·+ br,

where ai, bi ∈ Hi for all i = 1, . . . , r. Similarly as in (5), we now define

a ⊥0 b ⇐⇒ ∀i ∈ {1, . . . , r} : ai = 0∨ bi = 0. (9)

Further, if ∅ 6= A,B ⊆ G, we write A ⊥ B denoting that x ⊥ y for all x ∈ A,
y ∈ B.

Lemma 3 Let ⊥ be a perpendicularity in G, and let a, b ∈ G. If a ⊥ b, then
〈a〉 ⊥ 〈b〉 and 〈a〉 ∩ 〈b〉 = {0}.

Proof. Let ξ, η ∈ Z. Then a ⊥ ηb by (A4) and (A5). Further, applying
also (A3), we get ξa ⊥ ηb. This proves the first claim. If z ∈ 〈a〉 ∩ 〈b〉, then
z = ξa = ηb for some ξ, η ∈ Z. Now, the first claim implies that z ⊥ z; hence,
z = 0 by (A1) verifying the second claim. �

Theorem 3 Let G be noncyclic and finite. If |G| is square-free, then G has a
unique maximal perpendicularity which, in fact, is ⊥0 defined in (9).

Proof. Let ⊥ be a perpendicularity in G. We claim that ⊥⊆⊥0. We can omit
the trivial perpendicularity; so, we suppose that 0 6= x, y ∈ G and x ⊥ y.

By Theorem 2 and square-freeness, G has cyclic subgroups H1, . . . , Hr with
prime orders p1, . . . , pr, r > 1, respectively, such that

G = H1 ⊕ · · · ⊕Hr.

Clearly,

Hi = {x ∈ G | |x| = pi}, i = 1, . . . , r,
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where | · | denotes the order. Hence, this decomposition is unique (up to the
ordering). Therefore, if H is a subgroup of G, then

H = Ht1 ⊕ · · · ⊕Hts

for certain indices t1, . . . , ts ∈ {1, . . . , r}. In particular, there are indices i1, . . . , ik
and j1, . . . , jl such that

〈x〉 = Hi1 ⊕ · · · ⊕Hik , 〈y〉 = Hj1 ⊕ · · · ⊕Hjl .

Since 〈x〉 ∩ 〈y〉 = {0} by Lemma 3, we have Hiu 6= Hjv for all u, v. Therefore,
x ⊥0 y, and the claim follows. �

We conjecture that also the converse holds.

Conjecture 2 Let G be as in Theorem 2. The following conditions are equiv-
alent:

(a) G has a unique maximal perpendicularity,

(b) |G| is square-free,

(c) (8) is unique (up to the ordering of the Hi’s).

Theorem 3 states that (b)⇒(a). The following proposition states that (a)⇒(c).
The part (c)⇒(b) remains open.

Proposition 5 Let G be as above. If G has a unique maximal perpendicular-
ity, then (8) is unique.

Proof. Contrary to the uniqueness of (8), we suppose that there are decom-
positions

G = H1 ⊕ · · · ⊕Hr = H ′
1 ⊕ · · · ⊕H ′

r

such that {H1, . . . , Hr} 6= {H ′
1, . . . , H

′
r}. Let Hi = 〈gi〉 and H ′

i = 〈g ′
i〉, i =

1, . . . , r. We define ⊥0 as we did in (9) and ⊥ ′
0 in an analogous manner ap-

plying G = H ′
1 ⊕ · · · ⊕H ′

r. As in the proof of Lemma 2, we can show that no
maximal perpendicularity contains both ⊥0 and ⊥ ′

0. (In this lemma, g1 = g
′
1,

but without any role in the proof.) The uniqueness of maximal perpendicular-
ity is thus violated. �
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4 Finitely generated G

Next, we assume that G is finitely generated. In Proposition 1 and Theorem 2,
we already studied the cases G is cyclic and finite, respectively. Therefore, let
G now be noncyclic and infinite. Its structure is described in Theorem 4 which
follows immediately from [6, p. 411, Theorem 3].

Theorem 4 If G is noncyclic and infinite but finitely generated, then it has
cyclic subgroups H1, . . . , Hr of prime power order and a subgroup H0 ∼= Zn,
n ≥ 1, such that

G = H0 ⊕H1 ⊕ · · · ⊕Hr = H0 ⊕ K. (10)

These orders are unique. All decompositions (10) have the same number of
summands of each order.

Applying our previous results, it is now easy to study maximal perpendic-
ularities in G.

Theorem 5 Let G be as in Theorem 4. If n > 1, then G has infinitely many
maximal perpendicularities.

Proof. Decompose H0 as in (2) and define perpendicularities ⊥0 and ⊥ ′
0 in H0

as in (5). By Lemma 2, a maximal perpendicularity in H0 cannot contain
both of them. Therefore, regarding them also as relations in G, a maximal
perpendicularity in G cannot either contain both of them. Because there are
infinitely many ⊥0’s, the claim follows. �

The proof of the next theorem is very similar to that of Theorem 3. Actually,
the proof applies also when one subgroup is infinite (but cyclic).

Theorem 6 Let G be as above. If n = 1 and |K| is square-free, then G has a
unique maximal perpendicularity.

By the similarity between the above results and those in Section 3, we
present an analogy to Conjecture 2.

Conjecture 3 Let G be as above. The following conditions are equivalent:

(a) G has a unique maximal perpendicularity,

(b) n = 1 and |K| is square-free,
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(c) (10) is unique (up to the ordering of the Hi’s).

Applying an analogous argument as in the proof of Proposition 5, we also get
the following proposition.

Proposition 6 Let G be as above. If G has a unique maximal perpendicular-
ity, then (10) is unique.

5 G ∼= Z⊕ Z⊕ · · ·

Now, let G ∼= Z ⊕ Z ⊕ · · · (i.e., the set of infinite integer sequences with
only finitely many nonzero terms). We begin the examination of this case by
recording a result corresponding to Theorem 1.

Theorem 7 There are infinitely many maximal perpendicularities in G ∼=
Z⊕ Z⊕ · · · .

Proof. Analogously to (1), choose g1, g2, · · · ∈ G such that g1 = (1, 0, 0, . . . )
and

gi = (γi1, . . . , γi,i−1, 1, 0, 0, . . . ), i = 1, 2, . . . ,

and g ′
1, g

′
2, . . . similarly. A simple modification of the proof of Theorem 1

applies. �

Let a, b ∈ G. Write them as

a = α1g1 + α2g2 + . . . , b = β1g1 + β2g2 + . . . .

Analogously to (7), we define

a ⊥1 b ⇐⇒ α1β1 + α2β2 + · · · = 0. (11)

(The sum is finite, because only finitely many αi’s and βi’s are nonzero.)
Analogously to Conjecture 1, we state as follows.

Conjecture 4 Let G be as in Theorem 7. A perpendicularity in G is maximal
if and only if it is of the form (11).

The question about the cardinality of the set of all perpendicularities in G ∼=
Zn, n > 1, remained open in Proposition 4 since the answer depends on
Conjecture 1. However, we can solve this question in the case of G = Z⊕Z⊕· · · .
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Proposition 7 Let G be as above. The set of its maximal perpendicularities
has cardinality 2ℵ0.

Proof. Let S denote the set of maximal perpendicularities in G. The set of all
possible sequences (g1, g2, . . . ) has cardinality 2ℵ0 . Therefore, |S| ≥ 2ℵ0 .

On the other hand,
G = A0 ∪A1 ∪A2 ∪ · · · ,

where A0 = {(0, 0, . . . )} and

Ai = {(x0, x1, . . . , xi, 0, 0, . . . ) | x0, . . . , xi ∈ Z, xi 6= 0}, i = 1, 2, . . . .

Clearly, |A1| = |A2| = · · · = ℵ0. Hence, |G| = ℵ0 and, further, |G × G| = ℵ0.
This implies that the cardinality of the set of all binary relations in G is 2ℵ0 .
Consequently, |S| ≤ 2ℵ0 and the claim follows. �

6 G = (Q+, ·)
As a sequel to the previous section, we consider the multiplicative group Q+

of the set of positive rational numbers. Let P denote the set of primes. Every
x ∈ Q+ can be uniquely expressed as

x =
∏
p∈P

pν(p,x), (12)

where ν(p, x) ∈ Z for each p ∈ P, and only finitely many of them are nonzero.
For example,

ν(2, 45) = 0, ν(3, 45) = 2, ν(5, 45) = 1, ν(7, 45) = ν(11, 45) = · · · = 0,
ν(2, 1) = ν(3, 1) = · · · = 0,

ν(2, 825) = 3, ν(3,
8
25) = 0, ν(5,

8
25) = −2, ν(7, 825) = ν(11,

8
25) = · · · = 0.

If the nonzero values of ν(p, x) are ν(p1, x) = ν1, . . . , ν(pk, x) = νk, then (12)
reads

x = pν11 · · ·p
νk
k .

Define the mapping F : Q+ → Z⊕ Z⊕ · · · by F(x) = (ν(2, x), ν(3, x), . . . ). For
example

F(45) = F(20 · 32 · 51 · 70 · · · · ) = (0, 2, 1, 0, 0, . . . ),

F(1) = F(20 · 30 · · · · ) = (0, 0, . . . ),

F( 825) = F(2
3 · 30 · 5−2 · 70 · · · · ) = (3, 0,−2, 0, 0, . . . ).
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It is easy to see that F is an isomorphism. Thus all results of Section 5 are
valid in Q+; see also [5, Section 5].

7 G = (Rn,+), n > 1

Finally, let us considerG = (Rn,+), n > 1. If a = (α1, . . . , αn), b = (β1, . . . , βn) ∈
G, we can define, analogously to (5), the perpendicularity ⊥0:

a ⊥0 b ⇐⇒ ∀i ∈ N : αi = 0∨ βi = 0.

However, we cannot define, analogously to (7), the perpendicularity ⊥1:

a ⊥1 b ⇐⇒ α1β1 + · · ·+ αnβn = 0,

because we are allowed to use only addition (and multiplication by an integer)
in this group. Therefore it is reasonable to regard Rn as a vector space rather
than as a group, but perpendicularity in a vector space is beyond our scope.
However, we take a small step to it and, more generally, to perpendicularity
in a module.

Let M 6= {0} be a module over a ring R. We say that a relation ⊥ in M is a
perpendicularity in M if it satisfies (A1)–(A5) and

(A6) ∀a, b ∈M,γ ∈ R : a ⊥ b⇒ a ⊥ γb.

Since an Abelian group G is a module over Z, a perpendicularity in G is also
a perpendicularity in this module.

We define in the vector space V = Rn, n > 1, the Euclidean inner product

〈a, b〉 = α1β1 + · · ·+ αnβn.

The relation ⊥1:
a ⊥1 b ⇐⇒ 〈a, b〉 = 0

is clearly a perpendicularity in V. We show that it is maximal.

We proceed by contradiction. Suppose that⊥1 is a proper subset of a perpen-
dicularity ⊥. Then there are a, b ∈ V with a ⊥ b and a 6⊥1 b. Since the orthog-
onal complement {a}⊥1 is an (n− 1)-dimensional subspace of V, it is spanned
by a linearly independent set S = {c1, . . . , cn−1}. Here a ⊥1 c1, . . . , cn−1 and,
because ⊥1⊂⊥, also a ⊥ c1, . . . , cn−1. Since b /∈ {a}⊥1 = spanS, the set
Sb = S ∪ {b} is linearly independent; so it spans V. Now a ⊥ c1, . . . , cn−1, b;
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hence a ∈ (Sb)
⊥ = V⊥ = {0}, which implies that a = 0. But then a ⊥1 b,

contradicting a 6⊥1 b.

Let Q be a real symmetric positive definite n × n matrix. Define in V the
inner product

[a, b] = 〈Qa, b〉.

The above proof applies also to the perpendicularity ⊥ ′:

a ⊥ ′ b ⇐⇒ [a, b] = 0;

so ⊥ ′ is maximal. Conversely, we conjecture that all maximal perpendiculari-
ties in V are obtained in this way.

8 Summary

For G ∼= Zn, G finite, G finitely generated, and G = Z⊕Z⊕ · · · , we were able
to only partially answer the question how many maximal perpendicularities
G has. Nevertheless, these results may assist us in characterizing all maximal
perpendicularities in the case G ∼= Zn or G = Z⊕Z⊕· · · (Conjectures 1 and 4)
or, in the case G is finite or finitely generated, to typify those Abelian groups
that have a unique maximal perpendicularity (Conjectures 2 and 3). However,
more effort is needed to know whether our suppositions were correct or not.
In studying Rn, we encountered perpendicularity in a vector space and, more
generally, in a module. This topic is interesting for further research.
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