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Abstract. In this paper, we prove that a unit-regular ring R is isomorphic to a
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1. Introduction

A longstanding open problem of Von Neumann regular rings is the matrix-isomorphism prob-
lem for the class of unit-regular rings (cf. [5, open problem 47]): If R and S are unit-regular
rings such that Mn(R) ∼= Mn(S) for some positive integer n, is R ∼= S? This problem,
up to the present moment, has not yet been completely answered, except Goodearl himself
pointed out implicitly in 1982 [6] that the answer to this problem is positive if the rings are
directly finite right ℵ0-continuous regular rings. It is natural to ask whether the answer is
still positive if the rings are unit-regular without any restrictions or conditions imposed on
them. In this connection, Goodearl [8] conjectured that the answer to this problem might be
negative in general as he has constructed a unit-regular ring R whose Grothendieck group
K0(R) contains some torsion elements, so that K0(R) of R is not necessarily unpreforated.
On the other hand, Busque [3] has introduced the concept of directly finite ℵ0-complete

regular rings in 1980. For the sake of brevity, we just call the directly finite ℵ0-complete
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non-simple regular rings the Busque rings and we also name the directly finite ℵ0-continuous
regular rings the Goodearl rings, named after Goodearl [6]. It is observed that the structure
of Busque rings is quite close to Goodearl rings because they are both unit-regular, but they
are independent to each other.
In this paper, some properties of Busque rings will be investigated, in particular, we show

that if the lattice LR(R) of the principal right ideals of a unit-regular ring R is ℵ0-complete
then the n-cancellation law (n > 1) holds in LR(R). By using this property, we show that
if φ : Mn(R) → Mn(S) is an isomorphism and S is a Busque ring then R ∼= S. Thus the
matrix-isomorphism problem is answered positively for the class of Busque rings. In fact,
this result can be regarded as a parallel result of Goodearl for right ℵ0-continuous regular
rings, although Busque regular rings and Goodearl rings are independent. It is noted by
Ara, O’Meara and Tyukavkin [2] that cancellation property also holds for projective modules
over regular rings with comparability, and all matrix rings Mn(R) satisfy the condition of s-
comparability if the base R is itself a regular ring with s-comparability. Further properties of
regular rings with s-comparability have been recently obtained by Kutami (see [9] and [10]).
Based on the properties of regular rings with comparability, one hopes that the matrix-
isomorphism problem might also have a positive answer for some classes of directly finite
non-simple regular rings with comparability because the Busque rings can be viewed as its
special case. A replacement lemma is introduced here and this lemma may be helpful in
solving the proposed question of Goodearl [5].
Throughout this paper, all rings R are associative rings with identity and all R-modules

are unitary R-modules.
For the sake of completeness, we list here the following notations and results which will

be frequently referred in the paper:

Notations. Let A, B beR-modules and k any cardinal number. Then we give some notations
as follows:

A . B; B has a submodule isomorphic to A.

A ≺ B; B has a proper submodule isomorphic to A.

A -⊕ B; B has a direct summand isomorphic to A.

kA; the direct sum of k-copies of A.

FP (R); the family of all finitely generated projective R-modules.

V (R); the monoid of isomorphic classes of finitely generated projective R-modules.

The following are some useful definitions:

Definition 1.1. A ring R is called regular if for any x ∈ R, there exists y ∈ R such that
xyx = x.

A ring R is called unit-regular if for any x ∈ R, there exists a unit u of R such that xux = x.
The properties of unit-regular rings have been widely studied by Goodearl [8], Busque [3],
Kutami [9], [10] and others.

Definition 1.2. Let LR(R) be the lattice of principal right ideals of a ring R which is partially
ordered by set inclusion. Then R is said to be ℵ0-complete if any countable subset of LR(R)
has a supremum and an infimum in LR(R).
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Definition 1.3. A regular ring R is said to be separative if for any finitely generated pro-
jective modules AR and BR satisfying 2A ∼= A⊕B ∼= 2B implies A ∼= B.

It has been recently noted in [1] that any unit-regular ring is separative.

Definition 1.4. An R-module M is directly finite provided that M is not isomorphic to a
proper direct summand of itself. If M is not directly finite, then M is said to be directly
infinite. A ring is directly finite if the R-module RR is directly finite.

All basic results concerning regular rings can be found in the text of K.R. Goodearl [5].

2. Preliminaries

In this section, we first include some basic results of unit-regular rings. Some of these results
are crucial results for proving our main results in this paper.

Definition 2.1. Let R be a ℵ0-complete regular ring. Let {enR}n>1 be a sequence of principal
right ideals of R. If

∧
m>1(
∨
n6=m enR) = 0 in the lattice of principal right ideals LR(R) of R,

then the sequence {enR}n>1 is called a strongly independent sequence of principal right ideals.

The following lemma of Busque [3] is crucial in proving that a directly finite ℵ0-complete
regular ring is unit-regular.

Lemma 2.2. ([3, Theorem 3.4]). Let {enR}n>1 and {fnR}n>1 be two sequences of principal
right ideals in LR(R) such that enR

⋂
fnR = 0 for all n ∈ N. If {enR ⊕fnR}n>1 is strongly

independent with enR ∼= fnR for all n ∈ N, then
∨
n>1 enR

∼=
∨
n>1 fnR.

Hereafter, we just call the directly finite ℵ0-complete non-simple regular rings the Busque
rings.
The following lemma is a well known result of regular rings since it relates with the

cancellation of small projectives. This result is particularly useful because it can be used to
characterize the unit-regular rings.

Lemma 2.3. A regular ring R is unit-regular if and only if the following cancellation property
holds in R:

A⊕B ∼= A⊕ C ⇒ B ∼= C, provided that A,B and C ∈ FP (R). (∗)

Definition 2.4. Let GR be a right R-module with f, g ∈ EndR(G). Then f and g are called
equivalent morphisms if there exist α, β ∈ Aut(G) such that αfβ = g.

The above concept of equivalent morphism in EndR(G) is useful for studying regular rings,
and we notice that this concept is different from the usual concept of equivalence between
matrices.
The following lemma of Ara, Goodearl, O’Meara and Pardo [1] gave a criterion for the

equivalence of morphisms.
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Lemma 2.5. (see [1, Lemma 4.1]). Let MR be a finitely generated projective right R-module.
Let f, g ∈ EndR(M). Then f is equivalent to g if and only if they have the same isomorphic
kernels, images and cokernels.

The following theorem can be found in [1]. (cf. [Theorem 4.5]).

Theorem 2.6. Let R be a unit-regular ring. Then every square matrix over R is equivalent
to a diagonal matrix.

We now modify the above theorem in the following form.

Theorem 2.7. Let R be a unit-regular ring with f ∈ Mn(R). Then f is equivalent to a
diagonal matrix with idempotent entries.

Proof. Since R is a unit-regular ring, R is separative. Also, by Theorem 2.6 and the results
in [1], we know that there are α, β ∈ GLn(R) such that

αfβ =




a1 · · · 0
... · · ·

...
0 · · · an



 ,

where GLn(R) is a general linear group over R. Since R is a unit-regular ring, for each
i = 1, 2, . . . , n, there exist units ui ∈ R such that aiuiai = ai for i = 1, 2, . . . , n. Let

β1 =




u1 · · · 0
... · · ·

...
0 · · · un



 .

Then it is obvious that β1 ∈ GLn(R) and (aiui)2 = aiui for i = 1, 2, · · · , n. Thus,

αfββ1 =




a1u1 · · · 0
... · · ·

...
0 · · · anun





is the required matrix. 2

To deal with the infinite sum of finitely generated projective modules, we first cite a well
known result of finitely generated projective modules over unit-regular rings given by Good-
earl in [5].

Lemma 2.8. (i) Let R be an unit-regular ring. Suppose B, A1, A2, . . . , An, . . . is a sequence
of modules in V (R). If A1 ⊕ A2 ⊕ · · · ⊕ An . B for all n, then ⊕n>1An . B.
(ii) Let A, B be projective right modules over a unit-regular ring. If A1 6 A2 6 · · · 6

An 6 · · · is a chain of submodules of A and An . B for all n. Then
⋃
n>1An . B.
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3. Replacement Lemma and Cancellation Theorem

In this section, we introduce the replacement lemma and we will apply it to study the Busque
rings. By using this lemma, we can show that if we have an independent sequence of principal
right ideals in a Busque ring then we can possibly replace this sequence by another strongly
independent sequence in the sense that each term in the new sequence is isomorphic to the
corresponding term in the original sequence. By using this replacement lemma, we are able
to establish a cancellation theorem for modules in Busque rings.

Lemma 3.1. (Replacement Lemma) Let B be a principal ideal of a Busque ring R. If
there are sequences of principal right ideals {Bi}i∈N and {B′i}i∈N contained in B satisfying
B = B1 ⊕ B2 ⊕ · · · ⊕ Bk ⊕ B′k (internal direct sum) with B

′
i = Bi+1 ⊕ B

′
i+1, then there

are sequences of principal right ideals {Ei}i∈N and {Ci}i∈N contained in B satisfying B >
E1 ⊕ E2 ⊕ · · · ⊕ Ek ⊕ Ck with Ei ∼= Bi, Ck = Ek+1 ⊕ Ck+1 and

∧
n>1Cn = 0. Moreover, the

sequence {En}n>1 is strongly independent.

Proof. We first construct two sequences of principal right ideals {Ei}i∈N and {Ci}i∈N satisfying
the conditions B > E1⊕E2⊕· · ·⊕ Ek⊕Ck with Ei ∼= Bi, Ck = Ek+1⊕Ck+1 and

∧
n>1Cn = 0

respectively. If
∧
n>1B

′
n = 0 then there is nothing to prove because the sequences {Bk}k>1

and {B′k}k>1 are already the desired sequences. We now assume that
∧
n>1B

′
n 6= 0. Since R

is a Busque ring, R is ℵ0-complete. We may assume that
∧
n>1B

′
n = zR for some z 6= 0 in R.

We proceed to construct the desired sequence by using induction on k. Obviously, zR ⊆ B′k
for all natural numbers k. Since B = C ⊕ zR = B1 ⊕ B′1 for some principal right ideal C,
by using the modular law, we immediately have B′1 = (C ∩B

′
1)⊕ zR. Now, let C1 = C ∩B

′
1

and choose a principal right ideal E1 of R such that E1⊕C1 = C. Then, by substitution, we
obtain the following expression:

E1 ⊕ C1 ⊕ zR = B = B1 ⊕B
′
1 = B1 ⊕ C1 ⊕ zR.

Since the ring R is unit-regular, it is of course cancellative, by Lemma 2.2, we obtain E1 = B1
and so it leads to C1 ⊕ zR = B′1 = B2 ⊕ B

′
2. Because zR ⊆ B

′
2 and by the modular law, we

obtain B′2 = C2⊕ zR, where C2 = E2⊕C2. Now, choose a principal right ideal E2 of R such
that C1 = E2 ⊕ C2. Then by applying the cancellative law of the unit-regular ring R again,
we have E2 ∼= B2.
Suppose that we have constructed B1 > E1 ⊕ E2 ⊕ · · · ⊕ Ek−1 ⊕ Ck−1 with Ei ∼= Bi,

Ci = Ei+1 ⊕ Ci+1 and Ci ⊕ zR = B′i = Bi+1 ⊕B
′
i+1 for i = 1, 2, . . . , k − 1. Then, in order to

finish the proof by induction, we need to construct Ck and Ek. In fact, by using the modular
law again, we have B′k = B

′
k∩Ck−1⊕zR. By writing Ck = B

′
k∩Ck−1 and choosing a principal

right ideal Ek such that Ck−1 = Ck ⊕ Ek, we obtain

Bk ⊕ Ck ⊕ zR = Bk ⊕B
′
k = Ck−1 ⊕ zR = Ck ⊕ Ek ⊕ zR.

By the unit-regularity of the ring R again, we can cancel Ck ⊕ zR and obtain Bk ∼= Ek.
We still need to verify that

∧
n>1Cn = 0. This part is easy since

∧
n>1Cn 6

∧
n>1B

′
n = zR

and hence zR ∩ Ci = 0 for all i. Thus,
∧
n>1Cn = 0.

Finally, we show that the sequence of ideals {En}n>1 is strongly independent. For this
purpose, we first observe that

∨
n6=mEn 6 E1 ⊕ · · · ⊕ Em−1 ⊕ Cm. Now, we let Vm =
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E1 ⊕ · · · ⊕ Em−1 ⊕ Cm. Then, to show {En}n>1 is strongly independent, it suffices to show
that

∧
Vm = 0. We first let x ∈ Vm for all m > 1. We claim that x ∈ Cm by induction on m.

Clearly x ∈ V1 = C1. Suppose that x ∈ Cj for all j 6 k. Then we can show that x ∈ Ck+1.
This is because x ∈ Vk+1, we can express x by x = e1 + e2 + · · · + ek + c with ei ∈ Ei and
c ∈ Ck+1. This leads to x = e1 + (e2 + · · ·+ ek + c) ∈ E1 ⊕C1. By the unique representation
of direct sums and by our induction hypothesis that x ∈ C1, we obtain e1 = 0. Suppose that
we have already shown that e1 = e2 = · · · = ej = 0 for all j 6 k − 1. Then, we can write
x = ej+1+ · · ·+ ek+ c. Since Cj = Cj+1⊕Ej+1 and x ∈ Cj+1. we can easily see that ej+1 = 0
by the uniqueness of direct sum representation. This shows that ei = 0 for all i = 1, 2, . . . , n
and thereby x = c ∈ Ck+1. Thus, our claim is established, by induction. This implies that
x ∈
∧
Vm ⊆

∧
n>1 cn = 0, and whence, the sequence {En}n>1 is strongly independent. This

finishes the proof. 2

The following lemma, due to Goodearl in [6], is used to prove that ℵ0-continuous regular
rings have n-cancellation property over modules (cf. [6, Theorem 14.30]). We cite his lemma
below because it can also be applied to Busque rings.

Lemma 3.2. [Goodearl] Suppose R is a unit-regular ring with neR . nfR. Then there exist
decompositions eR = A1⊕A2⊕· · ·⊕Ak⊕A′k and fR = B1⊕B2⊕· · ·⊕Bk⊕B

′
k, respectively

with Ai = Ai+1 ⊕ A′i+1 and B
′
i = Bi+1 ⊕ B

′
i+1 satisfying Ai = Bi and (n + k − 1)A

′
k . neR.

We observe here that all the direct summands in the above decompositions are the principal
right ideals of R.

The following lemma due to Busque in [3] is to show that a Busque regular ring is unit-regular.

Lemma 3.3. [Busque] Let R be a Busque regular ring. Then ℵ0eR . fR implies eR = 0.

By using the replacement lemma and the above two lemmas, we give the following generalized
version of Lemma 2.3.

Lemma 3.4. Let R be a Busque regular ring. Then ℵ0eR . nfR implies eR = 0.

Proof. We prove this lemma by induction on n. Of course, the lemma holds trivially for n = 1
since this is just our lemma 3.3. Also we observe that in the Busque’s lemma, fR contains at
most finitely many copies of eR. In this case, we may assume that eR cannot be embedded
in eR. Thus, by eliminating out the principal ideal eR∩ fR via cancellation, we can assume
that eR and fR are both independent right ideals. Suppose that the lemma is still true for
all k 6 n− 1. We need to show that it is true for k = n. In fact, since ℵ0eR . nfR, we have
neR . nfR. By Goodearl’s lemma (Lemma 3.2), we obtain the following decompositions
eR = A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕ A′k and fR = B1 ⊕ B2 ⊕ · · · ⊕ Bk ⊕ B

′
k with Ai = Ai+1 ⊕ A

′
i+1

and B′i = Bi+1 ⊕ B
′
i+1 satisfying Ai = Bi and (n + k − 1)A

′
k . (n − 1)eR. We now claim

that
∨
nAn = eR. Since R is a Busque regular ring, R is accordingly a ℵ0-complete regular

ring and hence
∨
nAn is a principal right ideal of R. Suppose on the contrary, that there is

a direct principal ideal J of R such that
∨
nAn ⊕ J = eR. Then, for any integer k, there is

a summand Dk satisfying
∨
nAn ⊕ J = A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕Dk. Thus, we have

∨
nAn = A1 ⊕ · · · ⊕ Ak ⊕Dk ⊕ J = eR = A1 ⊕ · · · ⊕ Ak ⊕ A

′
k.
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By using the cancellation property of the unit-regular ring R, we obtain ⊕Dk ⊕ J = A′k.
This shows that J 6 A′k for all k. Consequently, we deduce immediately that (n+ k− 1)J 6
(n+ k− 1)A′k 6 (n− 1)eR, for all k > 1. By Lemma 2.8 (i), we have ℵ0J 6 (n− 1)eR. Now
by the induction hypothesis, we conclude that J = 0 and whence,

∨
nAn = eR. Thus, our

claim is established.
We now show that

∧
A′k = 0. Suppose, if possible, that

∧
A′k 6= 0. Then we have

0 6= z ∈
∧
A′k and so

∧
A′k = zR. Consequently, zR ⊆ A

′
k for all k > 1. This leads to

ℵ0zR 6 (n− 1)eR, by applying the same arguments in the above paragraph. Thus, z = 0 by
induction hypothesis and so

∧
A′k = 0.

By applying our replacement Lemma 3.1, we can find some strongly independent se-
quences of principal right ideals {En}n>1 and {Cn}n>1 satisfying the conditions fR > E1⊕E2
⊕ · · · ⊕ Ek ⊕ Ck with Ei ∼= Bi and Ck = Ek+1 ⊕ Ck+1 with

∧
nCn = 0. Now we need

to show that {An ⊕ En}n>1 is a strongly independent sequence, that is, to show that∧
m>1

∨
n6=m(An ⊕ En) = 0. We first observe that

∨
n6=m(An ⊕ En) 6 (A1 ⊕ E1)⊕ · · · ⊕ (Am−1 ⊕ Em−1)⊕ (A

′
m ⊕ Cm).

All we need is to show that
∧
m>1{(A1 ⊕ E1) ⊕ · · · ⊕ (Am−1 ⊕ Em−1) ⊕ (A

′
m ⊕ Cm)} = 0.

For this purpose, we let x ∈
∧
m>1{(A1 ⊕ E1) ⊕ · · · ⊕ (Am−1 ⊕ Em−1) ⊕ (A

′
m ⊕ Cm)}. Then

x ∈ (A1 ⊕ E1) ⊕ · · · ⊕ (Am−1 ⊕ Em−1) ⊕ (A′m ⊕ Cm), for all m > 1. In particular, we
have x ∈ (A′1 ⊕ C1). Write x = (x1, x2) with x1 ∈ A

′
1 and x2 ∈ C1. Then, since x ∈

(A1 ⊕E1)⊕ (A′2 ⊕C2), by the uniqueness of direct sum representation, we can easily obtain
that x1 ∈ A′2 and x2 ∈ C2. Continue this process, we eventually obtain x1 ∈ A

′
i and x2 ∈ Ci

for all i > 1. Since
∧
nA

′
n = 0 and

∧
nCn = 0, we get x = 0. This shows that the sequence

{An ⊕ En}n>1 is strongly independent.
Invoking Lemma 2.1, we conclude that

∨
nAn

∼=
∨
nEn 6 fR. Hence, we have eR 6 fR.

However, this is clearly a contradiction since fR is assumed not to contain any copy of eR.
Thus, our theorem is proved. 2

Corollary 3.5. Let R be a Busque regular ring. If PR is a finitely generated projective right
R-module over R, then PR contains no infinite direct sum of isomorphic generated submodules
of PR.

Proof. Since PR is a finitely generated projective right R-module, there is n ∈ N such
that PR 6 nR. Suppose that NR is a finitely generated projective right R-module with
ℵ0NR 6 PR. Then we can choose an idempotent e ∈ R with eR 6 N . Hence it follows that
ℵ0eR 6 PR 6 nR. By Lemma 3.4, we obtain eR = 0 which forces NR = 0. Our proof is
completed. 2

By using the above lemmas, we establish a cancellation theorem for Busque regular rings.
This result is helpful in solving the matrix-isomorphism problem.

Theorem 3.6. Let R be a Busque regular ring. If neR 6 nfR then eR 6 fR.

Proof. We may assume that fR contains no isomorphic copy of eR and eR ∩ fR = 0.
Since neR 6 nfR, we obtain the decompositions eR = A1 ⊕ A2 ⊕ · · · ⊕ Ak ⊕ A′k and
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fR = B1⊕B2⊕· · ·⊕Bk⊕B′k with Ai = Ai+1⊕A
′
i+1 and B

′
i = Bi+1⊕B

′
i+1 satisfying Ai = Bi

and (n+k−1)A′k . (n−1)eR for all k ∈ N, respectively. We need to show that
∨
nAn = eR.

Suppose on the contrary that
∨
nAn � eR. Then we can find a principal right ideal J of R

such that
∨
nAn ⊕ J = eR. Also, for any integer k, there exists a principal right ideal Dk

such that A1 ⊕ · · · ⊕Ak ⊕Dk =
∧
nAn. In this way, we obtain the following decompositions

for eR.
A1 ⊕ · · · ⊕ Ak ⊕Dk ⊕ J =

∧
nAn ⊕ J = eR = A1 ⊕ · · · ⊕ Ak ⊕ A

′
k.

Since R is a Busque regular ring, it is unit-regular and thereby, by Lemma 2.2, we obtain that
Dk⊕J = A′k, and hence J 6 A

′
k, for all k ∈ N. This implies that (n+k−1)J 6 (n+k−1)A′k 6

(n − 1)eR. As k is arbitrary, we obtain ℵ0J 6 (n − 1)eR. By Lemma 3.4, we immediately
see that J = 0 and so

∨
nAn = eR. Now, by applying the replacement Lemma 3.1, we can

find a strongly independent sequence of principal ideals {En}n>1 and {Cn}n>1 contained in
fR satisfying the conditions En ∼= Bn and Cn = En+1 ⊕ Cn+1 with

∧
nCn = 0. By using the

arguments in Lemma 3.4 repeatedly, we can show that the sequence {An ⊕ En}n>1 is also
strongly independent. Thus, by Lemma 2.1, we have eR =

∨
nAn

∼=
∨
nEn 6 fR. This

result contradicts our assumption. Hence, eR 6 fR and the theorem is proved. 2

Corollary 3.7. Let R be a Busque regular ring. If neR ∼= nfR then eR ∼= fR.

4. Matrix-isomorphism theorem

In this section, we give a positive answer to the well known matrix-isomorphism problem
for Busque regular rings. As hinted by Goodearl [8], the answer to the matrix-isomorphism
problem for general regular rings might be negative.

Theorem 4.1. (Main theorem) Let Φ : Mn(R) → Mn(S) be an isomorphism between the
matrix rings over the rings R and S respectively. If S is a Busque regular ring then R ∼= S.

Proof. Let ei be an n × n matrix whose (i, i) entry is 1 and 0 otherwise. Let ui be the
elementary matrix obtained by interchanging the i-th row with the (i+1)-th row of the (n×n)-
identity matrix, In. Then, it is easy to see that e

2
i = ei, u

2
i = ui for all i and uieiui = ei+1,

where i = 1, 2, . . . , n− 1. It is now clear that the identity matrix In can be expressed by

In = e1 +
n−1∑

i=1

ui · · ·u1e1u1 · · ·ui.

Since Φ is an isomorphism, we can let fi = Φ(ei), vi = Φ(ui). As a result, we can derive that

In = f1 +
n−1∑

i=1

vi · · · v1f1v1 · · · vi.
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Then, by applying the isomorphism Φ onMn(R), we obtain the following isomorphic relations
of R:

R ∼= EndR(R)
∼= EndR(e1nR)
∼= e1Mn(R)e1
∼= Φ(e1)Mn(S)Φ(e1)
∼= f1Mn(S)f1
∼= EndS(f1nS)

In proving R ∼= S, our final step is to show that f1nS ∼= S. In fact, by Theorem 2.5, we
observe that f1 ∈ Mn(S) is equivalent to a diagonal matrix with idempotent entries in S
since S is a unit-regular ring. This implies that there exist α, β ∈ GLn(S) such that

αf1β =




c1 · · · 0
... · · ·

...
0 · · · cn



 ,

where each ci is an idempotent element. Thus, Im(f1) ∼= ⊕i>1ciS. Furthermore, since
vk · · · v1f1v1 · · · vk = fk, we have Im(f1) ∼= Im(fk) for all k = 1, 2, . . . , n. Because In =
f1 +

∑n−1
i=1 vi · · · v1f1v1 · · · vi, we obtain

nS = Im(f1)⊕ Im(f2)⊕ · · · ⊕ Im(fm) ∼= nIm(f1) ∼= nc1S ⊕ · · · ⊕ ncnS.

Thus, by the cancellation law of the unit-regular ring S, we obtain

n(1− c1)S ∼= nc2S ⊕ · · · ⊕ ncnS,

and thereby nc2S 6 n(1 − c1)S. This implies that c2S 6 (1 − c1)S, by Theorem 3.6.
Consequently, we obtain c1S⊕ c2S 6 S. Moreover, we also have the following decomposition
(1 − c1)S ∼= c2S ⊕ D2, where D2 is a principal right ideal of R such that nc2S ⊕ nD2 ∼=
n(1− c1)S ∼= nc2S⊕· · ·⊕ncnS. Applying Theorem 3.6, we get nD2 ∼= nc3S⊕· · ·⊕ncnS. By
applying the same arguments repeatedly, we get c3S 6 D2 and c1S⊕c2S⊕c3S 6 S. Continue
the above process, we eventually show that c1S ⊕ c2S ⊕ · · · ⊕ cnS 6 S. Now by letting F be
a finitely generated projective right S-module such that c1S⊕ c2S⊕ · · ·⊕ cnS⊕F ∼= S, then
we have

nc1S ⊕ nc2S ⊕ · · · ⊕ ncnS ⊕ nF ∼= nS ⊕ nF ∼= nS.

Applying Theorem 3.6 again, we get nF = 0 and thus F = 0. In other words, we have
c1S ⊕ c2S ⊕ · · · ⊕ cnS ∼= S. This shows that Im(f1) ∼= S and consequently R ∼= S. Our proof
is completed. 2

Remark. It was noticed by O’Meara that a directly finite simple regular ring R is unit-
regular provided that R satisfies the condition given in Theorem 3.6, that is, whenever
e, f ∈ R with n(eR) 6 n(fR) then eR 6 fR (see [12, Corollary 3]). However, Goodearl gave
some counterexamples in [8] to illustrate that the above property no longer holds for simple
unit-regular rings. In other words, this result prevents us to use Theorem 3.6 to solve the
matrix-isomorphism for simple unit-regular rings and this implies that the answer for directly
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finite simple regular rings might be negative in general. Thus, the crucial step in solving the
problem is to seek some classes of unit-regular rings satisfying the condition of Theorem 3.6.
In closing this paper, we ask the question whether we can extend our Theorem 4.1 to

infinite matrix rings?
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