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On finite homomorphic images of the
multiplicative group of a division algebra

By Yoav SEGEV*

Introduction

The purpose of this paper, together with [6], is to prove that the following
Conjecture 1 holds:

CONJECTURE 1 (A. Potapchik and A. Rapinchuk). Let D be a finite
dimensional division algebra over an arbitrary field. Then D¥# does not have
any normal subgroup N such that D¥ /N is a nonabelian finite simple group.

Of course D# is the multiplicative group of D. Conjecture 1 appears in
[4]. It is related to the following conjecture of G. Margulis and V. Platonov
(Conjectures 9.1 and 9.2, pages 510-511 in [3], or Conjecture (PM) in [4]).

CONJECTURE 2 (G. Margulis and V. Platonov). Let & be a simple,
simply connected algebraic group defined over an algebraic number field K. Let
T be the set of all nonarchimedean places v of K such that & is K, -anisotropic;
then for any noncentral normal subgroup N < &(K) there exists an open
normal subgroup W < &(K,T) = [[,er &(Ky) such that N = &(K) N W;
in particular, if T = 0 then &(K) does not have proper noncentral normal
subgroups.

In Corollary 2.5 of [4], Potapchik and Rapinchuk prove that if D is a
finite dimensional division algebra over an algebraic number field K, then for
® = SL; p, Conjecture 2 is equivalent to the nonexistence of a normal subgroup
N < D¥ such that D# /N is a nonabelian finite simple group. Of course this
was the main motivation for the conjecture of Potapchik and Rapinchuk in [4].
Thus as a corollary, we get that if D is a finite dimensional division algebra
over an algebraic number field K and & = SL; p, then the normal subgroup
structure of &(K) is given by Conjecture 2.

Hence we prove Conjecture 2, in one of the cases when & is of type A,.
The case when & is of type A, is the main case left open in Conjecture 2. For
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further information about the historical background and the current state of
Conjecture 2, we refer the reader to Chapter 9 in [3] and to the introduction
in [4].

More generally we are interested in the possible structure of finite homo-
morphic images of the multiplicative group of a division algebra. Let D be
a division algebra and let D# denote the multiplicative group of D. Various
papers dealt with subgroups of finite index in D¥, e.g., [2], [4], [7] and the ref-
erences therein. We refer the reader to [1], for a survey article on the history
of finite dimensional central division algebras.

Let X be a finite group. Define the commuting graph of X, A(X) as
follows. Its vertex set is X \ {1}. Its edges are pairs {a,b}, such that a,b €
X\ {1}, a #b, and [a,b] =1 (a and b commute). We denote the diameter of
A(X) by diam(A(X)).

Let d : A(X) x A(X) — ZZ° be the distance function on A(X). We
say that A(X) is balanced if there exist x,y € A(X) such that the distances
d(z,y), d(z,zy), d(y, vy), d(x,z~ y), d(y,v~y) are all bigger than 3.

The Main Theorem of this paper is:

THEOREM A.  Let L be a nonabelian finite simple group. Suppose that
either diam(A(L)) > 4, or A(L) is balanced. Let D be a finite dimensional
division algebra over an arbitrary field. Then D¥ does not have any normal
subgroup N such that D# /N ~ L.

The proof of Theorem A does not rely on the classification of finite simple
groups. However, in [6] we prove (using classification) that all nonabelian finite
simple groups L have the property that A(L) is balanced or diam(A(L)) > 4.
Thus Theorem A together with [6] prove the assertion of Conjecture 1.

The organization of the proof of Theorem A is as follows. Let D be a
division algebra (not necessarily finite dimensional over its center F' := Z(D)).
Let G := D# be the multiplicative group of D and let N be a normal subgroup
of G such that G* := G/N is finite (not necessarily simple). Let A = A(G*)
be the commuting graph of G*.

In Section 1 we introduce some notation and preliminaries. In particular
we introduce the set N(a), for a € G, which plays a crucial role in the paper.
In Section 2 we deal with A and note that severe restrictions are imposed
on A.

In Section 3 we introduce the U-Hypothesis which plays a central role
throughout the paper. In addition, we establish in Section 3 some notation and
preliminary results regarding the U-Hypothesis and we prove that if diam(A)
> 4, then G satisfies the U-Hypothesis. In Section 4 we show that if A is
balanced then G satisfies the U-Hypothesis. Sections 5 and 6 are independent
of the rest of the paper and deal with further consequences of the U-Hypothesis.
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From Section 7 to the end of the paper, we specialize to the case when
D is finite dimensional over F' and G* is nonabelian simple. We assume that
either diam(A) > 4, or A is balanced and set out to obtain our contradiction.
Section 7 gives some preliminaries and technical results. In particular, we
introduce in Section 7 (see the definitions at the beginning) the set K, which
plays a crucial role in the proof. Sections 8 and 9 are basically devoted to the
proof that K = QU \ N (Theorem 9.1), which is the main target of the paper.
Once Theorem 9.1 is proved, we can use it in Section 10 to construct a local
ring R, whose existence yields a contradiction and proves Theorem A.

1. Notation and preliminaries

All through this paper D is a division algebra over its center F' := Z(D).
In some sections we will assume that D is finite dimensional over F', but in
general we do not assume this. We let D# = D\ {0} and G = D# be the
multiplicative group of D. Letting F# = F \ {0}, we denote N a normal
subgroup of G such that F# < N and G/N is finite. The following notational
convention is used: G* = G/N and for a € G, we let a* denote its image in G*
under the canonical homomorphism; that is, a* = Na. If H* is a subgroup of
G*, then by convention H < G is the full inverse image of H* in G.

(1.1) Remark. Note that since F# < N, for all @ € G and a € F¥,
(wa)* = a*, and in particular, (—a)* = a*. We use this fact without further
reference.

(1.2) Notation. (1) Let a € G. We denote
N(a)={ne N:a+ne€ N}.

(2) Let A,B C D. Wedenote A+ B ={a+b:ac Abe B}, A—-B =
{a—b:acAbe B} and —A={—a:a€ A}.

(3) Let A,B C D and x € D. We denote AB = {ab : a € A,b € B},
Az ={azr:a € A} and zA = {za : a € A}.

(4) We denote by [D : F] the dimension of D as a vector space over F. If
[D: F] < oo, then as is well known [D : F] = n?, for some natural n > 1.
We denote deg(D) = n.

(1.3) Notation for the case [D : F] < oo. If [D : F| < 0o, we denote
(1) v:G — F#
the reduced-norm function. Of course v is a group homomorphism.

(2) 0 =0(D)={ac D¥:v(a) =1}.
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(1.4) Suppose [D : F| < oo. Then for all a € G, v(a) is a product of
conjugates of a in G.

Proof. This is well known and follows from Wedderburn’s Factorization
Theorem. See, e.g., [5, p. 253].

(1.5) If [D : F] < 00 and [G*,G*] = G*, then G = ON.

Proof. Since G/Q is isomorphic to a subgroup of F#, G/O is abelian,
and hence G/ON is abelian. But G/ON ~ (G/N)/(ON/N), and hence G* =
[G*,G*] < ON/N. Hence G = ON.

(1.6) THEOREM (G. Turnwald). Let © be an infinite division algebra. Let
H < ®7% be a subgroup of finite index. Then ® = H — H.

Proof. This is a special case of Theorem 1 in [7].
(1.7) CorOLLARY. N+ N =D =N — N.
Proof. This follows from 1.6. Note that as -1 € N, N+ N =N — N.

(1.8) Let a € G\ N and let n € N. Then
N(na) =nN(a) and N(an) = N(a)n.
For allb € G, N(b~tab) = b='N(a)b.
N(a) # 0.

Ifn € N(a), thenn™' ¢ N(a™1).

There ezists a’ € Na, with 1 € N(a').

[\
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Proof. In (1), we prove that N(na) = nN(a). The proof that N(an) =
N(a)n is similar. Let m € N(na). Then na +m € N. Hence a +n~'m € N,
so n 'm € N(a). Hence m € nN(a). Let m € nN(a). Then there exists
s € N(a) such that m = ns. Then na + m = na + ns = n(a + s). Since
s€ N(a), a+s € N,sona+meée N. Hence m € N(na).

For (2),let m € N(b~'ab). Then b~tab+m € N, and hence a+bmb~* € N.
Hence bmb~! € N(a), so m € b= N(a)b. Let m € b='N(a)b. Then there exists
s € N(a), withm = b~'sb. Then b~'ab+m = b~ tab+b"'sb=b"'(a+s)b € N.
Thus m € N(b~1ab).

For (3), note that by 1.7 there exists m,n € N such that a = n — m.
Hence m € N(a). Let n € N(a). Then a +n € N. Multiplying by a*
on the right and by n~! on the left we get that a=' + n~! € Na~!, hence
n~t & N(a~!). This proves (4). Finally to prove (5), let n € N(a). Then
1€n'N(a) = N(n"la).
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(1.9) Let K be a finite group and let ) # A S K be a proper normal subset
of K. Set X :={x € K:2AC A}. Then X is a proper normal subgroup of
K. In particular, if X # 1, then K is not simple.

Proof. Since A is finite, X = {z € K : z.A = A}. Hence clearly X is a
subgroup of K. Let y € K and = € X; then (y 'zy)A = (v 'zy)(y ' Ay) =
y~H(xA)y =y Ay = A, since A is a normal subset of K. Hence y lay € X,
so X is a normal subgroup of K. Clearly since A is a proper nonempty subset,

X #£G@.
2. The commuting graph of G*

Throughout the paper we let A be the graph whose vertex set is G*\ {1*}
and whose edges are {a*, b*} such that [a*,b*] = 1*. We call A the commuting
graph of G* and let d : A x A — Z=0 be the distance function of A.

(2.1) Let a € G\ N andn € N. Suppose that a+n € G\ N. Let H < G,
with H* = Cg=(a*). Then (a +n)* € H*, soa+n € H.

Proof. Note that n=ta+1 € Cg(n la). Thus (n7la+1)* € Co+((n~1a)*)
= Cg+(a*). But since a +n=n(n"ta+1), (a+n)* = (n"ta+1)*

(2.2) Remark. Note that by 2.1, if a,b € G\ N and n € N, then if
a+be N,ora—be N,d(a*,b*) <1andifn & N(a), then d((a+n)*,a*) < 1.
We use these facts without further reference.

.3) Let a,b,c € G\ N, witha+b=c. Then
(a*,b*) > 2, then N(c) € N(a) N N(b).

(a*,0*) > 2, and d(a*,c*) > 2, then N(b) = N(c) C N(a) N N(—a).
f d(a*,b*) > 4, then either N(a) = N(c) C N(b) N N(=b), or N(b) =
N(c) € N(a) N N(-a).

Proof. For (1), let n € N(c) \ (N(a) N N(b)). Suppose n € N(a). Then

c+n=(a+n)+b.

As ¢+ n € N, 2.2 implies that d(a*, (e +n)*) < 1 > d(b*, (a + n)*); thus
d(a*,b*) < 2, a contradiction.

Assume the hypotheses of (2). By (1), N(¢) € N(a) N N(b) and since
b = ¢ —a, (1) implies that N(b) € N(c) N N( a). Hence (2) follows. (3)
follows from (2) since we must have either d(a*, c*) > 2, or d(b*,¢*) > 2.

(2.4) Remark. Note that by 2.3.3, if a,b € G\ N, with d(a*,b*) > 4, then
N(a) € N(b), or N(b) C N(a). We use this fact without further reference.
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(2.5) Let a,b € G\ N such that d(a*,b*) > 1 and N(a) € N(b). Then

(1) o*(b+n)*(a —b)* is a path in A, for anyn € N(a)\ N(b).
(2) If =1 ¢ N(ab™'), then for alln € N(a)\ N(b),

b*(b4+n)*(ab~t — 1)*(ab™ )" is a path in A.
(3) If =1 ¢ N(b—'a), then for alln € N(a)\ N(b),

b*(b+n)*(b~ta — 1)*(b"ta)* is a path in A.

Proof. Let ¢ = a—b. Since d(a*,b*) > 1, ¢ ¢ N. Next note that c+b = a.
Let n € N(a)\ N(b). Then c+ (b+n) =a+n € N. Hence d(c*, (b+n)*) < 1.
This show (1).

Suppose —1 ¢ N(ab~!) and let n € N(a)\N(b). Note that ¢ = (ab=1 —1)b.
Further, ¢* commutes with (b+ n)* and b* commutes with (b+ n)*. It follows
that d((ab=! — 1)*, (b+n)*) < 1. Clearly d((ab~! — 1)*, (ab=1)*) < 1, so (2)
follows. The proof of (3) is similar to the proof of (2) when we notice that
c=0bb"ta—1).

(2.6) Let a,b € G\ N with d(a*,b*) > 4. Suppose N(a) C N(b). Then
(1) N(a+0b) = N(a) C N(b)NN(=b).
(2) N(a—b) = N(a) C N(b) N N(=b).

Proof. For (1) we use 2.3.3. Suppose (1) is false. Set ¢ = a +b. Then
by 2.3.3, N(b) = N(¢) € N(a) N N(—a). Since N(a) C N(b), we must have
N(b) = N(¢c) = N(a) N N(—a) = N(a). It follows that N(a) C N(—a) =
—N(a). Multiplying by —1, we get that N(—a) C N(a), so N(a) = N(—a).
Thus N(b) = N(¢) = N(a) = N(—a). Hence N(a) = N(c) C N(b) N N(=b) in
this case too.

Suppose (2) is false. Set ¢ = a —b. Then by 2.3.3, N(—b) = N(c) C
N(a) N N(—a). In particular N(—=b) C N(—a), so N(b) C N(a). Hence we
must have N(—b) = N(¢) = N(a) N N(—a) = N(—a). As above we get that
N(a) = N(—a) = N(b) = N(c), so again N(c) = N(a) C N(b) N N(-b).

(2.7) Let a bEG\N. Suppose
(a) d(a,b") >
) Ne) € N
Then
(1) If1 € N(a), then £1 € N(b).
(2) For alln e N\ N(b)

N(a) C N(a+n) and — N(a) C N(b+n) 2 N(a).
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Proof. Set x = a — b. Note first that by 2.6.2,

(%) N(a) = N(x) C N(b) N N(-b).
Note that this already implies (1). Next note that
x=(a+n)—(b+n).

Since d(a*,b*) > 4, we get that d((a + n)*, (b + n)*) > 2. Hence by 2.3.1,
N(z) € N(a+n) N N(—(b+n)). Thus N(a) = N(z) € N(a + n) and
N(a) = N(z) C N(—(b+mn)), so that —N(a) C N(b+ n).

Finally, note that by (), N(—a) C N(b), so by the previous paragraph of
the proof —N(—a) C N(b+ n), that is N(a) C N(b+ n) and the proof of 2.7
is complete.

(2.8) Let a,b € G\ N be such that abe G\ N. Then
(1) Assume N(ab) 2 N(b) and —1 ¢ N(a~1). Then for allm € N(b)\ N(ab),

a*(a~t —1)*(ab+m)*(ab)* is a path in A.
(2) Assume N(ab) 2 N(a), and —1 & N(b~1); then for allm € N(a) \ N(ab)
b (bt —1)*(ab 4+ m)*(ab)* is a path in A.
Proof. We have
(1 —a)b+ab=hb.
Let m € N(b) \ N(ab). Then
(1-—a)b+ab+m=>b+meN.

This implies that (ab+m)* commutes with (1—a)*b*. Of course (ab+m)* com-
mutes also with a*b*. Hence (ab+m)* commutes with ((1—a)*b*)(b*) 1 (a*)~!
= (a='—1)*. Hence we conclude that a*(a=!—1)*(ab+m)*(ab)* is a path in A,
this completes the proof of (1). The proof of (2) is similar since a(1—b)+ab = a.

(2.9) Leta,b € G\ N. Then
(1) Assume that N(ab)Z N(a) and —1¢ N (b). Then for allm € N(ab)\ N(a),
a*(a+m)*(b—1)"b" is a path in A.
(2) Assume that N(ab)Z N(b) and —1¢ N(a). Then for allm € N(ab)\ N (b),

a*(a—1)"(b+m)*b* is a path in A.
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Proof. First note that
a(b—1) +a = ab.
Let m € N(ab) \ N(a). Then
ab—1)+a+m=ab+me N.

Hence (a +m)* commutes with a*(b—1)*. Of course (a+m)* commutes with
a*, so (a+m)* commutes with (b —1)*. Hence a*(a +m)*(b—1)*b* is a path
in A. This proves (1). The proof of (2) is similar because (a — 1)b+ b = ab.

(2.10) Let a,be G\ N. Assume
(i) =1 ¢ N(a) UN(b).
(ii) For allg € G, =1 € N(ab9).
Then G* is not simple.

Proof. Let g € G. Note that by 1.8.2, —1 ¢ N(b9), for all g € G.
Thus by (i), N(ab¥) € N(V9) and —1 € N(ab?) \ N(b9). Hence by 2.9.2,
a*(a—1)*(b9 — 1)*b* is a path in A. In particular

(%) d((a—1)*, (" —-1)") <1, forall g € G.

*

Note now that (b9 — 1)* = ((b—1)*)9, so that C* := {(b9 — 1)* : g € G} is
a conjugacy class of G*. Now (x) implies that (a — 1)* commutes with every
element of C*, so that G* is not simple.

(2.11) Let z,y € G\ N and n,m € N such that
xny € N.

(1) If m € N(xny) and —1 € N(ny), then x*(z + m)*(ny — 1)*y* is a path in
A.

(2) If m € N(xny) and —1 ¢ N(xn), then x*(xn — 1)*(y +m)*y* is a path in
A.

(3) If m & N(zny), then z*(z~! — 1)*(zny + m)*(y~* — 1)*y* is a path in A.

(1) d(a,y") < 4.

Proof. Suppose first that m € N(azny) and —1 ¢ N(ny); then since
m ¢ N(z), we see that m € N(xny) \ N(z). Since —1 € N(ny), we get (1)
from 2.9.1.
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Suppose next that m € N(zny) and —1 € N(zn); then since m € N(y),
we see that m € N(zny) \ N(y). Since —1 ¢ N(zn), we get (2) from 2.9.2.

Now assume m ¢ N(xny). Since m € N(zn), we see that m € N(zn)\
N(xny). Further, —1 ¢ N(y~!); hence, by 2.8.2, y*(y~! — 1)*(xny + m)* is a
path in A. Next, since m € N(ny), we see that m € N(ny) \ N(zny). Further
—1 ¢ N(x71); hence, by 2.8.1, z*(z~! — 1)*(zny + m)* is a path in A. Hence
(3) follows and (4) is immediate from (1), (2) and (3).

3. The definition of the U-Hypothesis; notation and preliminaries;
the proof that if diam(A) > 4 then G satisfies the U-Hypothesis

In this section we define the U-Hypothesis which will play a crucial role
in the paper. We also establish some notation which will hold throughout the
paper and give some preliminary results. Finally, in Theorem 3.18, we prove
that if diam(A) > 4, then G satisfies the U-Hypothesis.

Definition. We say that G satisfies the U-Hypothesis with respect to N
(or just that G satisfies the U-Hypothesis) if there exists a normal subset
0 # N ¢ G such that N & N is a proper subset of N and if we set N= N\ N,
then
(U1) 1,-1 e N.
(U2) N? =N. )
(U3) Forallne Nyn+1eNandn—1¢€ N.

Notation. Let z* € G*\ {1*} and let C* C G* —{1*} be a conjugacy class
of G*.
(1) Denote Py« = {a € Nz :1€ N(a)}.

(2) Denote
Ny ={n € N :n € N(a), for all a € Py},
Ny = N\ Ng«.
(3) Let Up» = {n € N :n,n! € Ny}
(4) Let M:C* = Nz* \ Ux*.
(5) Let Op = {21 € Nz : =1 ¢ N(x;) UN (2 1)}
(6) Denote by Cy« the conjugacy class of z* in G*.
(7) Denote C'={ce G:c* € C*}.
(8) Let Po+ = Uy*EC’* Py*.
(9) Denote
NC* = m Ny*a
y*ec*

Ne+ = N\ Ng.
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(10) Denote Ucs = [ wecx Uyr ={n € N : n,n~! € No«}.
(11) Let Mg+ = N \Uc*.

Definition. We define three binary relations on (G*\ {1*}) x (G*\ {1*}).
These relations will play a crucial role throughout this paper. Given a binary
relation R on (G*\ {1*}) x (G*\ {1*}), R(z*,y*) means that (z*,y*) € R.
Here are our binary relations: Let (z*,y*) € (G*\ {1*}) x (G*\ {1*}).

In(z*,y*): For all a € Nz and b € Ny, either N(a) C N(b), or N(b) C
N(a). Note that In(z*, y*) is a symmetric relation.

Inc(y*, z*): In(y*,2*) and for all b € P+, there exists a € P, such that
N(b) O N(a). Note that Inc(y*, z*) is not necessarily symmetric.

T(z*,y*): For all (a,b) € Nz x Ny, and alln € N\ (N(a) U N(b))
N(a4+mn) D N(a)NN(b) C N(b+n).

Note that T'(z*,y*) is symmetric.

(3.1) Let x*,y* € G*\ {1*} and let g € G. Then

(1)
(2)
(3)
(4) If =1 € Ny«, then —1 € N¢ ..
(5) IfNy* D N+, then Ncy* B} Ncﬁc*.
(6) g_lMx*g = M(g—lxg)*v g_lUx*g = U(g—lxg)* and g_l@x*g = @(g—lxg)*.
Proof. For (1), it suffices to show that g~ P,«g C Pig-12g)-- Let a € Pyx.
Then a € Nz and 1 € N(a), so that, by 1.8, 1 € N(a?), and clearly, a9 € Nz9.
Hence a? € P(,q)+. For (2), it suffices to show that g~ 'Ny+g C Ng-1zg)-- Let
n € Ng«. Then n € N(a), for all a € P,«; hence, by 1.8, n9 € N(c), for all
¢ € g 'Py+g. Now, by (1), n¥9 € Ny-1,)+. Note that (3) and (4) are immediate
from (2).
For (5), let 2* € Cy«. Let g € G, with (y9)* = z*. By (2), Nox 2 Ngey« 2
Nc,.. As this holds for all z* € Cy«, we see that N(;y* 2 Ne,..
The proof of (6) is similar to the proof of (2) and we omit the details.

(3.2) Let x* € G* \ {1*}, let a € {z*,Cy+} and set P =P, and N = N,.
Then

1) 1e N

If n € N, then nN C N.

)
)
4) If a = Cy=, then N is a normal subset of G.
) If =1 € N, then —N = N.
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Proof. (1) is by the definition of N. Let n € N. Suppose n~'P C P. Let
a € P. Then n'a € P and hence, 1 € N(n"!a); so by 1.8.1, n € N(a). As
this holds for all a € P, n € N. Suppose n € N and let a € P; then n € N(a);
soby 1.8.1,1 € N(n~'a), and n"'a € P.

Let n € N. Then by (2), for all a € P, N C N(n"'a). Hence nN C N(a),
for all a € IP; that is, nN C N. (4) is 3.1.3. (5) is immediate from (3).

(3.3) Let ¥ € G*\ {1}, a € {z*,Cyp+} and set N = N, and U = U,.
Then

(1) U={ne N:nN=N}={ne N:nN=N}.

2) U={neN:Nn=N}={neN: Nn—N}.
(3) U is a subgroup of G; further, if a = Cy+, then U is normal in G.
(4) If -1 €N, then —1 € U.

Proof. We start with a proof of (1). Clearly since N is a disjoint union of
Nand N, {n € N :nN =N} = {n € N : nN = N}. Let u € U; then by 3.2.3,
uN C N and v~'N C N. Hence uN = N. Conversely let n € N and suppose
nN=N. Asl1eN,neNandasn 'N=N,n"! €N, son € U. This proves
(1). The proof of (2) is identical to the proof of (1). (3) follows from (1) and
the fact that if & = Cy+, N is a normal subset of G. (4) is immediate from the
definition of U.

(3.4) Let z* € G*\ {1*} and set P = Py, U = Uy+. Let a € Nz and
n € N. Then n € N(a) if and only if (nU) U (Un) C N(a).

Proof. 1If (nU) U (Un) € N(a), then since 1 € U, n € N(a). Suppose
n € N(a). Then 1 € N(n"ta) N N(an 1), by 1.8.1. Hence, by definition,
n~ta, an™! € P, so that U C N(n"'a) N N(an™'). Now 1.8.1 implies that
(nU) U (Un) € N(a), as asserted.

(3.5) Let z* € G*\ {1} and set U = Uy+. Suppose that U = U(y-1y- and
that =1 € U. Let 1 € Qg«. Then Oy O (Uzxy) U (21U).

Proof. Let u € U. Suppose —1 € N(ux1). Then —u~! € N(x1). By
3.4, U C N(z1), and in particular, —1 € N(z1), a contradiction. Similarly
—-1¢ N(a:l_lu), so that Ux1 € Oy«. The proof that ;U C Oy« is similar.

—

3. 6) Let x* € G* \ {1*}. Then the following conditions are equivalent.
1

(1)
(2)
(3) Fi
(4)

o

x*

orallaeN:z —1€ N(a)UN(a™1).

or alla € Nx, andn € N\ N(a), a+n € Nz.

There ezists a € Nx such that for allnEN\N( ),a+n¢€ Nx.

RIS

3
4
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Proof. (1) if and only if (2) is by definition.

(2) — (3). Let a € Nz and n € N\ N(a). Then —1 ¢ N(—n"'a); so
by (2), =1 € N(—a"!n); that is, n™! € N(a™!). Hence a=' +n~1t € N and
multiplying by a on the right and n on the left we get a +n € Na = Nzx.

(3) — (4). This is immediate.

(4) — (3). Let b € Nz and write b = ma, for some m € N. Then
N(b) = mN(a). Let n € N\ N(b); then n & mN(a), so m~'n ¢ N(a). Hence,
by (4), a + m~'n € Nz, so that ma +n € Nz; that is, b+n € Nz, so (3)
holds.

(3) — (2). Let a € Nz, and suppose —1 &€ N(a). Then by (3),a—1 € Na.
Now, multiplying by a~! on the right we see that ¢! — 1 € N; that is,
—1€ N(a™h).

(3.7) Let a,b € G\ N ande € {1,—1}. Then
(1) Ifa+b#0 and N(a+b) € N(a), then
a*(a+n)*b* is a path in A, for anyn € N(a+b)\ N(a).
(2) Ifa+b¢g N and N(a) € N(a+b), then
b*(a+b+n)"(a+b)" is a path in A, for anyn € N(a)\ N(a+ D).

(3) If a*2*(a + eb)* is a path in A, ¢ ¢ N(a='b) and a='b ¢ N, then
a*z*(e+a=1b)*(a=1b)* is a path in A; so in particular, d(a*, (a='b)*) < 3.

Proof. For (1), set ¢ = a+band let n € N(a+b)\N(a). Then (a+n)+b=
c+n € N. By Remark 2.2, d((a+n)*,b*) <1 > d((a+n)*,a*), and (1) follows.

For (2), note that a = (a + b) — b, so (2) follows from (1).

Finally, for (3), note that a + eb = ca(e + a~'b). Further, 2* commutes
with a* and (a + €b)*, so that z* commutes with (¢ + a~1b)*, and of course
a~'b commutes with (¢ + a~'b). Hence, if (¢ + a~'b), a™'b & N,a*2*(c +
a'b)*(a'b)* is a path in A.

(3.8) Let x,y € G\N and letn € N\(N(x)UN(y)). Supposed(z*,y*) > 2.
Thenn+m € N, for allm € N(z+n) N N(y+n).

Proof. Let m € N(x +n) N N(y +n). Then z + (n + m) € N and
y+(n+m) € N. Suppose n+m ¢ N. Then, by Remark 2.2, d((z*, (n+m)*) <
1> d(y*, (n+m)*). It follows that d(z*, y*) < 2, a contradiction.

(3.9) Let x*,y* € G* \ {1*}. Then each of the following conditions imply
In(z*, y*).
(1) d(z*,y") > 4.

d(z*,y

(2) d(z*,y*) > 2, and d(z*, (z~y)*) > 3.
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Proof. The fact that (1) implies In(z*, y*) derives from Remark 2.4. Now
suppose (2) holds. Let (a,b) € Nz x Ny. Note that since d(a*,b*) > 2, 2.3.1
implies that

(i) N(a+0b) C N(a) NN(b).

Suppose N (b) # N(a+b) # N(a). Then N(a) € N(a+b) and N(b) Z N(a+b),

so by 3.7.2,

(ii) b (a+b+n)"(a+b)* is a path in A, for anyn € N(a)\ N(a+ b)
a*(a+b+m)* (a+b)* is a path in A, for any m € N(b) \ N(a+b).

From (ii) we get that
(iii) a*(a+b+m)*(a+b)*(a+b+n)b* is a path in A

for any m € N(b)\ N(a+b) and n € N(a)\ N(a+b). Suppose 1 +a~ b€ N,
then (a + b)* = a*, and then from (iii) we get that d(a*, b*) < 2, contradicting
the choice of a*,b*. Hence 1 +a~'b & N, so by 3.7.3, d(a*, (a1b)*) < 3, a
contradiction.

We may now conclude that either N(a + b) = N(a), or N(a +b) = N(b).
Hence, by (i), either N(a) C N(b), or N(b) C N(a), as asserted.

(3.10) Let x*,y* € G*\{1*} and assume In(z*,y*). Then either Inc(y*, x*)
or Inc(z*, y*).

Proof. Suppose that Inc(y*,z*) is false. Then, there exists b € Py=, such
that N(a) 2 N(b), for all a € P,«. Thus Inc(z*,y*) holds.

(3.11) Let x*,y* € G*\ {1*} such that In(z*,y*). Then

(1) If Inc(y*,z*), then Nyx O Ny=, and Uy > Up=

(2) If (a,b) e Nz x Ny such that N(b) 2 N(a), then N(=b) 2 N(a).
(3) If (a,b) € Nz x Ny such that N(b) 2 N(a), then N(—b) 2 N(a).
(4) If Inc(y*,z*), then —1 € Ny and hence —1 € Uy-.

Proof. For (1), let b € Py~. By Inc(y*, z*), there exists a € P« such that
N(b) D N(a). But, by definition, N(a) 2 N,-. Hence N(b) O N,-. As this
holds for all b € Py«, Ny« O Ny+«. Then, it is immediate from the definition of
Uy- that Uye > Uye.

Let (a,b) € Nz x Ny such that N(b) O N(a). Let s € N(b). Suppose
—s5 & N(b). Then —s ¢ N(a) and —s € N(—b). Hence, by In(z*,y*), N(-b) 2
N(a). Thus we may assume that —s € N(b), for all s € N(b). But then
N(=b) = N(b), by 1.8.1, and again N(—b) 2 N(a); in addition, if N(b) 2
N(a), then N(—b) = N(b) 2 N(a). This show (2) and (3).
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Suppose Inc(y*,z*). Let b € Py«; then there exists a € P,~, such that
N(b) 2 N(a). By (2), N(b) 2 N(—a), so as —1 € N(—a), —1 € N(b), as this
holds for all b € Py+, —1 € Ny«. This proves the first part of (4) and the second
part of (4) is immediate from the definitions.

(3.12) Let x*,y* € G*\ {1*} and assume

(i) d(z*,y") > 2.

(i) Tn(a*,y")
Let (a,b) € Nz x Ny and suppose N(b) O N(a). Then

(1) N(a+eb) = N(a), fore € {1,—1}.

(2) If N(b) 2 N(a), then a*(a + €b + n.)*(a + €b)* is a path in A, for any
ne € N(eb) \ N(a), where e € {1,—1}.

Proof. First note that by 3.11.2, N(—=b) DO N(a). Let ¢ € {1,—1}. As
d(a*,b*) > 2, N(a+¢€b) € N(a), by 2.3.1. Let m € N(a). Then m € N(eb).
Suppose m ¢ N(a + eb). Consider the element z = a 4+ b+ m. Since m ¢
N(a + €b), = ¢ N. However, since z = a + (¢b + m) (and ¢b + m € N),
Remark 2.2 implies that d(z*,a*) < 1. Similarly as z = ¢b + (a + m) (and
a+m € N), d(z*,b*) < 1. Thus d(a*,b*) < 2, a contradiction. This shows
(1).

Assume N(b) 2 N(a). Then by 3.11.3, N(—=b) 2 N(a). Let n. €
N(eb) \ N(a); then (2) follows from 3.7.2.

(3.13) Letx*, y*€ G*\{1*} and assume thatd(z*,y*) > 3 < d(z*, (z71y)*).
Let x1 € Qg+ and b € Ny, such that 1 ¢ N(b). Then N(x1) 2 N(b).

Proof. First note that by 3.9, In(z*,y*). Suppose N(x1) & N(b). Then,
by 3.12, N(xy —b) = N(z1), and

() xi(x1 + b+ 8)" (1 +b)*

is a path in A, for any s € N(b) \ N(z1). Suppose z;'b+ 1 € N; that
is, 1 € N(z7'b). Then —1 € N(—z7'b), so N(z7'(=b)) € N(x7"). As
—1 ¢ N(-b), 2.9.1 implies that d(z7],b*) < 3, contradicting d(z*,y*) > 3.
Thus 1 ¢ N(z7'b). Hence by 3.7.3, d(2*, (z~1y)*) < 3, a contradiction.

(3.14) Let z*,y* € G* \ {1*} and assume one of the following conditions
holds

(1) d(a*,y") > 4.
(2) d(z*,y*) > 3, In(z*,y*) and either Qg =0 or Oy =0 .
Then, T(z*,y*).
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Proof. If d(z*,y*) > 4, then by 3.9, In(z*, y*) holds. Let (a,b) € Nz x Ny
and let 7 € N\ (N(a) UN(b)). By In(z*,y*), we may assume without loss
of generality that N(b) O N(a). By 3.12, N(a — b) = N(a). Note that if (2)
holds, then, by 3.6, either a + 7 € Na, or b+ n € Nb; hence, in any case, by
Remark 2.2, d(a +n,b+n) > 2. Buta—b= (a+n) — (b+n), and then 2.3.1
implies that N(a +7n) O N(a —b) = N(a). Further, by 3.11, N(—b) D N(a),
and as —n € N(=b), —n & N(a). Also a +b = (a —n) + (b+ n), and if (2)
holds, then by 3.6, either a — 7 € Na, or b+ n € Nb. Hence again, in any case
d(a —n,b+ n) > 2 and as above we get N(b+n) 2 N(a+b) = N(a). This
shows T(z*, y*).

(3.15) Let x*,y* € G*\ {1*}. Suppose that
(a) d(z*,y*) > 2.
(b) =1 € Ny~
(c) Foralln € N¢,. and m € N¢,., n+m € N.
Then G satisfies the U-Hypothests with respect to Ne, ..

Proof. Set N = Ng,. and P = P¢ .. First note that by (b) and 3.1.4,
—1 € N. We first claim that

(i) b+m € Ng,,, forallb€ P and m € N¢_,.

To prove (i), let b € P and m € N¢g .. Let a € Pc_.. Suppose a +m € N.
Then, by 3.2.5, —a —m € N, and by (c), (—a —m) +m € N; hence —a € N,
a contradiction. Thus a +m € N and hence b+ (a +m) € N. We have shown
that

(ii) a+(b+m)eN, foralla € Pc,.,b€Pand m € N¢,..

Since d(z*,y*) > 2, we can choose a; € Pc . so that d(af,b*) > 2 (see 1.8.5).
By (ii), given m € N¢ .., a1+ (b+m) € N, soif b+m ¢ N, then by Remark 2.2,
d(ay,(b+m)*) <1 >d(b*, (b+m)*), so d(aj,b*) < 2, a contradiction. This
shows that b+ m € N. Now (ii) implies (i). Next we claim:

(iii) For all n € N and m € N¢,., 7 +m € N.

Let b€ P, 7 € Nand m € Ne,.. By (i), b+ m € N¢_,, and by (c),
b+m+n € N. As this holds for all b € P, m+n € N, and (iii) is proved.

Finally, let 7 € N. Then by 3.2.5, —n € N, and since 1 € N ., (iii)
implies that —n + 1 € N. Hence

(iv) n—1eN

Now (iii), (iv), our assumption (b) and 3.2 imply that G satisfies the U-
Hypothesis with respect to N.
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(3.16) THEOREM. Let x*, y* € G* \ {1*}. Suppose that
(a) d(z*,y*) > 2.
(b) =1 € Ny~
(c) For alln € Ny« and m € Ny«, n +m € N.
Then

(1) For alln € N¢,. andm € Nc¢,., n+m € N.
(2) G satisfies the U-Hypothesis with respect to Ng, ...

Proof. Set N = Ncy* and let 7 € N and m € N¢,.. We want to show
that n +m € N. After conjugation with some element of GG, and using 3.1,
we may assume that 7 € Ny=. But m € N, € Nu+, so (1) follows from our
assumption (c¢). Then (2) follows from 3.15.

(3.17) THEOREM. Let z*,y* € G*\ {1*} and assume
(i) d(z”,y") > 2.
(ii) Inc(y*,z*) and T(z*,y").
Then G satisfies the U-Hypothesis with respect to N, ..

Proof. Set N = N¢, .. We verify assumptions (b) and (c) of Theorem 3.16.
Assumption (b) follows from Inc(y*,z*) and 3.11.4.

It remains to verify assumption (c) of Theorem 3.16. Let 7 € Ny« and
let m € Ng«. By definition, there exists b € Py«, such that 7 ¢ N(b). Let
a € Py«, such that N(b) O N(a) (using Inc(y*,z*)). By T(z*,y*), N(a+n) D
N(a) € N(b+ n). In particular, m € Ny« C N(a) € N(a+n) N N(b+ n).
Since d(z*,y*) > 2, 3.8 implies that n + m € N, as asserted.

(3.18) THEOREM. Suppose that diam(A) > 4. Then there exist conjugacy
classes A*, B* C G* \ {1*} such that

(1) G satisfies the U-Hypothesis with respect to Np=.
(2) For all b € Pp~, there exists a € P~ such that d(a*,b*) > 4 and N(b) 2
N(a).

Proof. Let x*,y* € A be such that d(z*,y*) > 4. By 3.9, In(z*,y*)
and by 3.10, we may assume that Inc(y*, z*). Further by 3.14, T(z*,y*). Set
B* = Cy+ and A* = Cy+. By Theorem 3.17, (1) holds. Let b € Pg+. Then
there exists g € G, such that b9 € Py« (see 3.1.1). Since Inc(y*,z*), there
exists a € Py- such that N(b9) D N(a). By 1.8.2, N(b) D N(a? ). Of course
a9 € Pa- and d(b*, (a9 ')*) > 4, so (2) holds.

4. The proof that if A is balanced then G satisfies the U-Hypothesis

In this section we continue the notation and definitions of Sections 2 and 3.
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Definitions. (1) We define a binary relation 8 on (G*\ {1*}) x (G*\ {1*})
as follows. Let (2*,y*) € (G*\ {1*}) x (G*\ {1*}),
B(x*,y*): The distances d(z*,y*), d(z*,z*y*), d(y*,x*y*), d(z*, (x71y)*),
d(y*, (x71y)*) are all greater than 3.
(2) We say that A is balanced if there exists z*,y* € G* \ {1*} such that
B(z*,y*).

The purpose of this section is to prove the following theorem.

(4.1) THEOREM. Suppose that A is balanced. Then there exists a conju-
gacy class C* C G*\ {1*} such that

(1) G satisfies the U-Hypothesis with respect to No=.
(2) One of the following holds:
(2a) Qg+ =0, for some z* € G*\ {1*}.
(2b) For all m € Mc~, there exists z* € C*, such that m € N(z1), for all
z1 € Q.

(4.2) (1) B is symmetric.
(2) If B(a*,y"), then B((x™1)",y").

Proof. Suppose B(z*,y*). We must show that B(y*,z*). By defini-
tion, d(y*,z*) > 3. Next since d(y*,z*y*) > 3, conjugating with y* we
get that d(y*,y*z*) > 3. Since d(z*,z*y*) > 3, conjugating with z* we
get d(z*,y*r*) > 3. Since d(y*, (z'y)*), inverting (zly)*, we see that
d(y*, (y~12)*) > 3, finally since d(z*, (x~1y)*), inverting (z~1y)*, we get that
d(z*, (y~1z)*) > 3. Hence B(y*,z*). The proof of (2) is similar.

Notation. From now until the end of Section 4 we fix x,y € G\ N such
that B (z*,y*). We set

Si={x, 2" x {y,y " HU{y,y '} x {z,27'})

and

Og =04 U @(I—l)* @] @y* U @@—1)*.
(4.3) Let (g,h) € S, then
(1) B(g*,h").
(2) In(g®, h").
Proof. (1) follows from 4.2 and (2) follows from (1) and 3.9.

(4.4) Suppose Qg+ =0 or Oy« = 0. Then G satisfies the U-Hypothesis.
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Proof. First note that by B(z*,y*), 4.3 and 3.14, T(z*,y*). Then, by
4.3, and 3.10, we may assume without loss that Inc(y*,z*). Now the lemma
follows from Theorem 3.17.

In view of 4.4, and symmetry, we assume from now on that
The sets Qg+, Oy-1y+, Oy, and O(,-1)- are not empty.

Notation. Given z € {x,x7 1 y,y~ 1}, 21 will always denote an element
in Q,«.

(4.5) Let g € {z,2 Y y,y~'}; then —1 € Ny», —1 € Ne,. and —1 € Ugs.

Proof. Let g # h € {x,z Y y,y~ '}, with h & {g,97'}. By 4.3.1,
B(g*, h*). It suffices to show that —1 € Ng«, then by 3.1.4, —1 € Ne,., and
by 3.3.4, =1 € Uy=. Letting a € Py«, we must show that —1 € N(a). Suppose
—1 ¢ N(a), then, 1 ¢ N(—a), so by 3.13, N(g1) 2 N(—a). But —1 € N(—a),

a contradiction.

(4.6) Let z € Og. Then

N(z) = N(h), for all h € Og.

1 ¢ N(z).

Ifa € Nz such that 1 & N(a), then N(z) 2 N(a).
If 7 € N,«, thenn~! € N(2).

N(z) = M,«.

N« is independent of the choice of z.

U, is independent of the choice of z.

w N

ot

AN N AN N S /S
=2 W~
~— O

N

Proof. We show that B(z*,y*) implies N(x1) O N(y1). Then, (1) follows
from 4.3.1. A similar application of 4.3.1 will be used throughout the proof.
Now 1 & N(—y1),soby 3.13, N(z1) 2 N(—y1). Then, by 3.11, N(z1) O N(y1).

Suppose 1 € N(x1). Then —1 € N(—z1), so that N(—z1) 2 N(y1). By
3.11, N(x1) 2 N(y1), contradicting (1). Hence (2) holds.

(3) is immediate from 3.11, (1) and 4.3.2. To show (4), let n € N,«. By
definition, there exists a € P,«, such that 7 ¢ N(a). Then, 1 € N (2~ 'a), and
so by (3), N(z) 2 N(n~'a). But n=t € N(7n~a), so that n=1 € N(z).

Next let h € Qg, with h* # z*, (z71)*. Note that N(h) C N(b), for all
be P, by In(h*,2*), so N(z) = N(h) C N,«. Let u € U,«. If u € N(z); then,
by 3.4, U, C N(z), a contradiction, as —1 € U,«. Hence N(z) C M,«. Let
m € M,«; then, by definition, m™1 € N,«, so by (4), m = (m~1)~! € N(z).
Hence N(z) = M.+, and (5) holds.

To show (6), by 4.3.1, it suffices to show that Ny« C Ny« (so Np» D Ny«).
Let 71 € Ny+; then by (4) and (1), 2= € N(y1). But by (5), N(y1) = My, so
by definition, 7 = (R~1)~! € Ny+. Finally (7) is immediate from (6).
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(4.7) Let i € Ny» and m € Ny«. Then n +m € N.
Proof. Set N = Ny«, Ml = M« and U = U,«. Note that by 4.6, N = N,«,
M = M« = N(z), and U = U,~, for all z € Qg. First we claim that
(i) z+4+n € Nz, for all z € Qg.

Indeed, by 4.6.4, 171 € M, so as M = N(z71),271 + 77! € N and (i) holds.

Further, by 3.12, N(z1 —y1) = N(x1) = M, and by (i), d((z1 + n)*,
(y1 +7n)*) > 3, hence, by 2.3.1, M = N(z1 —y1) = N((z1 +n) — (y1 + 7)) C
N(x1 + n). Similarly, M C N(y; + n), so that

(i) N(z1+n) 2 M C N(y + 1)

by 3.8, 7 +M C N, for all 7~ € N. We have shown

(iii) n+m € N, forall n € N and m € M.

Next we show that 74+ 1 € N, for all 7 € N. We first claim that
(iv) N(z1+1) O M.

Suppose not and let m € M\ N(z; + 1); recall that by 3.12, N(z1 —y1) =
N(z1) =M. But z1 —y1 = (z1+1) — (y1 + 1), so m € N(z1 —y1) \ N(z1 +1).
Hence, by 3.7.1,

(v) (r1 +1)*(z1 + 14+ m)*(y1 + 1)" is a path in A.
Replacing y1, by y; ! the same argument shows that
(vi) (21 + 1)*(z1 +1+m)*(y; ' +1)* is a path in A.

It follows from (v) and (vi) that (z; + 1 +m)* commutes with (y;* + 1) and
(y1 +1). But yy +1 = yi(y; " + 1), so (z1 + 1 + m)* commutes with y;.
However, applying Remark 2.2 twice, we see that d((x1 + 1+ m)*, z}) < 2.
Hence we get that d(z7,y;) < 3, contradicting B(z*,y*). This shows (iv).
Similarly, N(y; +1) O M. Since n~! € M, 3.8 implies that 2! + 1 € N, so
n+1=n(n"t+1) € N. We have shown

(vii) n+1€ N, forall n € N.

Let w € U. Thenu~'n € N, by 3.3, so by (vii), u"!'a+1 € N,son+u € N.
We have shown

(viii) n+wue N, foraluel.

Since N is the union of M and U, (iii) and (viii) complete the proof.
(4.8) G satisfies the U-Hypothesis with respect to N¢ . .

Proof. This follows immediately from 4.5, 4.7 and Theorem 3.16.



238 YOAV SEGEV

(4.9) Let N=N¢,, and M =Mc¢, .. Then N =N¢_, and M = Mc.., for
all z € Og.

Proof. Let z € Qg. By definition, No ., = [[{Ny : v* € Cp«} and
Ne,. = ({Ny : v* € Co+}. But, by 4.6.6 and 3.1.2, {Ny« : v* € Cpr} = {Ny» ¢
v* € C.+}, s0 N=Ng_,. Then, by definition, M = Mc._, .

(4.10) Set M = Mc,., and let m € M. Then there exists z* € Cyx, such
that m € N(z1), for all z1 € Q.

Proof. Since m € M, m € N¢_,. Since m ¢ Ug,., there exists z* € Cys,
such that m & U,«. Hence m € M,-. After conjugation, and using 3.1, we may
assume that z = x. But then the lemma follows from 4.6.

Note now that by 4.4, 4.9 and 4.10, Theorem 4.1 holds.

5. The U-Hypothesis

In this section ) # N & N is a proper subset of N such that N is a normal
subset of G. We denote N = N \ N and assume the U-Hypothesis.
(U1) 1,-1 € N.
(U2) N? =N.
(U3) Foralln e N,n+1€Nandn—1€ N.

(5.1) Remark. Notice that if diam(A) > 4 or A is balanced, then by
Theorems 3.18 and 4.1, G satisfies the U-Hypothesis with respect to N = Nx~,
where X* = B*, if diam(A) > 4 (B* as in Theorem 3.18) and X* = C* if A is
balanced (C* as in Theorem 4.1).

(5.2) Let U = {n € N:n~t € N}. Then

-1eU.

Proof. This was already proved in 3.3 in a slightly different context; for
completeness we include a proof. Clearly since N is a disjoint union of N and
N, {n € N:nN=N} ={n€ N :nN=N}. Let u € U, then by (U2), uN C N
and u~'N C N. Hence uN = N. Conversely let n € N and suppose nN = N.
As1e€N,neNandasn !N=Nn"! €N, sothat n € U. This proves (1).
The proof of (2) is identical to the proof of (1). (3) follows from (1) and the
fact that N is a normal subset of G. Note that (4) follows immediately from
(U1).
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(5.3) Notation. We denote M = N\ U. Hence N = MUUUN is a disjoint
union.

(5.4) (1) Foralln e N, n+U =U.
(2) Foralln e N, n~! € N.

Proof. We first show
(i) For alln € N,n —1 €N,

Let 7 € N and suppose i — 1 ¢ N, then, n—1 € N and by (U3), (R—1)+1 € N,
a contradiction. This shows (i).

Let m € N. Suppose that m~' € N, then by (U2), m !N C N. We
conclude that m~!(m +1) € N. Hence m~' 41 € N. Suppose m~! € N. Then
by (U3) and (i), m~! £ 1 € N. Hence in either case we get that

(ii) m~t+1€N, for all m € N.
Next we show
(iii) ForallneN, n+1eU.

Let 7 € N and let ¢ € {1,—1}. By (i) and (U3), 7 + ¢ € N. Hence we must
show that (n +¢)~! € N. Suppose (7 +¢)~t &€ N. Set m = (i +¢)~!. Then
m €N, so by (ii), m™! —e € N. But m~! —e¢ =n € N, a contradiction.

We can now prove (1). Let u € U and 7 € N. Then by 5.2.1, u"'n € N
and by (iii), u™'n + 1 € U. It follows that 7 +u = u(u~'n + 1) € U. Hence

(iv) n+UCU.

Next by 5.2.4, —u € U, and by (iv), n —u € U. Again by 5.2.4, u—n € U
and hence u =n+ (u —n) € i+ U. Hence U C n+ U and (1) is proved.

Finally we prove (2). Let 7 € N and suppose 7~ ! ¢ N. Then 2! € N, so
by (1), i~ 4+1 € U. Then by 5.2.2, i+ 1 = n(in "' +1) € N, which contradicts
(U3).

(5.5) (1) For alls € N\ U, s € M if and only if s—* € N.
(2) Forallne N, n+U =U.
(3) For allu € U,uN = Nu =N and uM = Mu = M.
(4) N2 C N and M? C M.

Proof. For (1) let m € M CN. If m~! € N, then, by definition, m € U,
a contradiction. Hence m™' € N. Let n € N. By 5.4.2, n=! € N, and since
n ¢ U,n~! € M. This shows (1). (2) is from 5.4.1 and (3) is from 5.2.1 and
5.2.2.
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Let n,7m € N and suppose am € N. By (1), ! € N, and by (U2),
m = n~!(nm) € N, a contradiction. Hence N> C N. Let m, m’ € M. Suppose
mm' € UUN. Then m~! € N (by (1)) and by (3) and the fact that N> C N,
m' =m~1(mm') € N, a contradiction. Hence M? C M.

6. Further consequences of the U-Hypothesis

In this section we continue the notation and hypotheses of Section 5,
deriving further consequences. We denote I' = N/U (note that by 5.2.3, U is
a normal subgroup of G and hence of N). Recall from 1.3 that we denote by
v: G — F7 the reduced norm function, in the case when [D : F] < oo.

(6.1) Definition. We define an order relation < on I' as follows. For
Ua,UbeT, Ua < Ub if and only if Ua # Ub and ba~' € N.

(6.2) (1) The relation < is a well defined linear order relation on T

(2) If Ua,Ub,Uc,Ud €T, with Ua < Uc and Ub < Ud, then Uab < Ucd.

Proof. 1t is clear from 5.5.3 that < is independent on coset representatives
and hence it is a well defined relation on I'. We show it is an order relation.
If Ua < Ub, then ba~! € N; hence by 5.5.1, ab~' € M and it follows that
Ub ¢ Ua. Also if Ua < Ub < Uc, then ba™! € N and ¢b~! € N. Hence by
5.5.4, ca=t = (cb~!)(ba™!) € N and hence Ua < Uc. Finally let Ua, Ub € T,
with Ua # Ub. Then by 5.5.1 either ab™' € N or ba~! € N; hence either
Ua < Ub, or Ub < Ua, so < is linear.

For (2), if Ua = Uc, or Ub = Ud, then (2) follows directly from the
definition of < and the fact that N is a normal subset of G. So suppose
Ua < Uc and Ub < Ud. Then ca™!, db=! € N. Now (cd)(ab)™! = cdbla™! =
ca"tadb~'a~'. Since N is a normal subset of G, adb~'a™! € N. By 5.5.4,
N2 C N, so catadb='a"! € N. Hence, (cd)(ab)~t € N and Uab < Ucd, as
asserted.

(6.3) Let Ua,Ub € T', with Ua # Ub. Then

(1) Ua+Ub C N, and
(2) Ua+ Ub =min{Ua, Ub}.

Proof. Without loss of generality we may assume that Ua < Ub. Let
z € Ua and y € Ub. Then yz~' € N. Hence by 5.5.2, 1 + yz~! € U and
multiplying by x on the right we see that x +y € Uz = Ua. This shows (1)
and the fact that Ua + Ub C Ua. But Ua + Ub contains the coset U(a + b),
and it follows that Ua + Ub = Ua.
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(6.4) COROLLARY. Let Ua € T and let x,y € Ua. Suppose z +y € N.
Then U(z +vy) > Ua.

Proof. Suppose U(x +y) < Ua = Uzx. Then by 6.3, y = (x +y) —x €
U(xz +y). But y € Ua, a contradiction.

(6.5) COROLLARY. Let aj,as,...,ax € N and assume there exists some
1 <4 <k, such that Ua; < Uaj, for all j #i. Then Uay +Uas +---+Uay, =
Uai.

Proof. This follows immediately from 6.3 by induction.

(6.6) Suppose [D : F] < oo and let n € N\ UF#. Then there exists
r < deg(D) such that n" € UF¥.

Proof. Let

ap + apzh 4o 4 gt

be the minimal polynomial of n over F with «; # 0, for all 0 < ¢ < t and
0 < k1 < kg < --+ < kt. Suppose there exists some 0 < i < ¢, such that
Uainki < Uajnkf, for all j # ¢. Then by 6.5, ag+agnfr+- - +anf € Uaynk.
In particular, ag + aqn®t + - - + aynF* # 0, a contradiction. Hence the set of
minimal elements in the set {Uaq, Uayn®t, ..., Uatnkt} is of size larger than 1.
It follows that there are indices 0 < ¢ < 7 < t, such that U ank =U ajnkf. We
conclude that n*i— ¢ U(aiaj_l). Note now that r = k; — k; < k¢ < deg(D)
and that n” € UF7.

(6.7) Suppose [D : F] < 0o and let n € N, with v(n) € U. Then n € U.

Proof. Suppose first that n € UF#. Note that as U < G, for each u € U,
v(u) € U. This is because v(u) is a product of conjugates of u (see 1.4). Write
n = ou, with u € U and o € F#. Then

v(n) = a8y ()

and it follows that a8(P) = y(n)v(u)~! € U. By 5.5.4, a € U, and hence
neU.

Next suppose n € N \ UF#. Then by (6.6), n" € UF#, for some 1 < r <
deg(D). Note now that v(n") = v(n)" € U, so by the previous paragraph of
the proof, n” € U, this contradicts 5.5.4.

(6.8) COROLLARY. If [D: F| < oo, then NJU < Z(G/U).

Proof. Here Z(G/U) is the center of G/U. Let g € G and n € N. Then
v([g,n]) =1 € U. Hence by 6.7, [g,n] € U.
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(6.9) Remark. Note that if [D : F] < oo, then the canonical homo-
morphism v : N — I' behaves like a valuation on N in the sense that v is
a group homomorphism, and I" is a linearly ordered abelian group. Further
v(a 4+ b) > min{v(a),v(b)}, whenever a + b € N. In particular the restriction
v: F# — v(F*) is a valuation on F.

(6.10) If [D : F] < oo, then F* ¢ U.

Proof. Suppose F# C U and let 7 € N. Let
ag + apzh + - 4 oyt

be the minimal polynomial of  over F with «; # 0, for all 0 < ¢ < t and
0<ky <kp<---<kt. Then

ap + an™ + -+ it = 0.

We show by induction on j that ag + oy + --- + ajﬁkf e U, for all 0 <
j < t. By hypothesis ag € U. Suppose ag + ayi®t + - + ajﬁkj e U.
Note that as ajy1 € U, 5.5.3 and 5.5.4 imply that Oéj+177lkj+1 € N; hence
by 5.5.2, (g + it 4 -+ + ajﬁkf) + ozj+1ﬁ’“j+1 € U. But we cannot have

ap + oanif + - + ayift € U, a contradiction.

7. Towards the proof of Theorem A

In this and the following sections we finally prove Theorem A. We continue
the notation of the previous sections. In particular, A is the commuting graph
of G*. We assume that either diam(A) > 4, or A is balanced. If diam(A) > 4
then we fix A*, B* to denote the conjugacy classes as in Theorem 3.18. Recall
that A= {a € G :a* € A*} and B = {b € G : b* € B*}. If A is balanced, then
we fix C* to denote the conjugacy class as in Theorem 4.1; again C= {ceqG:
ct e C*}.

If diam(A) > 4, let X* = B*, while if A is balanced let X* = C*. We let
P=Px«, N=Ny«,N=Ny-, M =My~ and U = Ux=. Note that by Remark
5.1, all the results of Sections 5 and 6 apply here.

In this section we further assume that G* is a nonabelian finite simple
group and that [D : F| < co. We draw the attention of the reader to Remarks
2.2 and 2.4.

Definitions and Notation. (1) K ={a € QU \ N : N(a) 2 M}.

(2) K*={a*:a € K}.

(3) An element a € G\ N is a standard element if it satisfies the following
condition: If n € N(a), then Un C N(a).

(4) We denote by ® the set of all standard elements in G\ N.
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(7.1) (1) G = ON.
(2) (OU)NN =U.
(3) QU/U ~ G*.

(4) [G,N] < U.

Proof. (1) follows from our assumption that G* is simple and from 1.5.
Let n € (OU) N N; then n = au, for some a € O, so v(n) = v(u). Since
U is normal in G, v(u) € U, by 1.4. Then by 6.7, n € U. Next, since
G = (OU)N,G* = G/N ~OQU/(OU) NN = QU/U, by (2). Finally, (4) is
from 6.8.

(7.2) Let a,b € G\ N. Then

(1) Letn € N(a), thena+n € Un.

(2) Letn € N(a), then Um C N(a), for all Um < Un. Further if a € ®, then
also Un C N(a).

(3) Let n € N\ N(a), then Um < Un, for all m € N(a). Further if a € ®,
then Um < Un, for all m € N(a).

(4) Ifae ® andbe G\ N, then N(a) C N(b) or N(b) C N(a).

(5) Letn € N. Then N C N(n) if and only if n € N and M C N(n) if and
only ifn € UUN.,

Proof. For (1), suppose a +n =m & Un. Note that as —1 € U, —n € Un
and hencea=m —n € Um+ Un C N, by 6.3.1, a contradiction.

For (2), assume Um < Un. By (1), a = n + nu, for some v € U. Then
a+m=n+nu+m € Um, by 6.5. Hence m € N(a). This proves the first
part of (2) and the second part of (2) is obvious. Now (3) is an immediate
consequence of (2).

Let a € ® and b € G\ N and suppose N (b) Z N(a). Let n € N(b)\ N(a);
then by (2), Um C N(b), for all Um < Un. By (3), if m € N(a), then
Um < Un. Hence, N(a) C N(b). This proves (4).

We now prove (5). Let n € N. Then —n ¢ N(n), by definition, and
—n €N, thus N € N(n). Let 7 € N; then by 6.3, N C N(n). This proves the
first part of (5). The proof of the second part of (5) is similar.

(7.3) Let a € G\ N. Then

(1) Ifa € ®, then Na C ®.

(2) a € ® if and only if

(%) For each b € Na such that 1 € N(b),U C N(b).
In particular, if a ¢ ®, then there exists b € Na, with N(b) N U # 0, but
UZ N().

(3) If a € ®, then N(a) is a normal subset of G.

(4) ® is a normal subset of G.
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Proof. Suppose a € ®. Let b € Na and m € N(b). Write b = sa,
s € N. Then s~'m € N(a). Let u € U. Since a € ®, s~lmu € N(a), so that
mu € N(sa) = N(b). Thus Um C N(b) as asserted.

For (2), note that (1) implies that if a € ®, then (%) holds. So assume (%)
holds. Let m € N(a). Then 1 € N(m~'a), so by (x), U C N(m~'a). Hence
Um C N(a) and a € 9.

Next let a € &, n € N(a) and g € G. By 7.1.4, n9 € Un C N(a), so
N(a) is a normal subset of G. (4) follows from (3) since for a € ® and g € G,
N(a%) = g *N(a)g = N(a); so a? € .

(7.4) (1) If diam(A) > 4, then B C ®.
(2) If A is balanced, then C' C ®.

Proof. (1) and (2) follow from the definition of U and from 7.3.2.

(7.5) Let a € ®. Then
(1) For allu € U,N(ua) = N(a) = N(au).
(2) Ifne N\ N(a), then N(a+n) 2 N(a).
(3) Let z,y € (OU)N Na. Then N(z) = N(y).

Proof. For (1) note that N(ua) = ulN(a) € N(a), as a € ®. Similarly
u~'N(a) € N(a), so N(a) C uN(a) = N(ua). This proves the first part of (1)
and the proof of the second part of (1) is the same. For (2), let m € N(a);
then, by 7.2.3, Um < Un, and by 6.3.2, a + n +m = a + um, for some u € U.
Then, since a € ®, a + um € N, so that m € N(a + n).

Next we prove (3): notice that 2y~ € (OU) N N. Hence, by 7.1.2, 2y~
e U, so (3) follows from (1).

~ (76) Let a € G\ N and m € N. Suppose Um C N(z), for some z €
Cox N (OQU); then Um C N(z), for all z € Cg» N (OU).

Proof. Recall that Cy+ is the conjugacy class of a* in G* and Cor = {ce
G : ¢* € Cy}. First we claim that

(%) Um C N(29), for all g € G.

Let g € G. Then, by 1.8.2, N(29) = g~ N(x)g. Hence N(z9) 2 g~ (Um)g =
UmY = Um, where the last equality follows from 7.1.4.

Let z € Cye N (OU). Then there exists ¢ € G, such that z* = (z9)*.
By (), Um C N(a9). Hence, we may assume that Nz = Nz. But then
vz~ € NN(QU) = U (see 7.1.2). Hence, there exists u € U such that z = ux.
Then N(z) = uN(z), so that N(z) D u(Um) = Um, as asserted.
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(7.7) Let a,b € G\ N. Then
(1) IfU C N(a) N N(b), then U C N(ab).
(2) IfUNN(a) # 0 and M C N(b), then M C N (ab).
(3) IfU C N(a) N N(b), thenU C N(a+1b).
(4) IfM C N(a) N N(b), then M C N(a+b).
(5) Suppose a € QU \ N and let £ > 1, such that a® € N. Then o € U.
(6) Suppose a € QU \ N. Then U € N(a). In particular, if a € ®, then
N(a) C M.

Proof. For (1),let w € U. Then ab+u =ab—b+b+u = (a—1)b+ (b+u).
As —1€U,a—1€U, by 7.2.1. Further by 7.2.1, b4+u € U, write v =a — 1
and w = b+ u. Then ab+u = vb+w = v(b+v~lw) € N. Hence u € N(ab).

For (2), let w € UNN(a) and let m € M. Then ab+m = ab+ub+(m—ub) =
(a+u)b+ (m —ub). Note now that by 7.2.1, a +u = v and m — ub = wm, for
some v, w € U. Hence ab+m = vb+wm = v(b+ v 'wm) € N, where the
last equality is because M C N (b) and because (v—1w)M = M.

For (3), let w € U; then (a +b) +u = a+ (b+ u). But since u € N(b),
b+u=veU,by721 Hence (a+b)+u=a+veN. ThusU C N(a+Db).
The proof of (4) is similar.

Assume the hypotheses of (5). Since a € QU, v(a) € U, so v(a’) € U.
Hence by 6.7, a* € U. Let a € QU \ N. Since G* is finite there exists
r > 2, with a” € N. By (5), a” € U. Hence a~! = ua"!, for some u € U.
Suppose U C N(a). Then by (1), U € N(a"'),so U C N(a™1'). In particular
1 € N(a) N N(a™!) contradicting 1.8.4. The second part of (6) follows from
the first part of (6) and by 7.2.2.

(7.8) Let s € M and suppose that
(%) s> € N(z), for all z € QU \ N.
Then s € N(z), for all z € QU \ N.

Proof. Assume that there exists z € QU \ N, such that s ¢ N(z). Set
y := —s 'z. Then —1 ¢ N(y). First we claim that

() —1€ N(yy?), for all g € G.

This is because yy? = (s71x)(s71)929 = s~ 2xa9u, for some u € U, where
the last equality follows from 7.1.4. Since z € QU, —zz9u € OU, so, if
—xx9u ¢ N, then, by hypothesis (), s> € N(—zx9u). If —zx9u € N, then
—zx9u € (QU) NN = U (see 7.1.2). Since s € M,s? € M, by 5.5.4, so, by
7.2.5, s> € N(—xz9u) in this case too. Now in any case s?> € N(—xz9u), and
it follows that —1 € N(yy9).
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Now, taking a = y = b in 2.10, we get from 2.10 and (*x), that G* is not
simple, a contradiction.

8. Some properties of K and the proof that K # 0

In this section we continue the notation and hypotheses of Section 7 re-
calling from there that we defined

K={a€QU\N : N(a) DM}.

(8.1) (1) K is a normal subset of G.
(2) Ifae K, thenUa C K.

Proof. (1) follows immediately from the fact that Ml and OU are normal
subsets of G and from 1.8.2. (2) follows from the fact that uM = M, from
1.8.1 and the definition of K.

(8.2) Suppose there exists a € QU \ N such that N(a) NU # 0. Then

(1) For allb e K such that ab e G\ N,ab e K.
(2) K=0U\ N.

Proof. First note that by 7.2.2, M C N(a), so that a € K. Next, for (1),
let b € K. Then N(b) D M. By 7.7.2, M C N(ab), and clearly ab € QU, hence
ab e K.

Next, since K is a normal subset of G, K* U {1*} is a normal subset of
G*. Further note that by (1), «*(K* U {1*}) € K* U {1*}. Hence, by 1.9,
K*U{1*} = G*. Let b € QU \ N. Then b* = k*, for some k € K, and then
bk~' € (OU)N N < U. Hence b = uk, for some u € U, so b € K. Tt follows
that K = QU \ N.

(8.3) Assume that diam(A) > 4 and that for all m € M, there erists
z€ (AUB)N(OU) such that Um C N(z). Then K # 0 .

Proof. Let V = [, inop N(z) and W = [ g op N(y). Let m € V,

u e U and z € AN (OU). Then u'z € AN (QU), so m € N(u'z). Thus
um € N(z) and Um C N(z). As this holds for all 2 € AN (QU), Um C V.
Similarly, Um C W, for all m € W. Next, if Um CV and Us < Um, for some
s € N, then, by 7.2.2, Us C V. Similarly if Um C W and Us < Um, for some
s € N, then Us CW.
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Next we claim that either V. C W, or W C V. Suppose V & W. Let
Um C V, such that Um N'W = (). Then, by the previous paragraph of the
proof, Us < Um, for all Us C W. Hence, by the previous paragraph of the
proof, Us CV and hence W C V.

Finally, by 7.6, and by the hypothesis of the lemma, M C VUW, so, by the
second paragraph of the proof M C V, or M C W. Hence either AN (OU) C K,
or BN(OU) C K and K # 0.

(8.4) THEOREM. K # 0.

Proof. Suppose K = (). By 8.2, we may assume
(%) UNN(z) =0, for all z € QU \ N.

Case 1. diam(A) > 4. We shall show that for all m € M, there exists
z € (AU B)N (QU) such that Um C N(z). Then, by 83, K # 0, a
contradiction. Let m € M. Since m™' € N, there exists b € P, such
that m~! ¢ N(b). By 3.18.2, there exists a € P4« such that N(a) € N(b)
and d(a*,b*) > 4. Note that by 3.9, In(a*,0*).  Further, since b € P,
—m~1 & N(b) (see 7.2.2), and hence —m~! & N(a). Let x € Nan (OU) and
y € NbN (OU) and suppose that Um ¢ N(x) and Um ¢ N(y). Since y € P,
m ¢ N(y) and, after replacing = by uz, for some u € U, we may assume that

Suppose first that N(y) 2 N(x). Let / = ma. Notice that m € N(d’)
and —1 ¢ N(a'). Write a’ = an, n € N. Notice that mn~! € N(z), so
mn~! € N(y). Thus m € N(yn). But y € ®, so n !N (y)n = N(y) (see 7.3.3);
thus m € N(ny). Note now that by (x), all the hypotheses of 2.11 are met, for
z,y,m and n, so by 2.11, d(z*,y*) < 4, contradicting d(a*, b*) > 4.

Suppose next that N(z) O N(y). Let & = mb. Notice that m € N(V') and
~1¢ N(V). Write b’ = ny, n € N. Notice that n~'m € N(y) and since y € ®,
mn~t € N(y). Thus mn~! € N(z) and hence, m € N(xn). Again we see
that by (x), all the hypotheses of 2.11 are met, for x,y,m and n; so by 2.11,
d(z*,y*) < 4, a contradiction. Hence, either Um C N(x), or Um C N(y).
This completes the proof of the theorem, in the case when diam(A) > 4.

Case 2. A is balanced. We use Theorem 4.1. First note that by (x) and
3.6.2, we are in case (2b) of Theorem 4.1. Let m € M. By Theorem 4.1, there
exists z € C such that m € N(z1), for all z; € Q... By (), N2N (QU) C Q,+;
thus m € N(z1), for some z; € Nz N (OU). Since z; € &, Um C N(z;) and
hence, by 7.6, Um C N(z), for all z € C' N (QU). As this holds for all m € M,
CN(QU)C K and K # 0.
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9. The proof that K = QU \ N

In this section we continue the notation and hypotheses of Section 7. Note
that by Theorem 8.4, K # (). The purpose of this section is to prove

(9.1) THEOREM. K = QU \ N.

In view of 8.2, we may (and do) assume that N(a) N U = 0, for all
acQU\N.

(9.2) Suppose that for all m € M there exists s € M, with Um < Us. Then

(1) Letay, by € K such that a1b, € G\ N. Then aib; € K.
(2) K=0U\ N.

Proof. For (1), let m € M and let s € M, with Um < Us. Then
arby + m = ai1by —a1s+ (a1s +m) = a1(by — s) + (a1s + m).

By 7.2.1, by —s = us, for some u € U. Next a;s+m = (a; +ms~!)s. Note that
as Um < Us, ms~!' € M, and hence a; +ms~! € N. Hence a;s+m € N, so by
7.2.1, a1s+m = vm, for some v € U. Hence we get that a;b1+m = a1 (us)+ovm
and as above aj(us) +vm € N, so m € N(aib1). Hence N(a1b;) = M. Since
a1by € @U\N, arby € K

The proof of (2) is exactly like the proof of 8.2.2; all we need is the property
established in (1).

Notation. We fix the letter m to denote an element m € M such that
Us <Um, for all s € M (see 9.2).

(9.3) (1) Let k,¢ € Z such that 0 < k < (. Suppose z,y € QU \ N such
that N(x) D Um* and N(y) D Um®. Then N(zy) D UmF+’.

(2) There exists t > 0, such that for all z € QU \ N, N(z) 2 Um!.

Proof. For (1), we have

L +£ l

=uxrm- — mme + mk”

zy +mPt = zy 4+ am® — 2m® + mF

= (ux — z +m")m’ = (uz + vm*)m’ e N.

Here, u,v € U and we used 7.2.1 for the equalities.

For (2), let = € K. Let X* be the conjugacy class of z* in G*. Let
X = {2 € G\N : 2* € X*}. Note that by 7.6, X NOU C K. Now G* = (X*),
and every element g* € G* can be written as a product of elements in X*. For
g* € G*, let £(g*) be the minimal length of a word in the alphabet X* which
equals g*. Let t = max{{(g*) : ¢* € G*}. Note that every element in QU \ N
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can be written as a word of length at most ¢ in the alphabet X N(OU). Hence,
by (1), as Um C N(y), for y € X NOU, Um! C N(2), for all z € QU \ N.

We now complete the proof of Theorem 9.1. Suppose K # QU \ N. Let
1 <t € Z, minimal subject to Um! C N(z), for all z € QU \ N. Since
K # QU \ N, t > 2. Since there exists y € QU \ N such that Um!~! ¢ N(y),
we may assume without loss of generality that m!=! ¢ N(y). Set s = m!~%.
Notice that s = m2(~1) and as 2(t — 1) > t, we conclude that s*> € N(z), for
all z € OU \ N. But now, by 7.8, s € N(z), for all z € QU \ N. This implies
that Us C N(z), for all z € QU \ N, a contradiction.

10. The construction of the local ring R
and the proof of Theorem A

In this section we continue the hypotheses of Section 7. In addition, in
view of Theorem 9.1, we know that K = QU \ N. We will construct a local
ring R and finally prove Theorem A.

(10.1) Let a € G. Then

(1) Ifa & N, then M C N(a) if and only if a = nay, for some n € UUN and
somealeff.

(2) Ifa & N, then U C N(a) if and only if a = nay, for some n € N and some
alef(.

(3) Ifa € N, then ML C N(a), if and only ifa € U UN.

(4) Ifa € N, then N C N(a) if and only if a € N.

Proof. Note first that if a ¢ N, then by Theorem 9.1, and by 7.1.1,
a = naq, for some n € N and some a; € K.

Suppose a € N. Write a = nay, with n € N and a; € K. Now suppose
that M C N(a) and let u € U such that u & N(ay) (see 7.7.6). Then a + nu =
n(a; +u) € N. Hence nu ¢ M, so nu € U UN. It follows that n € U UN.
Suppose that U C N(a); then Un~! C N(a1). But by 7.7.6, U € N(a;) and
hence, by 7.2.2, n=! € M, so that n € N.

Conversely, let a1 € KandneUUN. If n e U, then nay € K, so that
M C N(na1). If n € N, then for all u € U,na; +u = n(a; + n~1u), and as
n~tu € M, na; +u € N. Hence U C N(nay). This completes the proof of (1)
and (2). (3) and (4) are as in 7.2.5.

Definition. We define

R={zeD:2=0, or M C N(x)},
I={reR:r=00rUC N(r)}.



250 YOAV SEGEV

(10.2) (1) RN N =UUN.

(2) RON(G\N)={nk:necUUN and ke K}.
(3) R is a subring of D.

(4) I is the unique mazimal ideal of R.

(5) R\ I=QU is the group of unites of R.

Proof. (1) and (2) are as in 10.1.3 and 10.1.1 respectively. Let z,y € R¥.
To show z 4y € R, suppose x # —y. Assume first that z,y € N. If z+y € N,
then by 6.3, 6.4 and (1), z+y € UUN, so z+y € R. Suppose z+y ¢ N. Then
since —x € N(z +y), and —z € U UN, we get from 7.2.2 that M C N(z + y),
sor+y € R.

Now assume x ¢ N. If y € N(x), then x +y € Uy, by 7.2.1, and as
yeUUN, UyCUUN,soz+y € R. If yc€ N\ N(x), then since y € UUN,
y+m € M, for all m € M and hence = +y +m € N, for all m € M. Hence
MC N(z+y),sox+y€R.

Suppose x,y € N; then by 7.74, x +y € R. Let x,y € R*. It is easy to
see that xy € R by (1) and (2).

The proof of (4) is similar to the proof of (3) from (1), (2), 10.1 and 7.7.3,
and we omit the details. Let r € R\ I. Then M C N(r) 2 U, so by 10.1.1 and
10.1.2, if r € N, then r = uk, for some k € K and u € U; so r € QU, while if
r € N, then by 10.1.3 and 10.1.4, » € U which shows that R\ I C QU. The
inclusion QU C R\ I follows from the fact that OU C R and from 7.7.6. This
proves (5).

Let

¢»:R— R/I

be the canonical homomorphism. Let
Y :0U — (R/I)*

be the multiplicative group homomorphism induced by ¢.

(10.3) (1) R/I is a division algebra.

(2) v is surjective and keryp < U.
(3) R/I is infinite.

Proof. (1) and the first part of (2) are obvious. Let r € kery). Then
r—1€l Hencer—1=a€l. Butthenr=a+1,andasacl,a+1€ N;
thus » € N. It follows that r € (QU) NN = U, by 7.1.2. Next we prove
(3). Since keryy < U and since, by 7.1.3, OU/U ~ G*, we see that G* is a
homomorphic image of QU /kery) (OU/U ~ (OU /kertp)/(U/kert))). Hence G*
is a homomorphic image of (R/I)#. But if R/I is finite, then R/I is a field,
which is impossible. Hence R/I is infinite.
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(10.4) OU C U+ U.

Proof. We apply Theorem 1.6 to the division ring R/I. Since ¥ (U) is a

subgroup of finite index in (R/I)#, Theorem 1.6 implies that for all 7 € R\ I,
there are uy, us € U such that r + 1 = uy — us + I. Hence r = uy — us + a,
with @ € I. Note now that by 6.3.2, 7.2.1, 10.1.4 and the definition of I,
—ug +a € U. Hence for all r € R\ I, r = u+ v, with u,v € U. But by 10.2.5,
R\ I = QU,; so the proof is complete.

We can now reach the final contradiction and complete the proof of The-

orem A. Note that by 7.3.1 and 7.4, K N ® # () and by 7.7.6, if k € K N ®,
then N(k) = M. Let k € K N®. By 10.4, there are u,v € U, with k = u + v.
Thus, —u € N(k). But N(k) = M, a contradiction.
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