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Locally complete intersection
homomorphisms and a conjecture

of Quillen on the vanishing
of cotangent homology

By Luchezar L. Avramov*

Abstract

Classical definitions of locally complete intersection (l.c.i.) homomor-
phisms of commutative rings are limited to maps that are essentially of finite
type, or flat. The concept introduced in this paper is meaningful for homo-
morphisms ϕ : R −→ S of commutative noetherian rings. It is defined in terms
of the structure of ϕ in a formal neighborhood of each point of SpecS. We
characterize the l.c.i. property by different conditions on the vanishing of the
André-Quillen homology of the R-algebra S. One of these descriptions estab-
lishes a very general form of a conjecture of Quillen that was open even for
homomorphisms of finite type: If S has a finite resolution by flat R-modules
and the cotangent complex L(S |R) is quasi-isomorphic to a bounded complex
of flat S-modules, then ϕ is l.c.i. The proof uses a mixture of methods from
commutative algebra, differential graded homological algebra, and homotopy
theory. The l.c.i. property is shown to be stable under a variety of operations,
including composition, decomposition, flat base change, localization, and com-
pletion. The present framework allows for the results to be stated in proper
generality; many of them are new even with classical assumptions. For in-
stance, the stability of l.c.i. homomorphisms under decomposition settles an
open case in Fulton’s treatment of orientations of morphisms of schemes.
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Introduction

The concept of regularity—of distinctly geometric origin—has taken a
central place in the study of commutative noetherian rings. This is in part
due to the existence of a Cohen presentation of each complete local ring as a
homomorphic image of a regular ring.

From a homological perspective, a local ring is closest to being regular if
it is complete intersection (or: c.i.) in the sense that the defining ideal of some
Cohen presentation of its completion is generated by a regular sequence. A
noetherian ring is locally complete intersection (or: l.c.i.) if its localizations at
all prime ideals are complete intersections.

The relative version of the notion of regularity is well established: a ho-
momorphism ϕ : R −→ S is regular if it is flat and has geometrically regular
fibers. Foundational work of Grothendieck [26], Lichtenbaum and Schlessinger
[32], André [1], [3], and Quillen [37], characterized regularity by the vanish-
ing for n ≥ 1 of the functors Dn(S |R, −) of André-Quillen (or: cotangent)
homology.

In contrast, no general notion of l.c.i. homomorphism has emerged. For
philosophical, historical, and practical reasons, such a concept has to accom-
modate the following cases:

• When R is regular, ϕ is l.c.i. precisely when S is l.c.i.

• When ϕ is flat, it is l.c.i. if and only if all its nontrivial fiber rings are l.c.i.

• When ϕ can be factored as a regular map followed by a surjection ϕ′, it
is l.c.i. if and only if in some factorization Ker ϕ′ can be locally generated
by a regular sequence.

To reconcile these notions when several apply, it was proved in loc. cit.
that each one is equivalent to the vanishing of Dn(S |R, −) for n ≥ 2. Maps
with this property were called weakly c.i. by Illusie [31] who remarked that
useful properties, like transitivity or flat base change, follow directly from for-
mal properties of cotangent homology. While settling functorial questions, the
homological definition gave no approach to structural properties; for instance,
it was not known if a weakly c.i. map is locally of finite flat dimension, that
is, if Sq has a finite resolution by flat R-modules for each prime ideal q ⊆ S.

For homomorphisms of noetherian rings we introduce an l.c.i. notion lo-
cally, by using a relative version of Cohen structure theory developed jointly
with Foxby and B. Herzog [14]. We show that these maps coincide with
the weakly c.i. homomorphisms, then characterize them by the vanishing of
D2(S |R, −), and by various other vanishing conditions.

In particular, we prove that ϕ is l.c.i. if and only if ϕ is locally of finite
flat dimension and Dn(S |R, −) = 0 for all nÀ 0; for maps essentially of finite
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type the ‘only if’ part is well known, and the converse was conjectured by
Quillen [37]. When Q ⊆ S and ϕ is locally of finite flat dimension, we proved
in joint work with Halperin [16] that if ϕ is not l.c.i. then Dn(S |R, −) 6= 0 for
nÀ 0; this is strengthened below: the vanishing of Dn(S |R, −) for any single
n ≥ 1 implies that ϕ is l.c.i.

An interplay of structural and homological arguments allows for a com-
prehensive study of l.c.i. maps, in the framework of a joint program with Foxby
[11], [12], [13] to classify ring homomorphisms according to their local structure.
We establish the stability of the new class under composition, decomposition,
flat base change, localization, completion, and clarify its role in the transfer of
l.c.i. properties between source and target rings.

An application deals with the functoriality of canonical orientations as-
signed to morphisms of schemes that are l.c.i., or flat. Fulton [24] proves
that orientations of such morphisms f : X −→ Y and g : Y −→ Z satisfy
[gf ] = [f ][g] in five out of the six possible cases. In the open case when f is
flat and both g and gf are l.c.i. our decomposition theorem for l.c.i. homomor-
phisms shows that f is l.c.i., so the formula holds as well.

Homomorphisms of commutative rings and their simplicially defined ho-
mology theory are the subject of this investigation, so a significant role is
predictably played by commutative algebra and homotopy theory. The gap
is bridged by DG (= differential graded) homological algebra, viewed alter-
natively as an extension of the former and a linearization of the latter. It
produces invariants of local homomorphisms that are often more computable
than those defined in terms of cotangent complexes.

The results that follow have evolved over a long period of time, through
several preliminary versions and oral expositions1. As a consequence, the pa-
per has benefited from direct or indirect input of several people. My think-
ing on l.c.i. homomorphisms has been influenced by two collaborations: with
Steve Halperin on links between local algebra and rational homotopy, and with
Hans-Bjørn Foxby on local properties of ring homomorphisms. Javier Majadas
showed me a substantial shortcut in the proof of Lemma (1.7). Srikanth Iyen-
gar pointed out that an argument I had developed for a different purpose
could be used in the proof of Theorem (3.4). Haynes Miller made me aware
of Umeda’s work [34] and kept reminding me to produce a final version. I am
grateful to all of them.

1 A discussion of properties of l.c.i. homomorphisms and the structure of the proof of Quillen’s

Conjecture is contained in the extended abstract of my talk “Locally complete intersection homomor-

phisms and vanishing of André-Quillen homology” [Commutative algebra. International conference,

Vechta, 1994 (W. Bruns, J. Herzog, M. Hochster, U. Vetter, eds.), Runge, Cloppenburg, 1994, pp. 20–

24].
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1. Vanishing theorems

Throughout this section ϕ : R −→ S is a homomorphism of noetherian
rings.

The André-Quillen homology Dn(S |R, N) of the R-algebra S with coeffi-
cients in an S-module N is the nth homology module of L(S |R)⊗S N , where
L(S |R) is the cotangent complex of ϕ, uniquely defined in the derived category
of S-modules D(S) (cf. [3], [37]). The vanishing of Dn(S |R, −) for all n > m

means that L(S |R) is isomorphic in D(S) to a bounded complex F of flat
S-modules with Fn = 0 for n > m; we then say that it has flat dimension at
most m, and write fdS L(S |R) ≤ m.

Regularity is characterized by the vanishing of the first cotangent homol-
ogy functor. We quote that benchmark result in the definitive version of André
[3, (S.30)].

(1.1) First Vanishing Theorem. The following conditions are equiva-
lent :

(i) ϕ is regular.
(ii) D1(S |R, −) = 0.
(iii) fdS L(S |R) = 0.

For the special types of homomorphisms reviewed in the introduction, the
vanishing of D2(S |R, −) is classically known to be equivalent to the corre-
sponding l.c.i. notion. To describe the vanishing condition in general, we recall
a structure theorem.

If the homomorphism ϕ is local , in the sense that both rings are local and
ϕ(m) ⊆ n where m is the unique maximal ideal of R and n is that of S, then by
[14, (1.1)] the composition ϕ̀ : R −→ Ŝ of ϕ with the completion map S −→ Ŝ

appears in a commutative diagram of local homomorphisms of local rings

R′
ϕ̇↗ ↘ϕ′

R −→̀
ϕ

Ŝ

where ϕ̇ is flat, ϕ′ is surjective, the ring R′ is complete, and the ring R′/mR′

is regular. Such a diagram is called a Cohen factorization of ϕ̀.

Definition. A local homomorphism ϕ : R −→ S is complete intersection,
or c.i., at n, if in some Cohen factorization Ker ϕ′ is generated by a regular
sequence (this property does not depend on the choice of Cohen factorization;
cf. (3.3)).
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A homomorphism of noetherian rings ϕ : R −→ S is c.i. at a prime ideal
q of S if the induced local homomorphism ϕq : Rq∩R −→ Sq is c.i. at qSq. A
homomorphism that has this property at all q ∈ SpecS is said to be locally
complete intersection, or l.c.i.

With this notion, we have:

(1.2) Second Vanishing Theorem. The following conditions are equiv-
alent :

(i) ϕ is locally complete intersection.
(ii) D2(S |R, −) = 0.
(iii) fdS L(S |R) ≤ 1.

The proof, given at the end of this section, uses the existence of Cohen
factorizations and only standard properties of André-Quillen homology. For
expository reasons, we continue with a discussion of vanishing results proved
at the end of Section 4.

Let fdRM denote the flat dimension (also called Tor-dimension) of an R-
module M . We say that ϕ is locally of finite flat dimension if fdR Sq is finite
for all q ∈ SpecS. This condition is clearly implied by the finiteness of fdR S,
and is equivalent to it in many cases, e.g. when R has finite Krull dimension;
cf. [5].

For maps essentially of finite type the only if part of the next theorem
is well known. Quillen [37, (5.7)] conjectured that the converse holds as well.
This was proved by Avramov and Halperin [16] in characteristic zero. We
establish a very general form of

(1.3) Quillen’s Conjecture. The homomorphism ϕ is l.c.i. if and
only if it is locally of finite flat dimension and fdS L(S |R) is finite.

The next result represents a partial strengthening of Quillen’s conjecture.
Note that the condition on m poses no restriction when n = 3, or when S is
an algebra over Q.

(1.4) Rigidity Theorem. Let m ≥ 2 be an integer, such that (m − 1)!
is invertible in S.

If ϕ is locally of finite flat dimension and Dn(S |R, −) = 0 for some n
with 3 ≤ n ≤ 2m− 1, then ϕ is locally complete intersection.

In view of the preceding results we extend to all homomorphisms of noe-
therian rings another conjecture, proposed by Quillen [37, (5.6)] for maps es-
sentially of finite type:

Conjecture. If fdS L(S |R) <∞, then fdS L(S |R) ≤ 2.
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We are able to verify it when one of the rings R or S is l.c.i.; for a more
precise statement, we use the map aϕ : SpecS −→ SpecR induced by ϕ.

(1.5) Theorem on l.c.i. rings. If R is c.i. on the image of aϕ and
fdS L(S |R) <∞, then S is l.c.i.

If S is l.c.i. and fdS L(S |R) <∞, then R is c.i. on the image of aϕ.
If R is c.i. on the image of aϕ and S is l.c.i., then fdS L(S |R) ≤ 2.

To prepare for the proof of (1.2) we recall a few basic results on cotangent
homology.

(1.6) Remarks. Let (R′,m′, `) be a local ring.

(1) For an ideal a ( R′ the following are equivalent: (i) a is generated by
a regular sequence; (ii) D2(R′/a |R′, `) = 0; (iii) Dn(R′/a |R′, `) = 0 for
n ≥ 2 (cf. [3, (6.25)]).

(2) The ring R′ is regular if and only if D2(` |R′, `) = 0 (cf. [3, (6.26)]).

(3) If k −→ ` is a field extension, then fd` L(` |k) ≤ 1 (cf. [3, (7.4)]).

(1.7) Lemma. If ϕ : (R,m, k) −→ (S, n, `) is a local homomorphism,

σ : S −→ Ŝ is the completion map, and R
ϕ̇−→ R′

ϕ′−→ Ŝ is a Cohen factor-
ization of ϕ̀, then the canonical map Dn(σ | ϕ̇, `) : Dn(S |R, `) −→ Dn(Ŝ |R′, `)
is an isomorphism for n ≥ 2.

Proof. For each n the map in question is equal to Dn(Ŝ | ϕ̇, `)◦Dn(σ |R, `).
Flat base change gives Dn(Ŝ |S, `) ∼= Dn(` | `, `) = 0 for all n so the Jacobi-

Zariski exact sequence of the decomposition ϕ̀ = σϕ shows that Dn(σ |R, `)
is an isomorphism for each n. Thus, it suffices to prove that Dn(Ŝ | ϕ̇, `) is
bijective for n ≥ 2.

Set R′ = R′/mR′. From the Jacobi-Zariski exact sequence of k → R′ → `,

Dn+1(` |R′, `) −→ Dn(R′ |k, `) −→ Dn(` |k, `) .

Since Dn(` |k, `) = 0 for n ≥ 2 by (1.6.3) and Dn+1(` |R′, `) = 0 for n ≥ 1 by
(1.6.2), we get Dn(R′ |k, `) = 0 for n ≥ 2. Flat base change (cf. [3, (4.54)])
yields isomorphisms γn : Dn(R′ |R, `) ∼= Dn(R′ |k, `) for all n ∈ Z, so using the
Jacobi-Zariski exact sequence

Dn(R′ |R, `)
Dn(ϕ′ |R, `)−−−−−−−→ Dn(Ŝ |R, `)

Dn(Ŝ | ϕ̇, `)−−−−−−−→ Dn(Ŝ |R′, `)
gn−→ Dn−1(R′ |R, `)

of the Cohen factorization ϕ̀ = ϕ′ϕ̇ we conclude that Dn(Ŝ | ϕ̇, `) is bijective for
n ≥ 3 and injective for n = 2. Comparison of another segment of that sequence
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with the one for the homomorphisms k −→ R′ −→ ` yields a commutative
diagram with exact rows

D2(Ŝ |R, `)
D2(Ŝ | ϕ̇, `)−−−−−−−→ D2(Ŝ |R′, `) g2−−−−→ D1(R

′ |R, `) D1(ϕ′ |R, `)−−−−−−−−→ D1(Ŝ |R, `)y γ1

y∼= y
D2(` |R′, `) −−−−→ D1(R

′ |k, `) −−−−→ D1(` |k, `) .

It implies that g2 = 0, so the map D2(Ŝ | ϕ̇, `) is surjective.

Combining the lemma with (1.6.1), we get:

(1.8) Proposition 1.1. A local homomorphism R −→ (S, n, `) is com-
plete intersection at n if and only if D2(S |R, `) = 0; when this is the case,
Dn(S |R, `) = 0 for n ≥ 2.

Recall that André-Quillen homology localizes perfectly.

(1.9) Remark. Let ϕ : R −→ S be a homomorphism of commutative rings.
For each n ∈ Z and each q ∈ SpecS there is a isomorphism Dn(R|S,−)q ∼=
Dn(Sq|Rq∩S ,−q) of functors on the category of S-modules, (cf. [3, (4.59) and
(5.27)]).

Proof of Theorem (1.2). By (1.8) and (1.9), the following conditions are
equivalent:

(i) ϕ is l.c.i.;

(ii′) D2(S |R, k(q)) = 0 for each q ∈ SpecS ;

(iii′) Dn(S |R, k(q)) = 0 for each q ∈ SpecS and all n ≥ 2 .

If D2(S |R, −) = 0, then (ii′) holds by (1.9).
On the other hand, if (iii′) holds, then Dn(S |R, −) = 0 for n ≥ 2 by

[3, (S.29)].

2. Eilenberg-Zilber quasi-isomorphisms

The classical Eilenberg-Zilber theorem shows that the normalized chain
complex of a tensor product of simplicial abelian groups is homotopy equiva-
lent to the tensor product of their normalized chain complexes. We produce
a substitute for simplicial modules over a simplicial ring. On the way, we
introduce some notation for DG and simplicial algebra.
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(2.1) DG algebra (cf. [34], [27], [15]). DG objects have differentials of
degree −1, denoted ubiquitously ∂. Morphisms of DG objects are chain maps
of degree 0 that preserve the appropriate structure; quasi-isomorphisms are
morphisms that induce isomorphism in homology. The functor (−)\ forgets
differentials; |x| denotes the degree of an element x. Graded algebras are
trivial in negative degrees; graded modules are bounded below.

Elementary proofs of the next two assertions can be found in [10, §1.3].

Remark. Let M be a right DG module over A, such that M \ is a free
A\-module.

(1) If ν : N ′ −→ N is a quasi-isomorphism of left DG modules, then the in-
duced map M ⊗A ν : M ⊗A N ′ −→M ⊗A N is a quasi-isomorphism.

(2) If µ : M ′ −→ M is a quasi-isomorphism of right DG modules over A, and
M ′\ is free over A\, then for each left DG module N the induced map
µ⊗A N : M ′ ⊗A N −→M ⊗A N is a quasi-isomorphism.

(2.2) Simplicial algebra (cf. [20], [37]). The face operators dni : Gn −→ Gn−1

(i = 0, . . . , n) of a simplicial object G are morphisms in the correspond-
ing category. The normalization functor N from simplicial abelian groups
to nonnegatively graded chain complexes has (NG)n =

⋂n
i=1 Ker (dni ) and

∂n : (NG)n −→ (NG)n−1 equal to the restriction of dn0 . The homotopy of G is the
graded abelian group π(G) = H(NG). A weak equivalence is a homomorphism
of simplicial groups that induces an isomorphism in homotopy. Normalization
has a quasi-inverse, given by the Dold-Kan functor K (cf. [20, (3.6)]). The
functors N and K transform weak equivalences and quasi-isomorphisms into
each other.

The functor that assigns to a bisimplicial object its diagonal simplicial
subobject is denoted ∆. Thus, if B is a bisimplicial abelian group, then ∆B
has (∆B)n = Bn,n and face operators dni,i for i = 0. . . . , n. We denote Nv (re-
spectively, Nh) the normalization functor applied to the columns (respectively,
rows) of B. By the Eilenberg-Zilber-Cartier theorem [20, (2.9)] there is a natu-
ral weak equivalence Tot (NvNhB) −→ N∆B, where Tot (B•) denotes the total
complex associated to a double complex B•.

Let M be a simplicial right module; M is cofibrant if for each surjective
weak equivalence α : L′ −→ L of right simplicial A-modules and each homomor-
phism γ : M −→ L there is a homomorphism β : M −→ L′ such that αβ = γ.
If N is a simplicial left A-module, thenM⊗̄AN is the simplicial abelian group
with (M⊗̄AN )n = Mn ⊗An Nn and diagonal simplicial operators. Shuffle
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products give the normalization NA a structure of DG algebra, and make
NM and NN into a right and left DG module over NA, respectively.

Proposition. Let N be a simplicial left module over a simplicial ring A,
let M be a cofibrant simplicial right module over A, and let M ′ be a right DG
module over the DG ring NA, such that M ′\ is free over NA\.

If µ : M ′ −→ NM is a quasi -isomorphism of right DG modules over NA,
then the composition of µ⊗NA NN : M ′ ⊗NA NN −→ NM⊗NA NN with the
canonical map NM⊗NA NN −→ N(M⊗̄AN ) is a quasi -isomorphism.

Proof. Illusie [31, (3.3.3.8)] constructs an exact sequence of simplicial right
A-modules

P+
• : . . . −→ P[p]

δ[p]−−→ P[p−1] −→ . . . −→ P[0]

δ[0]−−→M −→ 0

where for each p ≥ 0 the simplicial A-module P[p] is equal to L[p]⊗̄ZA, with L[p]

a simplicial abelian group such that L[p] and π(L[p]) are free graded abelian
groups.

Let Kh denote the Dold-Kan functor applied to a nonnegative complex of
simplicial right A-modules. It produces a bisimplicial group with pth column
a simplicial right module over the simplicial ring A for each p, and qth row a
simplicial right module over the ring Aq for each q; the diagonal is naturally a
simplicial right A-module.

Let M• be the complex of simplicial A-modules with M[0] = M and

M[p] = 0 for p 6= 0. The map δ[0] defines a morphism P• = P+
• /M −→M• of

complexes of simplicial A-modules. It induces an isomorphism in δ-homology,
hence a weak equivalence of bisimplicial A-modules KhP• −→ KhM•, and
finally a weak equivalence of simplicial right A-modules ε : Q = ∆KhP• −→
∆KhM• =M. This yields a commutative square of homomorphisms of sim-
plicial abelian groups

Q⊗̄L
AN

ε⊗̄L
AN−−−−→ M⊗̄L

ANy y
Q⊗̄AN

ε⊗̄AN−−−−→ M⊗̄AN

where −⊗̄L
A− denotes the derived tensor product of Quillen [37, II.6] and

the vertical arrows are canonical homomorphisms. The top arrow is a weak
equivalence along with ε. By construction, Qn is a free module over An for
each n ≥ 0; by hypothesis, M is cofibrant, so Mn is a direct summand of a
free An-module for each n ≥ 0. By [37, p. II.6.10] both vertical maps are weak
equivalences, hence ε⊗̄AN is a weak equivalence.
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Set A = NA, M = NM, and N = NN . The complex P• = NvP• of right
DG modules over A, and the right DG modules P = Tot (P•) and Q = NQ,
appear in a diagram

P ⊗A N Tot (Nv(P•)⊗A N)
α−−−→ Tot (Nv(P•⊗̄AN ))∥∥∥∥ Tot ((Nvβ)⊗AN)

y yTot (Nvβ′)

Tot (NvNhKhP•)⊗A N Tot (Nv(NhKhP•)⊗A N)
α′−−−→ Tot (NvNhKh(P•⊗̄AN ))

γ⊗AN

y yγ′
N(∆KhP•)⊗A N η′−−−→ N((∆KhP•)⊗̄AN ) N(∆KhP•⊗̄AN )∥∥∥∥ ∥∥∥∥

Q⊗A N η−−−→ N(Q⊗̄AN )

of morphisms of chain complexes defined as follows:

• the equalities are canonical identifications;
• α and α′ are totalings of shuffle products;
• β : P• −→ NhKhP• and β′ : P•⊗̄AN −→ NhKhP•⊗̄AN are Dold-Kan iso-

morphisms;
• γ and γ′ are Eilenberg-Zilber-Cartier homotopy equivalences;
• η and η′ are shuffle products.

Thus, all vertical maps are quasi-isomorphisms, and the diagram commutes
due to the naturality of all the maps involved.

Filtering the chain complexes Tot (Nv(P•) ⊗A N) and Tot (Nv(P•⊗̄AN ))
by the resolution degree of P• we get a homomorphism of spectral sequences
rα∗,∗ : rE′∗,∗ −→ rEQ

∗,∗ for r ≥ 0. The map 0αp,∗ appears for each p in a com-
mutative diagram of chain maps

Tot (L[p] ⊗Z A)⊗A N
ζ⊗ZN−−−→ N(L[p]⊗̄ZA)⊗A N P[p] ⊗A N∥∥∥ 0αp,∗

y
Tot (L[p] ⊗Z N)

ζ′−−−→ N(L[p]⊗̄ZN ) N(P[p]⊗̄AN )

where P[p] = NP[p] and L[p] = NL[p], while ζ and ζ ′ are classical Eilenberg-
Zilber homotopy equivalences. Thus, 1αp,∗ is bijective and so H(α) is an iso-
morphism. We have shown that all the maps in the first diagram are quasi-
isomorphisms.
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An Eilenberg-Moore resolution of D is a complex of morphisms of right
DG modules

D+
• : . . . −→ D[p]

δ[p]−−→ D[p−1] −→ . . . −→ D[0]

δ[0]−−→M ′ −→ 0

such that the functors (−)\ and H(−), respectively forgetting the internal dif-
ferentials ∂ and computing their homology, yield exact sequences of free graded
modules over A\ and H(A), respectively; we refer to [34], [27], [15] for the con-
struction of such resolutions and of a morphism of complexes ξ+

• : D+
• −→ P+

•

with ξ+

−1 = µ : M ′ −→M .
Set D• = D+

• /M
′ and D = Tot D•. The morphism ξ• : D• = D+

• /M
′ → P•

of complexes of right DG modules over A induces a morphism of DG modules
ξ = Tot ξ• : D −→ P , and so a chain map ξ ⊗A N : D ⊗A N −→ P ⊗A N
that respects the filtrations by resolution degree. As a result we get a ho-
momorphism of spectral sequences rξ : rEEM −→ rE′ for r ≥ 0 that con-
verges to H(ξ ⊗A N) : H(D ⊗A N) −→ H(P ⊗A N). By construction, the map
H(ξ) : H(D•) −→ H(P•) is a morphism of free resolutions over H(A) and in-
duces an isomorphism H(µ). We conclude that 2ξ is an isomorphism, hence so
is H(ξ ⊗A N).

Let ε′ : D −→M ′ be the quasi-isomorphism of right DG modules induced
by δ[0]. As the A\-modules D\ and M ′\ are free, respectively by construction
and by hypothesis, ε′ ⊗A N is a quasi-isomorphism by (2.1.2). Thus, we now
have a commutative diagram of chain complexes in which all arrows adorned
by ' are quasi-isomorphisms

D ⊗A N '−−−→ P ⊗A N '−−−→ Q⊗A N '−−−→ N(Q⊗̄AN )

'
y y y y'

M ′ ⊗A N −−−→ M ⊗A N M ⊗A N −−−→ N(M⊗̄AN ) .

The composition of the maps in the bottom line is the desired quasi-isomor-
phism.

We interpolate a result from an earlier version of this paper, that is used
in [17].

(2.3) Künneth spectral sequences. Let A be a simplicial ring, M a sim-
plicial right A-module, N a simplicial left A-module, and let A, M , N be the
respective normalizations.

In a simplicial context, Quillen [36, §II.6] exhibits four Künneth spec-
tral sequences that converge to the homotopy of the derived tensor product
M⊗̄L

AN ; in particular
2EQ

p,q = Torπ(A)
p (π(M), π(N ))q =⇒ πp+q(M⊗̄L

AN ) .
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In a DG context, Eilenberg and Moore [34] construct a DG torsion product
TorA(M,N) and approximate it by two spectral sequence, one of which has

2EEM
p,q = TorH(A)

p (H(M),H(N))q =⇒ TorAp+q(M,N) .

From the point of view of homotopical algebra [36], TorA(M,N)=H(M ⊗L
A N),

where − ⊗L
A − is the derived tensor product on the category of DG modules

over A.

By definition, the Quillen and Eilenberg-Moore spectral sequences have
the same 2E page. The next statement was established in the course of the
preceding proof.

Proposition. There is an isomorphism of spectral sequences rω : rEEM

−→ rEQ with 2ω = id, that converges to an isomorphism of graded modules
H(M ⊗L

A N) ∼= π(M⊗̄L
AN ).

3. Deviations of local homomorphisms

In this section ϕ : (R,m, k) −→ (S, n, `) is a local homomorphism.

Let R
ϕ̇−→ R′

ϕ′−→ Ŝ be a Cohen factorization of ϕ̀. We denote R′[Y ] a DG
algebra over R′ such that R′[Y ]\ is a tensor product of symmetric algebras of
free modules with bases Yn for even n ≥ 0 and exterior algebras of free modules
with bases Yn for odd n ≥ 1 is. Such a DG algebra is a minimal model of Ŝ over
R′ if H(R′[Y ]) ∼= Ŝ, Y = Y>1, and the differential is decomposable in the sense
that ∂(Y ) ⊆ m′R′[Y ] + (Y )2R′[Y ]. Minimal models are characterized by the
following properties: Y = Y>1; ∂(Y1) minimally generates the ideal a = Ker ϕ′;
{cls(∂(y)) | y ∈ Yn} minimally generates the R′-module Hn−1(R′[Y<n]) for
n ≥ 2; as a consequence, minimal models always exist, and have Yn finite for
each n; for details we refer to [43] or [10, §7.2].

The next result shows that in the derived category of the category of R-
algebras the isomorphism class of a minimal model is an invariant of ϕ̀, and
hence of the map ϕ:

(3.1) Proposition. If R′[Y ′] and R′′[Y ′′] are minimal models of Ŝ com-
ing from Cohen factorizations of ϕ̀, then there exist a minimal model T [U ] of
Ŝ coming from a Cohen factorization of ϕ̀ and surjective quasi-isomorphisms

R′[Y ′]←− T [U ] −→ R′′[Y ′′]

of DG algebras over R that induce the identity on Ŝ. Furthermore,

card
(
Y ′1
)
− edim R′ = card

(
Y ′′1
)
− edim R′′
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and

card
(
Y ′n
)

= card
(
Y ′′n
)

for n ≥ 2 .

Proof. By [14, (1.2)] there exists a commutative diagram of ring homo-
morphisms

R′

↗ ↑ ↘
R −→ T −→ Ŝ ,

↘ ↓ ↗
R′′

where the horizontal row is a Cohen factorization and the vertical maps are
surjections with kernels generated by T -regular sequences that extend to min-
imal sets of generators of the maximal ideal of T . Thus, we may assume that
there is a surjective homomorphism R′′ −→ R′ with kernel of this type, and
switch the notation accordingly.

Changing Y ′′1 if necessary, we may also assume that it contains a subset

V such that ∂(V ) minimally generates Ker (R′′ −→ R′). As ∂(V ) is a regular
sequence, the Koszul complex R′′[V ] has H(K) ∼= R′, and is a DG subalgebra of
R′′[Y ′′]. Since R′′[Y ′′]\ is a free module over R′′[V ]\, we conclude by (2.1.1) that
the canonical map R′′[Y ′′] −→ R′′[Y ′′]/(∂(V ), V ) = R′[Y ′], where Y ′ = Y ′′rV ,
is a quasi-isomorphism. Thus, H(R′[Y ′]) ∼= Ŝ.

The differential of R′[Y ′] inherits the decomposability of that of R′′[Y ′′],
so R′[Y ′] is a minimal model of Ŝ over R′. By [10, (7.2.3)] the DG algebras
R′[Y ′] and R′[Y ] are isomorphic over R′; hence Y ′n = Yn for all n. Now note
that cardY ′1 = cardY ′1 = card (Y ′′1 ) − (edim R′′ − edim R′), and card (Y ′n) =
cardY ′n = card (Y ′′n ) for n ≥ 2.

In view of the proposition we refer to a minimal model of Ŝ over the ring
R′ in any Cohen factorization of ϕ̀ as a minimal model of the homomorphism
ϕ̀. We call the number

εn(ϕ) =
{

card (Y1)− edim R′ + edim S/mS for n = 2 ;

card (Yn−1) for n ≥ 3 ,

the nth deviation of ϕ. To explain the terminology, note that if the ring R

is regular and ϕ is surjective then [10, (7.2.7)] shows that εn(ϕ) = εn(S)
for n ≥ 2, where the nth deviation εn(S) of the local ring S is classically
defined in terms of an infinite product decomposition of its Poincaré series∑∞

n=0 rank ` TorSn(`, `).
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The deviations of a local ring measure its failure to be regular, or c.i. The
vanishing of the initial deviations of a local homomorphisms are interpreted
along similar lines.

(3.2) Remark. An equality ε2(ϕ) = 0 means that ϕ is flat with S/mS

regular, and is equivalent to the vanishing of εn(ϕ) for n ≥ 2.
Indeed, by [14, (1.5)] there is a Cohen factorization with edim R′ =

edim S. If ε2(ϕ) = 0 then Y1 = ?, so Ŝ = H0(R′[Y ]) = R′, hence Ŝ is
flat over R and Ŝ/mŜ is regular; these properties descend to S and S/mS.
Conversely, if ϕ is flat with regular closed fiber, then R −→ Ŝ = Ŝ is a Cohen
factorization of ϕ̀, so ϕ̀ has a minimal model with Y = ∅.

(3.3) Remark. An equality ε3(ϕ) = 0 means that ϕ is c.i. at n, and is
equivalent to the vanishing of εn(ϕ) for n ≥ 3; as a consequence, if ϕ is c.i. at
n then in each Cohen factorization of ϕ̀ the kernel of the surjective map ϕ′ is
generated by a regular sequence.

Indeed, the definitions of c.i. homomorphism and of deviations of a homo-
morphism allow us to replace ϕ by ϕ′; changing notation, we may assume that
ϕ : R −→ S is surjective. In this situation ε3(ϕ) = card (Y2) is the minimal
number of generators of H1(R[Y1]), where R[Y1] is the Koszul complex on a
minimal set of generators of a = Ker ϕ. Thus ε3(ϕ) vanishes if and only if a is
generated by a regular sequence, that is, if and only if ϕ is c.i. at n. When this
is the case the Koszul complex is exact, so R[Y ] = R[Y1]; in other words,we
have εn(ϕ) = card (Yn−1) = 0 for n ≥ 3.

We establish the rigidity of deviations for homomorphisms of finite flat
dimension, strengthening a result of Avramov and Halperin [16]: If ϕ is not
c.i. at n, then εn(ϕ) 6= 0 for n À 0 (it is stated there for ‘factorizable’ ho-
momorphisms, but the construction of Cohen factorizations in [14] shows that
each ϕ has this property).

(3.4) Theorem. If fdR S <∞ and εn(ϕ) = 0 for some n ≥ 4, then ϕ is
c.i. at n.

When R is regular and ϕ is surjective, the theorem is equivalent to
Halperin’s result [30] on the rigidity of deviations of local rings. We extend his
argument to the relative case by using Cohen factorizations, and develop short-
cuts based on the study of derivations in [10]. First, we record how conditions
on the flat dimension of ϕ pass through factorizations.

(3.5) Remark. If R −→ R′ −→ Ŝ is a Cohen factorization of ϕ̀ then

fdR S = fdR Ŝ ≤ pdR′ Ŝ ≤ fdR S + edim (S/mS)
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where edim R denotes the minimal number of generators of m and pdR′ Ŝ is
the projective dimension of the R′-module Ŝ (cf. [14, (3.2)] or [16, (3.2)]).

In particular, fdR S is finite only if pdR′ Ŝ is finite.

We recall some basics on Tate’s [41] construction of DG algebra resolutions
(for details, see [29], [10]). When A is a DG algebra A〈X〉 denotes a DG
algebra obtained from it by adjunctions of sets of exterior variables Xn in odd
degrees n ≥ 1 and of divided power variables in even degrees n ≥ 2. The ith

divided power of x ∈ Xeven is denoted x(i). It satisfies, among other relations,
|x(i)| = i|x|; x(0) = 1; x(1) = x, as well as

x(i)x(j) =
(
i+ j

i

)
x(i+j) and ∂(x(i)) = ∂(x)x(i−1) for all i, j ≥ 0 .

We say that X is a set of Γ-variables adjoined to A and A〈X〉 is a Γ-free
extension of A.

(3.6) Remark. If A0 is a local ring with maximal ideal m and residue field
`, then A〈X〉 is an acyclic closure of ` over A if X = X>1 and ∂ satisfies
the conditions: ∂(X1) minimally generates m modulo ∂(A1) and the classes
of {∂(x) | x ∈ Xn} minimally generate the A0-module Hn−1(A〈X<n〉) for
n ≥ 2. Gulliksen [29, (6.2))] proves that if A〈X〉 is an acyclic closure of `, then
∂(A〈X〉) ⊆ (m +A>1)A〈X〉 (cf. also [10, (6.3.4)]).

We need a simple case of [10, (7.2.11)].

(3.7) Lemma. A DG algebra `[Y ] with Y = Y>1 and ∂(Y ) ⊆ (Y )2`[Y ]
has a Γ-free extension B = `[Y ]〈X〉 with X = {xy | y ∈ Y, |xy| = |y| + 1},
H(B) = `, and ∂(B) ⊆ (Y )B.

Proof. Set `[Y>n] = `[Y ]/(Y<n). Starting with B0 = `[Y ] and X60 = ∅, as-
sume by induction that for some n ≥ 0 we have a surjective quasi-isomorphism
{n : Bn = `[Y ]〈X6n〉 −→ `[Y>n], where Xi = {xy | y ∈ Yi−1} denotes a set of Γ-
variables of degree i. The condition ∂(Y ) ⊆ (Y )2`[Y ] implies that Yn is a basis
of Hn(`[Y>n]) over `. Thus, for each y ∈ Yn there is a cycle zy ∈ Zn(`[Y ]〈X6n〉)
such that {n(zy) = y. Choosing a set Xn+1 = {xy | y ∈ Yn} of Γ-variables of
degree n+ 1, we extend {n to a morphism

Bn+1 = `[Y ]〈X6n〉〈Xn+1 | ∂(xy) = zy〉 −→ `[Y6n]〈Xn+1 | ∂(xy) = y〉 = Cn+1

of DG algebras that is the identity on Xn+1; it is easily seen to be a quasi-
isomorphism. It is well known that the DG subalgebra

Dn+1 = `[Yn]〈Xn+1 | ∂(xy) = y〉

of Cn+1 has H(Dn+1) = ` (cf. Cartan [18]). From (2.1.1) we see that Cn+1 −→
Cn+1 ⊗Dn+1 ` = `[Y>n+1] is a quasi-isomorphism. In the limit we get a
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quasi-isomorphism inj limn {
n : inj limnB

n −→ inj limn `[Y6n], which is just the
canonical augmentation B −→ `. Since we have constructed B as an acyclic
closure of ` over `[Y ], we have ∂(B) ⊆ (Y )B by (3.6).

(3.8) Lemma. Let R −→ R′ −→ Ŝ be a Cohen factorization of ϕ̀, let R′[Y ]
be a minimal model of Ŝ, and set `[Y>n] = R′[Y ]/(m′, Y<n)R′[Y ] for n ≥ 1.

If fdR S <∞, then for each n ≥ 1 the product of any q elements of positive
degree in H(`[Y>n]) is trivial when q = fdR S + edim (S/mS) + 1.

Proof. The DG algebra `[Y ] = R′[Y ]⊗R′ ` has Hi(`[Y ]) ∼= TorR
′

i (S, `) = 0,
and by (3.5) this module is trivial when i ≥ q. Setting Ji = 0 for i ≤ q − 2,
Jq−1 = ∂(`[Y ]q), and Ji = `[Y ]i for i ≥ q, we get a subcomplex J ⊆ `[Y ] with

H(J) = 0; for degree reasons, it is a DG ideal of `[Y ], so `[Y ] −→ C = `[Y ]/J
is a quasi-isomorphism of DG algebras.

Let B = `[Y ]〈X〉 be the Γ-free extension of Lemma (3.7). We set Bn =
`[Y ]〈X6n〉 and prove that

(
H>1(Bn)

)
q = 0. If n = 0 then B0 = `[Y ] is exact

in degrees ≥ q and the assertion is clear. If n > 0, then due to H(B) = ` and
∂(B) ⊆ (Y )B we have

Z>1(Bn) = Bn ∩ Z>1(B) = Bn ∩ ∂(B) ⊆ Bn ∩ (Y )B = (Y )Bn .

As Bn\ is a free module over `[Y ]\ the canonical map Bn −→ Bn/JBn is
a quasi-isomorphism by (2.1.1), so H(JBn) = 0. In view of the preceding
computation, this implies

(Z>1(Bn))q ⊆ Z(Bn) ∩ (Y )qBn ⊆ Z(Bn) ∩ JBn = Z(JBn) = ∂(JBn) .

We conclude that
(
H>1(Bn)

)
q = 0 and finish the argument by invoking the

quasi-isomorphism Bn = `[Y ]〈X6n〉 −→ `[Y>n] established in the preceding
proof.

Let A〈X〉 be an extension of a DG algebra A by a set of Γ-variables X =
X>1, and let U be a DG module over A〈X〉. A (chain) A-linear Γ -derivation
is a homogeneous (chain) map ϑ : A〈X〉 −→ U , such that the relations

ϑ(a) = 0 , ϑ(bb′) = ϑ(b)b′ + (−1)|b||b
′|ϑ(b′)b , ϑ(x(i)) = x(i−1)ϑ(x)

hold for all a ∈ A, b, b′ ∈ A〈X〉, x ∈ Xeven, and i ∈ N.
Let H0(A〈X〉) = S and set a = Ker (A0 −→ S). If X(2) denotes the set of

all products x(ir)
r · · ·x(is)

s with ir + · · · + is ≥ 2 then D = A + aX + AX(2) is
a DG submodule of A〈X〉, so the canonical projection π : A〈X〉 −→ L = A/D

makes L into a complex of free S-modules, with Xn a basis of Ln for each n.
We call L the complex of indecomposables of the extension A −→ A〈X〉. The
following is proved in [10, (6.3.6)].
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(3.9) Remark. Let U be a DG module over A with Ui = 0 for i < 0 and
let β : U −→M be a surjective quasi-isomorphism to a complex of S-modules.

Each chain map ξ : L −→ M of degree −n lifts to a chain Γ-derivation
ϑ : A〈X〉 −→ U of degree −n, such that βϑ = ξπ; if a family {ux ∈ U0}x∈Xn
satisfies β(ux) = ξ(x) for ux ∈ Xn, then ξ may be chosen with ξ(x) = ux for
each x ∈ Xn.

Proof of Theorem (3.4). Assume that there exists a local homomorphism
ϕ such that fdR S <∞, and εn(ϕ) = 0 for some n ≥ 4, but which is not c.i. at n.
By Remark (3.5) we may further assume that ϕ is surjective and pdR S <∞.
Fix a minimal model R[Y ] of ϕ and for each n ≥ 1 set `[Y>n] = R[Y ]/(m, Y<n),
where ` is the residue field of R.

Since ε3(ϕ) 6= 0 by Remark (3.3), we can find j with εj(ϕ) 6= 0 = εj+1(ϕ),
so that Yj−1 6= ∅ and Yj = ∅. Let i be the integer part of j−1

2 , set A = R[Y62i−1],
and let A〈X〉 be an acyclic closure of S = H0(A) over A. Here is the key

Claim. There exists an `-linear chain Γ-derivation θ of `〈X〉 = `⊗AA〈X〉,
such that θ(x) = 1 for some cycle x ∈ X2i.

It implies that cls(x(r)) 6= 0 ∈ H(`〈X〉) for all r ≥ 0. Indeed, if x(r) = ∂(v),
then 1 = θr(x(r)) = θr∂(v) = ∂θr(v) = 0, which is absurd. The multiplication
table for divided powers then shows that xr = r!x(r) 6= 0 when char (`) = 0,
and that x · x(p) · · ·x(pr) = x(1+p+···+pr) 6= 0 when char (`) = p > 0.

On the other hand, the graded algebra underlying R[Y ] = A[Y>2i] is a
free extension of A\, and A〈X〉 −→ S is a surjective quasi-isomorphism, so the
inclusion R[Y ] = A ⊆ A〈X〉 extends to a morphism of DG algebras φ : R[Y ] −→
A〈X〉; it is necessarily a quasi-isomorphism. By (2.1.2), so is the induced map

`[Y>2i] = `⊗A A[Y>2i]
`⊗Aφ−−−→ `⊗A A〈X〉 = `〈X〉 .

By Lemma (3.8) the product of every (pdR S + 1) elements of positive degree
in H(`〈X〉) is trivial: we have a contradiction, so it remains to establish the
claim.

For this, we take a closer look at the construction of φ : A[Y>2i] −→ A〈X〉.
Since Hn−1(A) = 0 for 1 < n < 2i, we have Xn = ∅ for n < 2i, and we

can take X2i = {xy | y ∈ Y2i}, with ∂(xy) = ∂(y). Let φ2i : A[Y2i] −→ A〈X2i〉
be the morphism of DG algebras over A, such that φ2i(y) = xy for y ∈ Y2i.
The map φ2i

n is bijective for n < 4i; hence H2i(φ2i) is an isomorphism. By
construction, the classes of the cycles ∂(Y2i+1) minimally generate H2i(A[Y2i]).

When j = 2i + 1, we have H2i(A[Y2i]) = 0, and hence X2i+1 = ∅. When
j = 2i+ 2, we take X2i+1 = {xy | y ∈ Y2i+1} and extend the map y 7→ xy to a

morphism φ2i+1 : R[Y62i+1] = A[Y2i][Y2i+1] −→ A〈X62i+1〉 of DG algebras over



     

472 LUCHEZAR L. AVRAMOV

A[Y2i]; for the same reasons as above, we conclude that φ2i+1
n is bijective for

n < 4i. Thus, if i ≥ 2 then 0 = H2i+1(R[Y62i+1]) ∼= H2i+1(A〈X62i+1〉), and so
X2i+2 = ∅; if i = 1 (that is, if j = 4), then φ3 still induces an isomorphism
Z3(R[Y63]) ∼= Z3(A〈X63〉), hence a surjection 0 = H3(R[Y63]) −→ H3(A〈X63〉)
that gives X4 = ∅.

As a result of the preceding discussion we now know that

Xn = ∅ for n < 2i ; X2i 6= ∅ ;
X2i+1 = ∅ if j = 2i+ 1 ;

X2i+2 = ∅ if j = 2i+ 2 .

We arbitrarily pick x ∈ X2i, and set X ′2i = X2i r {x}.
When j = 2i+1 the complex of indecomposables of Remark (3.9) has the

form
L : . . . −→ SX2i+2 −→ 0 −→ Sx⊕ SX ′2i −→ 0 −→ . . .

so H2i(L) = SX2i is a free S-module. If M is the complex of S-modules with
S concentrated in degree 0, then ξ(x) = 1 and ξ(X r {x}) = 0 defines a chain
map ξ : L −→M of degree −2i. By Remark (3.9) it lifts over the augmentation
ε : A〈X〉 −→ S to an A-linear chain Γ-derivation ϑ : A〈X〉 −→ A〈X〉 with
ϑ(x) = 1, so θ = `⊗A ϑ acts as desired.

When j = 2i+ 2 the complex of indecomposables has the form

L : . . . −→ SX2i+3 −→ 0 −→ SX2i+1
∂2i+1−−−→ Sx⊕ SX ′2i −→ 0 −→ . . . .

Consider the complex of free S-modules, concentrated in degrees 0 and 1

M : . . . −→ 0 −→ Se
δ−−→ S −→ 0 −→ . . .

with δ = (t1, . . . , te), where {t1, . . . , te} is a minimal set of generators of n. Let
ξ2i : L2i −→ M0 be the S-linear map defined by ξ2i(x) = 1 and ξ0(X ′2i) = 0.
Since Im (∂2i+1) ⊆ nX2i by Remark (3.6), we have Im (ξ2i∂2i+1) ⊆ nM0 = Im δ,
so there is an S-linear homomorphism ξ2i+1 : L2i+1 −→ M1 with δξ2i+1 =
ξ2i∂2i+1. Setting ξn = 0 for n ≥ 2i + 2, we get a chain map ξ : L −→ M of
degree −2i.

Let U be the DG module over A〈X〉 with U \ = (A〈X〉)\⊕
⊕e

h=1(A〈X〉uh)\

and ∂(uh) = th for h = 1, . . . , e. The augmentation ε : A〈X〉 −→ S induces a
quasi-isomorphism β : U −→ U ⊗A〈X〉 S = M , so Remark (3.9) yields an A-

linear Γ-derivation ϑ : A〈X〉 −→ U with ϑ(x) = 1. Now U = `⊗A U = `〈X〉 ⊕⊕e
h=1 `〈X〉uh is a DG module over `〈X〉 with ∂(uh) = 0 for h = 1, . . . , e. The

composition θ of `⊗A ϑ : `〈X〉 −→ U with the projection U −→ U/(u1, . . . , ue)
= `〈X〉 has the desired properties.

Finally, we establish the exponential growth of deviations: this is a ‘looking
glass’ version, in the sense of [8] and [15], of a result of Félix, Halperin, and
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Thomas [23] on the ranks of homotopy groups of finite CW complexes. The
strategy of their proof goes through, but its engine—the ‘mapping theorem’ of
Félix and Halperin [22] for rational Ljusternik-Schnirelmann category—is not
available in our context.

(3.10) Theorem. If fdR S <∞ and ϕ is not c.i. at n, then there exist a
real number γ > 1 and a sequence of positive integers sj with j ≥ 0, such that
2sj ≤ sj+1 ≤ qsj for q = fdRS + edim(S/mS) + 1 and

εsj (ϕ) > γsj for j ≥ 1 .

Proof. As in the preceding proof, we first put ourselves in a situation when
ϕ = ϕ̀ is surjective (so k = `), pdR S is finite, R[Y ] is a minimal model of ϕ,
and `[Y>n] = R[Y ]/(m, Y<n) for n ≥ 1. We write Y[n] for the span of

⋃2n
j=n Yj .

Letting Yn denote also the `-linear span of the variables y ∈ Yn, we can write
Y i

[n] for the span of all products involving i elements of Y[n]. Finally, we set

an = card (Yn) and s(n) =
∑2n

j=n card (Yj).
The first goal is to prove that the sequence {an}n>2 is unbounded.
For every y ∈ Y>n there are uniquely defined αi(y) ∈ Y i

[n] ⊆ `[Y>n], such
that

∂(y) ≡
∑
i>2

αi(y) mod
(
(Y>2n)`[Y>n]

)
.

For each i, the assignment y 7→ αi(y) defines an `-linear homomorphism
αi : Y>n −→ Y i

[n]. By the decomposability of the differential of `[Y>n] we have
∂(Y i

[n]) = 0 for all i ≥ 2. For q = fdR S+edim (S/mS)+1, Lemma (3.8) shows
that Y q

[n] consists of boundaries; hence

(3.10.1)
q∑
i=2

Y q−i
[n] αi(Y>n) ⊇ Y

q
[n] .

For degree reasons, αi(Yj) = 0 when j < in+ 1 or j > i(2n) + 1, so

(3.10.2) s(in+ 1) =
2in+2∑
j=in+1

aj ≥
i(2n)+1∑
j=in+1

rank ` αi(Yj) = rank ` αi(Y>n) .

Set d = (2q)q and n0 = 2(qd)2. By Theorem (3.4), we have s(n0) > (qd)2,
so assume by induction that integers n0, n1, . . . , nj have been found with
(3.10.3)

q(nh−1 + 1) ≥ nh + 1 and s(nh) ≥ (qd)s(nh−1) for 1 ≤ h ≤ j .
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Choose nj+1 = inj + 1 such that s(nj+1) = max{s(inj + 1) | 2 ≤ i ≤ q}. It is
then clear that q(nj + 1) ≥ nj+1 + 1. Using (3.10.2) and (3.10.1), we get

(q − 1)s(nj)q−2s(nj+1) ≥
q∑
i=2

s(nj)q−is(inj + 1)

≥
q∑
i=2

(
rank ` Y[nj ]

)q−i
rank ` αi(Y>nj )

≥ rank `

( q∑
i=2

Y q−i
[nj ]

αi(Y>nj )
)
≥ rank ` Y

q
[nj ]
≥
(
s(nj)
q

)

≥ s(nj)q

(2q)q
=
s(nj)
d

s(nj)q−1 ≥ (q2d)s(nj)q−1

so s(nj+1) ≥ (qd)s(nj), completing the induction step.
From (3.10.3) we see that qj(n0 + 1) ≥ nj + 1 and s(nj) ≥ qjs(n0)dj for

j ≥ 1. Assuming that c ≥ an for some c and all n, we get c(nj + 1) ≥ s(nj),
hence c(n0 + 1) ≥ s(n0)dj for all j ≥ 1. This is impossible, so the sequence
{an}n≥2 is unbounded, as desired.

Set b = (2q)q+1, choose r1 so that ar1 = a > b, and assume by induction
that r1, . . . , rj have been found, with rh = ih−1rh−1 + 1 for 2 ≤ ih−1 ≤ q and
arh ≥ a

ih−1
rh−1/b for 2 ≤ h ≤ j. The condition β(y) ≡ ∂(y) mod

(
(Y>rj )`[Y>rj ]

)
defines an `-linear map β : Y>rj −→

∑
i>2 Y

i
rj . Since β(y) = 0 unless |y| ≡ 1

(mod rj), using the decomposability of the differential and Lemma (3.8) as
before, we get

∑q
i=2 Y

q−i
rj β(Yirj+1) ⊇ Y q

rj . It follows that

q∑
i=2

aq−irj airj+1 ≥
(
arj
q

)
≥ aqrj

(2q)q
= (2q)

aqrj
b

;

hence airj+1 ≥ airj/b for some i with 2 ≤ i ≤ q; set ij = i and rj+1 = ijrj + 1.
The induction is now complete, so for each j ≥ 1 we have an expression

rj+1 = ujr1 + vj , with vj = (ijij−1 · · · i2) + · · · + (ijij−1) + ij + 1 and uj =
ijij−1 · · · i1. We note that

uj >

(
1
2

+ · · ·+ 1
2j

)
uj ≥

(
1
i1

+ · · ·+ 1
i1 · · · ij

)
uj = vj ,

and hence uj(r1 + 1) > ujr1 + vj = rj+1. Since a > b > 1, we obtain

arj+1 ≥
a
ij
rj

b
≥ a

ijij−1
rj−1

b1+ij
≥ · · · ≥ auj

bvj
>

(
a

b

)uj
>

(
a

b

)rj+1
r1+1

.
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Setting sj = rj + 1 and γ = s1
√
a/b, we see that γ > 1 and that

εsj (ϕ) = card
(
Yrj
)

= arj+1 > γrj+1 = γsj

2sj = 2rj + 2 ≤ rj+1 + 1 = sj+1 ≤ (qrj + 1) + 1 = qsj − q + 2 ≤ qsj
for all integers j ≥ 1. This is the desired conclusion.

4. André-Quillen homology

Let ϕ′ : R −→ S′ and S′ −→ k′ be homomorphisms of rings, with ϕ′ surjec-
tive. Quillen links the cotangent invariants of ϕ′ to invariants defined in terms
of classical derived functors by a fundamental first quadrant homological spec-
tral sequence of k′-algebras

2Ep,q = πp+q(Symk′
q (L(S′ |R)⊗S′ k′)) =⇒ TorRp+q(S

′, k′)

where Symk′ denotes the symmetric algebra functor over k′, applied dimension-
wise, and L(S′ |R) is a simplicial S′-module that underlies the construction of
the cotangent complex, in the sense that L(S |R) = N(L(S |R)) (cf. [37, (6.3)]);
note that the 2E page only depends on π(L(S |R)⊗S k′) = D(S |R, k′) (cf.
Dold [19]).

We are interested in an edge homomorphism, for which we review some
more divided powers. A DG Γ-algebra is a graded strictly commutative algebra
in which each element x of even positive degree has a system of divided powers
x(i) compatible with the differential (cf. [18], [29]). It is well known—but a
complete reference is hard to find—that the normalization NA of a commuta-
tive simplicial ring A is a DG Γ-algebra, and the divided powers pass to the
homotopy π(A) = H(NA). (Cartan’s text [18] is the original source, but the
statement does not seem to appear there; x(i) can be defined directly in terms
of Eilenberg-Zilber shuffles, as in Nicollerat [35, p. 660] or Goerss [25, p. 30].)

(4.1) Remark. If S is a cofibrant simplicial algebra resolution of the R-
algebra S′ (cf. [37]), then TorR(S′, k′) = H(N(S⊗̄Rk′)) is a Γ-algebra by the
preceding remarks. Let Tn(R,S′, k′) be the quotient of TorR(S′, k′) by its
graded k′-submodule spanned by 1, all products uv with u, v ∈ TorR

>1(S
′, k′),

and all divided powers w(i) with w ∈ TorR2j(S
′, k′) for i ≥ 2, and j ≥ 1. By

[37, (6.5)] or [2, §6], the edge homomorphism

TorRn (S′, k′) � ∞En−1,1 ↪→ 2En−1,1 = Dn(S′ |R, k′)

induces k′-linear maps βn : Tn(R,S′, k′) −→ Dn(S′ |R′, k′). When S′ and k′ are
fields of characteristic 0 Quillen [37, (7.3)] proves that βn is an isomorphism
for 1 ≤ n <∞ (cf. also [3, (19.21)]). When S′ and k′ are fields of characteristic
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p > 0 André [4] proves that βn is an isomorphism for 1 ≤ n ≤ 2p, but not
necessarily for n = 2p+ 1.

The spectral sequence in the next theorem takes an input analogous to
that of Quillen’s sequence described above, and is constructed along similar
lines. However, it converges to invariants of ϕ defined in terms of DG—rather
than classical—homological algebra. We denote Σ the suspension functor [20,
(5.3)] on the category of simplicial S-modules.

(4.2) Theorem. If ϕ : R −→ (S, n, `) is a surjective local homomorphism,
then there is a homological first quadrant spectral sequence of Γ-algebras over `,
such that

2Ep,q = πp+q(Sym`
q (ΣL(S |R)⊗S `)) =⇒ `〈X〉p+q

where X = X>2 is a set of Γ-variables with card (Xn) = εn(ϕ) for n ≥ 2. The
edge map

`〈X〉n � ∞En−1,1 ↪→ 2En−1,1 = Dn−1(S |R, `)

induces `-linear homomorphisms βn : `Xn −→ Dn−1(S |R, `). If p = char `,
then βn is bijective for 2 ≤ n < ∞ when p = 0, and for 2 ≤ n ≤ 2p when
p > 0.

In view of Lemma (1.7), the last assertion of the theorem yields:

(4.3) Corollary. For each local homomorphism ϕ : R −→ (S, n, `) there
are equalities

rank ` Dn(S |R, `) = εn+1(ϕ) for
{

2 ≤ n <∞ when char ` = 0 ;

2 ≤ n ≤ 2p− 1 when char ` = p > 0 .

Proof of the theorem. Choose first a cofibrant simplicial algebra resolution
S of the R-algebra S, such that S0 = R (cf. [3, (9.27)]). As F = S⊗̄R` has
F0 = `, choose next a cofibrant simplicial algebra resolution G of the F-algebra
` = F/F>1 by adjoining to F variables of degrees ≥ 2 (cf. [3, (9.19)]). The
simplicial ideal J = Ker (G⊗̄F` −→ `) is trivial in degrees ≤ 1, so πi(J q) = 0
for i < q by a theorem of Quillen ([37, (6.12)] or [3, (13.3)]). Thus, the J -adic
filtration of G⊗̄F` yields a convergent spectral sequence

2Ep,q = πp+q(J q/J q+1) =⇒ πp+q(G⊗̄F`) .
It remains to express the vector spaces above in terms of invariants of ϕ.

Each Gn is a polynomial ring over Fn, so there are isomorphisms of sim-
plicial vector spaces J q/J q+1 ∼= Sym`

q(J /J 2) and J /J 2 = L(` |F). The

homomorphisms ` −→ F −→ ` give rise to a Jacobi-Zariski distinguished trian-
gle of simplicial `-vector spaces

L(F |`)⊗̄F` −→ L(` |`) −→ L(` |F) −→ ΣL(F |`)⊗̄F` .
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As L(` |`) = 0, it produces a weak equivalence L(` |F) −→ ΣL(F |`)⊗̄F`. On the
other hand, recall that the simplicial module L(−|−) is defined by degreewise
application of the functor Ω(−|−) of Kähler differentials. Standard change of
rings properties of modules of differentials yield the isomorphism below

L(F |`)⊗̄F` = Ω(F |`)⊗̄F` ∼= Ω(S |R)⊗̄S` = L(S |R)⊗̄S` .

The identification of the second page is complete.
Let R[Y ] be a minimal model of S over R, as in Section 3. Since R[Y ]\ is a

free graded R-algebra, the identity map of S lifts to a morphism R[Y ] −→ NS
of DG algebras over R, that is obviously a quasi-isomorphism. For each n the
R-module (NS)n is a direct summand of the free R-module Sn, so is itself
free as R is local. It follows from (2.1.2) that R[Y ] ⊗R ` −→ (NS) ⊗R ` is a
quasi-isomorphism.

Let η : `[Y ] −→ F be the composition of morphisms of DG algebras

`[Y ] = R[Y ]⊗R ` −→ (NS)⊗R ` = N(S ⊗R `) = NF = F

and let `[Y ]〈X〉 be the acyclic closure of ` over `[Y ] given by Lemma (3.7). As
G = NG is a DG Γ-algebra and H0(G) = `, a standard argument by induction
on the degree of x ∈ X shows that η extends to a morphism of DG Γ-algebras
ζ : `[Y ]〈X〉 −→ G that commutes with the divided powers of the Γ-variables in
X; it is necessarily a quasi-isomorphism.

Define a morphism of DG algebras χ : F 〈X〉 −→ G by χ(f ⊗ 1) = η(f)
and χ(1⊗ x(i)) = ζ(x)(i). Note that χ ◦ (η ⊗`[Y ] `[Y ]〈X〉) = ζ. Since `[Y ]〈X〉\
is free over `[Y ]\, the map

`[Y ]〈X〉 = `[Y ]⊗`[Y ] `[Y ]〈X〉
η⊗`[Y ]`[Y ]〈X〉
−−−−−−−−−→ F ⊗`[Y ] `[Y ]〈X〉

= F ⊗`[Y ] `[Y ]〈X〉 = F 〈X〉

is a quasi-isomorphism by (2.1.1). Thus, χ is a quasi-isomorphism.
The F \-module F 〈X〉\ is free and G is the normalization of the cofibrant

F-module G, so χ ⊗F ` is a quasi-isomorphism by (2.2). On the other hand,
the inclusion ∂(`[Y ]〈X〉) ⊆ (Y )`[Y ]〈X〉 provided by (3.7) yields ∂(F 〈X〉) ⊆
(F>1)F 〈X〉. Thus,

`〈X〉 = H(F 〈X〉 ⊗F `)
H(χ⊗F `)−−−−−→ H(G⊗F `)

is an isomorphism of graded `-algebras that respects the divided powers of the
Γ-variables Xeven. They determine the divided powers of all elements of even
degree of `〈X〉, so this is an isomorphism of Γ-algebras over `.

The ideals N(J q) are closed with respect to the divided powers of
N(G⊗̄F`), so our spectral sequence is one of Γ-algebras. Products of elements
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of positive degree and nontrivial divided powers of elements of positive even
degree are contained in N(J 2). Thus, the edge map annihilates them, and so
induces an `-linear homomorphisms

βn : `Xn −→ πn(J /J 2) = Dn−1(S |R, `) .
When char ` = 0 the spectral sequence degenerates and each βn is an iso-
morphism by the argument of Quillen for the proof of [37, (7.3)]. When
char ` = p > 0 the edge homomorphism βn is bijective for 2 ≤ n ≤ 2p by
the argument of André [4].

Next we prove a local version of Quillen’s conjecture by replaying an ar-
gument from [9].

(4.4) Theorem. Let ϕ : R −→ (S, n, `) be a local homomorphism, such
that fdR S <∞.

If Dn(S |R, `) = 0 for nÀ 0 then ϕ is c.i. at n.

Proof. By Lemma (1.7) and Remark (3.5), we may assume that ϕ is onto;
the vector space Dn(S |R, `) then has finite rank for each n (cf. [3, (5.12)]),
and vanishes for n ≤ 0.

By hypothesis, Dn(S |R, `) = πn(L(` |F)) is not zero for only finitely many
n. By the Dold-Kan equivalence, the simplicial vector space L(` |F) is a direct
sum

⊕m
j=0Wj of simplicial vector spaces, such that π(W0) = 0 and there exist

positive integers n1, . . . , nm for which πnj (Wj) ∼= ` and πn(Wj) = 0 if n 6= nj .
Thus,

H(Sym`Wj) ∼= H(Sym`W0)⊗
m⊗
j=1

H(Sym`Wj) .

By Dold and Thom [21], H(Sym`W0) ∼= ` and H(Sym`Wj) = H(Z, nj , `),
where H(Z, n, `) denotes the homology with coefficients in ` of the Eilenberg-
MacLane space K(Z, n) with unique nontrivial homotopy group πn(K(Z, n))
∼= Z.

Set fn(t) =
∑∞

i=0 rank ` Hi(Z, n, `)ti. If char ` = 0, then H(Z, n, `) is
a free skew-commutative `-algebra on a single generator of degree n; hence
fn(t) = 1+tn or fn(t) = 1/(1−tn). When char ` = 2 Serre computes H(Z, n, `)
and proves [39] that fn(t) converges in the open unit disk. When char ` = p > 2
that conclusion is obtained by Umeda [42, (2.i)], based on the computation of
H(Z, n, `) by Cartan [18]. (Alternative derivations of H(Sym`Wj) can be found
in [35], and of convergence in [9].)

The spectral sequence of Theorem (4.2) yields coefficientwise inequalities
∞∑
n=2

εn(ϕ)tn =
∞∑
n=2

card (Xn)tn 4
∞∑
n=0

rank ` `〈X〉ntn 4
m∏
j=1

fnj (t)
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so
∑∞

n=0 εn(ϕ)tn converges in the unit disk. Theorem (3.10) then implies that
ϕ is c.i. at n.

(4.5) Remark. If R is a regular local ring, then in each Cohen factorization
of ϕ̀ the ring R′ is regular; it follows from the definitions that ϕ is c.i. at n if
and only the local ring S is a complete intersection.

In the special case S = k = `, the implication (iii) =⇒ (i) of the next
corollary is a well-known consequence of basic change of rings properties of
André-Quillen homology (cf. (1.6)); the converse, conjectured in [37, (11.7)],
was proved by Gulliksen [28] when char k = 0 and by Avramov [9] when
char k > 0.

(4.6) Corollary. The following conditions are equivalent :

(i) R is a complete intersection and Dn(S |R, `) = 0 for nÀ 0.

(ii) S is a complete intersection and Dn(S |R, `) = 0 for nÀ 0.

(iii) R and S are complete intersections.

When they hold , Dn(S |R, `) = 0 for n ≥ 3.

Proof. Set char ` = p, and let η : Z(p) −→ S be the local homomorphism

induced by the canonical map Z −→ S. All the assertions of the corollary follow
from the theorem and the preceding remark, applied to the Jacobi-Zariski exact
sequence

· · · −→ Dn+1(S |Z(p), `) −→ Dn(R |Z(p), k)⊗k ` −→ Dn(S |R, `)

−→ Dn(S |Z(p), `) −→ · · ·

of the homomorphisms Z(p) −→ R −→ S.

We can now prove the remaining results announced in Section 1.

Proof of Theorems (1.3)–(1.5). Let ϕ : R −→ S be a homomorphism of
noetherian rings. If ϕ is l.c.i, then it is locally of finite flat dimension by (3.5),
and has Dn(S |R, −) = 0 for n À 0 by the localization property (1.9), and
by Theorem (1.2): this is the only if part of Theorem (1.3). The converse—
Quillen’s conjecture—results from Theorem (4.4) by localization.

Assume that (m − 1)! is invertible in S, and that Dn(S |R, −) = 0 for
some n ≥ 2, such that 2 ≤ n ≤ 2m − 1. If q is a prime ideal of S, then
n ≤ 2 char k(q) − 1. Remarks (1.9) and (3.5), and Corollary (4.3) translate
Theorem (3.4) on the rigidity of deviations into Theorem (1.4) on the rigidity
of André-Quillen homology.



        

480 LUCHEZAR L. AVRAMOV

Corollary (4.6) and localization establish all the assertions of Theorem
(1.5), except for the vanishing of Dn(S |R, −) = 0 for n ≥ 3 when R and S

are locally complete intersections; in that case, they give Dn(S |R, k(q)) = 0
for n ≥ 3 and each q ∈ SpecS, and we conclude that the homology functors
vanish by [3, (S.29)].

We finish this section with an application of the result of [7], on maps of
vector spaces of indecomposables in Tor’s, to the proof of a vanishing theorem
for connecting homomorphisms in some Jacobi-Zariski exact sequences. For
surjective ring homomorphisms and i = 1 the theorem below may be read off
the proof of Theorem 3 in Rodicio [38].

(4.7) Theorem. Let ψ : Q −→ (R,m, k) and ϕ : (R,m, k) −→ (S, n, `)
be local homomorphisms. If fdR S < ∞, then for each local homomorphism
ψ : Q −→ R the connecting map g2i in the Jacobi -Zariski exact sequence

. . . −→D2i(R |Q, `) −→ D2i(S |Q, `) −→ D2i(S |R, `)
g2i−−→D2i−1(R |Q, `) −→ . . .

is trivial for 1 ≤ i ≤ ∞ if char k = 0, and for 1 ≤ i ≤ p if char k = p > 0.

Proof. Consider the commutative diagram of local homomorphisms

Q
ψ−−−→ R

ϕ−−−→ S

ψ

y yϕ yε
R

ϕ−−−→ S
ε−−−→ `y yε

k
ξ−−−→ ` .

The canonical map TorR(ξ, `) : TorR(k, `) −→ TorS(`, `) induced by ϕ is
a homomorphism of Γ-algebras, and so induces for each n a natural homo-
morphism Tn(ϕ, ξ, `) of the graded `-vector spaces defined in Remark (4.1).
For each i ≥ 1, we thus get a commutative diagram of linear maps of `-vector
spaces

D2i(S |R, `) g2i−−−−→ D2i−1(R |Q, `)yD2i(ε |R, `)

∥∥∥∥
T2i(R, k, `)

β2i−−−−→ D2i(k |R, `)
D2i(ξ |R, `)−−−−−−−→ D2i(` |R, `) −−−−→ D2i−1(R |Q, `)

T2i(ϕ,ξ,`)

y D2i(ξ |R, `)

y yD2i(` |ϕ, `)

T2i(S, `, `)
β2i−−−−→ D2i(` |S, `) D2i(` |S, `)
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in which the third column is a segment of a Jacobi-Zariski exact sequence
associated with the homomorphisms R −→ S −→ `. To describe the maps in
the diagram we set char k = p.

The map T2i(ϕ, ξ, `) is injective for i ≥ 1 by the main result of [7].
The map β2i is bijective for all i if p = 0, for 1 ≤ i ≤ p if p > 0 (cf. (4.1)).
The map D2i(ξ |R, `) is bijective for i ≥ 1 because in the Jacobi-Zariski

exact sequence associated with the homomorphisms R −→ k −→ ` the spaces
Dn(k | `, `) vanish for n ≥ 2 by (1.6.3).

From the commutativity of the diagram we conclude first that D2i(ε |R, `)
= 0, then that g2i = 0, where 1 ≤ i <∞ if p = 0 and 1 ≤ i ≤ p if p > 0.

5. L.c.i. homomorphisms

Throughout this section, ϕ : R −→ S denotes a homomorphism of noe-
therian rings.

The results that follow establish the stability of the class of l.c.i. homo-
morphisms. They parallel those on Gorenstein homomorphisms in [11] and on
Cohen-Macaulay homomorphisms in [13], with a bonus: the base change and
decomposition theorems are stronger.

We start by verifying that the concept of l.c.i. homomorphism introduced
in Section 1 subsumes earlier notions, whenever they are defined. From (1.9)
and (4.5) we get:

(5.1) Structure homomorphisms. When the ring R is regular (in partic-
ular, when R = Z) the homomorphism ϕ is l.c.i. if and only if the ring S

is l.c.i.

For a flat homomorphism the complete intersection property is easy to
describe.

(5.2) Flat homomorphisms. When ϕ is flat, it is l.c.i. if and only if all its
nontrivial fibers are complete intersections.

It suffices to establish the local statement:

(5.2.1) Lemma. A flat local homomorphism ϕ : (R,m, k) −→ (S, n, `) is
c.i. at n if and only if the local ring S/mS is a complete intersection.

Proof. The homomorphism ϕ is c.i. at n if and only if D2(S |R, `) = 0,
cf. (1.8). The local ring S/mS is c.i. if and only if D3(` |S/mS, `) = 0 (cf. [3,
(6.27), (10.20)]). The test modules are isomorphic (cf. the proof of (1.7)).
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The next result applies, in particular, to R-algebras essentially of finite
type. It can be established by elementary arguments with regular factoriza-
tions, along the lines of the proof of [11, (6.3)], but the use of cotangent
homology is more expedient.

(5.3) Smoothable homomorphisms. Let ϕ = ϕ′ϕ̇, where ϕ̇ : R −→ R′ is
regular, R′ is noetherian, and ϕ′ : R′ −→ S is surjective with kernel a.

If ϕ is l.c.i., then ap′ is generated by a regular sequence for each prime
ideal p′ of R′.

If am′ is generated by a regular sequence for each maximal ideal m′ of R′,
then ϕ is l.c.i.

Proof. In view of (1.1), the Jacobi-Zariski exact sequence

D2(R′ |R, N) −→ D2(S |R, N) −→ D2(S |R′, N) −→ D1(R′ |R, N)

yields D2(S |R, −) ∼= D2(S |R′, −). By (1.2), ϕ is l.c.i. if and only if
D2(S |R′, −) = 0. This condition can be checked locally, either over SpecS or
over MaxS; (1.9) translates it to: D2(Sq |R′p′ , −) = 0 with q ranging over the
corresponding subset of Spec. S and p′ = q ∩ R′. By (1.6.1), the last equality
holds if and only if ap′ is generated by a regular sequence.

Restating part of Theorem (1.5) with the aid of Theorem (1.2), we get:

(5.4) Homomorphisms of l.c.i. rings. When the rings R and S are l.c.i.,
the homomorphism ϕ is l.c.i. if and only if it is locally of finite flat dimension.

As in the case of rings, the l.c.i. property interpolates between regularity
and Gorensteinness.

(5.5) Hierarchy. A regular homomorphism is l.c.i.
An l.c.i. homomorphism is locally Gorenstein.

Proof. The first assertion results from a comparison of (1.1) and (1.2).
For the second assertion, recall from [14, (3.11)] that ϕ is Gorenstein at q

if in some Cohen factorization of (̀ϕq) the kernel of the surjective map is a
Gorenstein ideal; ideals generated by regular sequences have that property.

In the next three theorems ψ : Q −→ R is a homomorphism of noetherian
rings.

(5.6) Composition. If ψ and ϕ are l.c.i. homomorphisms then so is ϕψ.

Proof. Consider the exact sequence D2(R |Q, −) −→ D2(S |Q, −) −→
D2(S |R, −) on the category of S-modules, and invoke (1.2).
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As explained in the introduction, the next theorem has consequences for
the functoriality of orientations of morphisms discussed in [24, (17.4.6)].

(5.7) Decomposition. If ϕ is locally of finite flat dimension and ϕψ is l.c.i.,
then ϕ is l.c.i. and ψ is c.i. on the image of aϕ.

Again, it suffices to establish the local statement.

(5.7.1) Lemma. If ψ : Q −→ (R,m, k) and ϕ : (R,m, k) −→ (S, n, `) are
local homomorphisms, such that fdR S <∞ and ϕψ is c.i. at n, then ψ is c.i.
at m and ϕ is c.i. at n.

Proof. We play a game of musical chairs with Proposition (1.8) and the
exact sequence

D3(S |R, `) −→ D2(R |Q, `) −→ D2(S |Q, `) −→ D2(S |R, `) −→ 0

provided by Theorem (4.7). The proposition translates the hypothesis into
D2(S |Q, `) = 0. The sequence implies D2(S |R, `) = 0. The proposition
then yields D3(S |Q, `) = 0. The sequence returns D2(R |Q, `) = 0. The
proposition concludes that ψ is c.i. at m.

As aϕ is surjective when ϕ is faithfully flat, the last two theorems imply:

(5.8) Flat descent. When ϕ is faithfully flat, the composition ϕψ is l.c.i.
if and only if both homomorphisms ϕ and ψ have this property.

In view of (5.1), when Q = Z the (de)composition theorems yield state-
ments on the transfer of the l.c.i. property of rings along ϕ; in the flat case,
by (5.2) they show that S is l.c.i. if and only if R and the nontrivial fibers of
ϕ are l.c.i., as proved in [6].

(5.9) Ascent. If R and ϕ are l.c.i., then so is S.

(5.10) Descent. If S is l.c.i. and ϕ is locally of finite flat dimension, then
R is l.c.i. on the image of aϕ and ϕ is l.c.i.

The functorial properties of cotangent homology give a very satisfactory
result on

(5.11) Flat base change. Let R′
ρ←−− R

ϕ−→ S be homomorphisms of noe-
therian rings, such that S′ = S⊗RR′ is noetherian, and let ϕ′ = ϕ⊗RR′ : R′ −→
S′ be the induced map.

(1) If TorRn (S,R′) = 0 for n > 0 and ϕ is l.c.i., then ϕ′ is l.c.i.

(2) If ρ is faithfully flat and ϕ′ is l.c.i., then ϕ is l.c.i.
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Proof. Under the hypothesis of (1) the functors D2(S′ |T , −) and
D2(S |R, −) on the category of S′-modules are isomorphic (cf. [3, (4.54)]). Un-
der the hypothesis of (2) the functors D2(S′ |T , (−⊗R R′)) and D2(S |R, −)⊗R
R′ on the category of S-modules are isomorphic (cf. [3, (4.58)]). Now both as-
sertions result from (1.2).

The localization problem for the complete intersection property asks when
a homomorphism ϕ that is c.i. at the maximal ideals of S is actually l.c.i. By
(5.4) smoothable homomorphisms have this property, but localization fails in
general. For instance, the m-adic completion map R −→ R̂ of a local ring
(R,m) is always complete intersection at m̂, but it is l.c.i. precisely when the
formal fibers of R are l.c.i. rings. Thus, the singularities of the formal fibers of
R may contain obstructions to localization of c.i. homomorphisms.

When ϕ is flat, Marot [33] and Tabâa [40] prove that these are the only
obstructions. The next theorem extends the result to all l.c.i. homomorphisms.
Applied to the structure map Z −→ S it shows that if S is an l.c.i. ring, then
so are its localizations; cf. [6].

(5.12) Localization. Assume that for each n ∈ MaxS the formal fibers of
the local ring Rn∩R are l.c.i. rings. If ϕ is c.i. at each maximal ideal of S, then
ϕ is l.c.i.

In the proof of the more refined local statement below we use a special
case of the result for flat homomorphisms: R and S are complete and S/mS

is regular; in [12, §3, Step 1], [13, (5.5)] this case is handled directly, with the
help of Cohen factorizations.

(5.12.1) Lemma. Let ϕ : R −→ (S, n, `) be a local homomorphism that is
c.i. at n. If the formal fibers of R are l.c.i. rings, then ϕ is l.c.i. and the formal
fibers of S are l.c.i. rings.

Proof. In view of (1.8), (5.2), (1.2), we have D2(S |R, `) = 0 and
D2(R̂ |R, −) = 0. We want to prove that ϕ is c.i. at each q ∈ SpecS, and
that the homomorphism σq∗ induced by the completion σ : S −→ Ŝ is c.i. at
each q∗ ∈ Spec Ŝ lying over q.

Set p = q ∩R, let ρ : R −→ R̂ be the completion map, let R̂ −→ R′ −→ Ŝ

be a Cohen factorization of the homomorphism ϕ̂ : R̂ −→ Ŝ induced by ϕ, and
set p∗ = q∗∩R̂ ∈ Spec R̂. As D2(Ŝ |R′, `) ∼= D2(S|R, `) = 0, we see from (1.6.1)
that D2(Ŝ |R′, −) vanishes, and then from (1.9) that D2(Ŝq∗ |R′p′ , k(q∗)) = 0.
In the Jacobi-Zariski exact sequence

D2(R′p′ | R̂p∗ , k(q∗)) −→ D2(Ŝq∗ | R̂p∗ , k(q∗)) −→ D2(Ŝq∗ |R′p∗ , k(q∗))
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the first group vanishes by the special case noted before the statement of the
lemma, hence D2(Ŝq∗ | R̂p∗ , k(q∗)) = 0. The Jacobi-Zariski exact sequence

D2(R̂p∗ |Rp, k(q∗)) −→ D2(Ŝq∗ |Rp, k(q∗)) −→ D2(Ŝq∗ | R̂p∗ , k(q∗))

yields D2(Ŝq∗ |Rp, k(q∗)) = 0. By (1.7) the composition Rp −→ Sq −→ Ŝq∗ is
c.i. at q∗Ŝq∗ . Since the second map is flat, the desired assertions follow from
(5.7).

Finally, the proof of [11, (6.11)] shows that the localization and flat base
change properties have the following consequence.

(5.13) Completion. Assume that for each n ∈ MaxS the formal fibers
of the local ring Rn∩R are l.c.i. rings. If a ⊂ R and b ⊂ S are ideals such
that ϕ(a) ⊆ b 6= S, then the following hold for the induced homomorphism
ϕ∗ : R∗ −→ S∗ of ideal-adic completions.

(1) If ϕ is l.c.i., then so is ϕ∗.
(2) If a is contained in the Jacobson radical of R and ϕ∗ is l.c.i., then so is ϕ.
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