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Abstract. By the relative distance of points p and q of a convex body C
we mean the ratio of the Euclidean length of the segment pq to the half of the
Euclidean length of a longest chord of C parallel to pq. We show that in the
boundary of every plane convex body there exist seven points in pairwise relative
distances at least 2

3 such that the relative distances of every two successive points
are equal. Here the value 2

3 is the best possible one. We also give an estimate in
case of three points.
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Finding sets of points on the sphere or ball of Euclidean n-space En such that their pairwise
distances are as large as possible is a long-standing question of geometry. A generalization
was presented by Lassak [6], and by Doyle, Lagarias and Randall [3]. In [3], points are
considered in the boundary of the unit ball C of a Minkowski space, and their distance is
measured by the Minkowski distance. In [6] we see a more general approach. Here C is
allowed to be an arbitrary convex body. The question is in finding configurations of points
in the boundary of C which are far in the sense of the following notion of C-distance of
points.

For arbitrary points p, q ∈ En denote the Euclidean length of the segment pq by |pq|.
Let p′q′ be a chord of C parallel to pq such that there is no longer chord of C parallel
to pq. The C-distance dC(p, q) of points p and q is defined by the ratio of |pq| to 1

2 |p
′q′|

(see [6]). We also use the term C-length of the segment pq. If there is no doubt about C,
we may use the terms relative distance of p and q, or relative length of pq.

Both papers [3] and [6] show that every centrally symmetric plane convex body con-
tains four boundary points in pairwise relative distances at least

√
2, and six boundary
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points whose pairwise relative distances are at least 1. Doliwka [2] proved that in the
boundary of every plane convex body there exist five points in at least unit pairwise rela-
tive distances.

In this paper we show a similar result about seven points in the boundary of a plane
convex body. We also improve the estimate in [1] about three far boundary points.

Theorem. The boundary of an arbitrary plane convex body contains seven points in
pairwise relative distances at least 2

3 such that the relative distances of every two successive
points are equal.

The proof of Theorem is based on the following lemma.

Lemma. Let F = f1f2 . . . f7 be a convex heptagon. Then every convex heptagon D =
d1d2 . . . d7 inscribed in F such that di ∈ fifi+1 for i = 1, 2, . . . , 7, where f8 = f1, has a
side of F -length at least 2

3 .

Proof. Let αi denote the angle 6 fi−1fifi+1 (i = 1, . . . , 7), where f0 = f7. Since every
heptagon is the limit of a sequence of nondegenerate heptagons, it is sufficient to prove
our lemma under the assumptions that α1 < π, . . ., α7 < π.

First, we intend to show that if the sum of some two consecutive angles of F is at
most π, then D has a side of F -length at least 1 (see Figure 1).

Figure 1

Assume, for example, that α1 + α2 ≤ π. Observe that in this case dF (f1, f2) = 2. As it is
explained after Lemma 6 of [7], Lemma 3 of [7] implies that if x is a boundary point of a
plane convex body C, and if y moves counterclockwise in the boundary of C from x, then
dC(x, y) does not decrease until it reaches 2, and it accepts all values from the interval
[0, 2]. Thus we get that dF (d7, d1) + dF (d1, d2) ≥ dF (f1, d1) + dF (d1, f2) = dF (f1, f2) = 2,
and therefore dF (d7, d1) ≥ 1 or dF (d1, d2) ≥ 1. We omit an analogous consideration which
shows that if the sum of every pair of consecutive angles of D is greater than π and if
D has three consecutive angles such that their sum is at most 2π, then D has a side of
F -length at least 2

3 .
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Now consider the case when the sum of every three consecutive angles of D is greater
than 2π. Denote the intersection of the lines containing the segments f2f3 and f4f5 by a3.
Similarly, let a5 be the intersection point of the lines containing the segments f5f6 and f7f1

(see Figure 2). Consider the convex pentagon D′ = d1d2d4d5d7 inscribed in the convex
pentagon F ′ = f1f2a3f5a5. The angles of F ′ are β1 = α1, β2 = α2, β3 = α3 + α4 − π,
β4 = α5, β5 = α6 + α7 − π. This implies that the sum of every two consecutive angles of
F ′ is greater than π. For the sake of simplicity we use the following notation in the sequel:
a1 = f1, a2 = f2, a4 = f5, b1 = d1, b2 = d2, b3 = d4, b4 = d5, b5 = d7.

Figure 2

We intend to show that the F ′-length of b2b3 or b4b5 is at least 4
3 , or that the F ′-length

of another side of D′ is at least 2
3 . We will show this indirectly. Hence let us assume that

dF ′(b2, b3) < 4
3 , dF ′(b4, b5) < 4

3 , and that the remaining sides of D′ are of F ′-length less
than 2

3 . Let c1 and c′1 denote the trisection points of a1a2 such that c1 is closer to a1 (see
Figure 3). Moreover, let c2, c3, c4, c5 be the trisection points of a2a3, a3a4, a4a5, a5a1

closer to the points a2, a4, a4, a1, respectively.

Figure 3

With respect to our assumption, b1 cannot be an inner point of the segment c1c
′
1. Without

loss of generality, we can assume that b1 ∈ a1c1 (in the opposite case the proof is analogous).
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Observe that b1 ∈ a1c1 implies that bi ∈ aici for i = 2, 3, 4, 5. Take the common point
p of the straight line containing the segment a5a1 and of the straight line through a3

parallel to b1b2. Notice that dF ′(b1, b2) ≥ 2|b1b2|/|a3p|. Let x be the intersection point
of the line through b1 parallel to a2a3 and of the line through c′1 parallel to a5a1. As
dF ′(b1, b2) < 2

3 , we see that |xb1| < |b2c2|. Now consider the triangle b1c
′
1x. We have

|b1c
′
1|/ sin(β1 + β2 − π) = |xb1|/ sin(π − β1). Thus, sin(π − β1)|b1c1| < sin(π − β1)|b1c

′
1| <

sin(β1 + β2 − π)|b2c2|. We omit an analogous calculation that sin(π − βi)|bici| < sin(βi +

βi+1−π)|bi+1ci+1| for i = 2, 3, 4, 5, where β6 = β1, b6 = b1 and c6 = c1. Hence
5∏

i=1

sinβi <

5∏
i=1

sin(βi+βi+1−π). This contradicts Lemma 2 of [4], which says that for every β1, . . . , β5 ∈

(0, π) such that
5∑

i=1

βi = 3π and βi + βi+1 > π for every i ∈ {1, . . . , 5}, where β6 = β1, we

have
5∏

i=1

sinβi >
5∏

i=1

sin(βi + βi+1 − π).

We have shown that b2b3 or b4b5 has F ′-length at least 4
3 , or that another side of D′

is of F ′-length at least 2
3 . As F ⊂ F ′, we get that dF (s, t) ≥ dF ′(s, t) for every s, t ∈ E2.

Thus, if at least one of the numbers dF ′(b1, b2), dF ′(b3, b4) or dF ′(b5, b1) is at least 2
3 , then

we are done. If dF ′(b2, b3) or dF ′(b5, b1) is at least 4
3 , then the statement of our Lemma is

the consequence of the triangle inequality. �

Proof of Theorem. Let C be an arbitrary plane convex body. Theorem 1 from [7] implies
that for every n ≥ 3 there exists an n-gon inscribed in C whose sides are of equal C-
length. Thus, it is sufficient to show that every convex heptagon inscribed in C has a
side of C-length at least 2

3 . Consider an arbitrary convex heptagon D inscribed in C. At
every vertex of D take a supporting line of C. Let F denote the intersection of the closed
halfplanes containing C bounded by the above supporting lines. Obviously, F is a convex
heptagon circumscribed about D such that D ⊂ C ⊂ F . Observe that the C-length of
every side of D is at least its F -length. Therefore our Lemma implies that D has a side of
C-length at least 2

3 . �

The example of a triangle shows that the estimate 2
3 in our theorem cannot be improved.

Notice that by Lemma 7 of [7] and by considerations similar to those in the proof of
Theorem 1 of [7], for every positive integer r our theorem implies the existence of 7r points
in the boundary of every plane convex body in pairwise relative distances at least 2

3 ·
1
r .

Theorem of [2] says that every plane convex body contains five boundary points in pairwise
relative distances at least 1. Thus, again by Lemma 7 of [7] this theorem implies that for
every positive integer r in the boundary of every plane convex body there exist 5r points in
pairwise relative distances at least 1

r . The example of a triangle shows that this estimate
is the best possible one not only for r = 1 as proved in [2], but also for r = 2.

Below we improve the estimate 4
3 of Bezdek, Fodor and Talata from [1] for three points in

the boundary of a plane convex body.
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Proposition. In the boundary of every plane convex body there exist three points in equal
pairwise relative distances at least 1

5 (2 + 2
√

6) ≈ 1.3798.

Proof. Let C be a plane convex body. For the simplicity of considerations, during the
proof we denote the value 1

5 (1 +
√

6) by k. First we are looking for three points in C in
pairwise C-distances at least 2k.

According to Lemma from [6] we circumscribe a parallelogram P about C such that
the midpoints of its two parallel sides belong to C. As the C-distance of two points does
not change under affine transformations, we can assume that P is a rectangle such that
the length of the sides containing the mentioned midpoints is 2, and that the length of the
other sides is 1. Consider the Cartesian coordinate system such that the above midpoints
are o = (0, 0) and c = (0, 1). Since C is inscribed in P , it contains a point a = (−1, α) and
a point b = (1, β), where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

Case 1, when α + β ≤
√

6
3 or α + β ≥ 2 −

√
6

3 . We assume that α + β ≤
√

6
3 (in the

other case the proof is analogous). Observe that
√

6
3 = 1−k

2k−1 . We intend to prove that the
quadrangle obca contains points r and s with y-coordinates at most 1 − k and with the
difference of their x-coordinates at least 2k. As obca ⊂ C, the points r, s and c are three
points that we are looking for.

Subcase 1.1, when α ≥ 1− k and β ≥ 1− k. Since the harmonic mean is not greater
than the arithmetic mean, our assumptions imply that 1

α + 1
β ≥

4
α+β > 2k

1−k . Furthermore,
a calculation shows that the intersection of the quadrangle obca with the straight line
y = 1− k is a segment of Euclidean length (1− k)( 1

α + 1
β ). Thus this length is at least 2k.

In the part of r and s we take the endpoints of this segment.
Subcase 1.2, when α < 1−k or β < 1−k. Let α < 1−k (if β < 1−k, considerations

are similar). By the assumption of Case 1 we have β ≤ 1−k
2k−1 . Thus the quadrangle obca

contains the point (2k − 1, 1− k). We take it in the part of r. As s we take a.
Case 2, when

√
6

3 < α +β < 2−
√

6
3 . We intend to show that C contains points w and

z with the difference of their y-coordinates at least k, and with their C-distances at least
2k either from a or from b. Then w, z, and a or b are three promised points.

Let p and q denote the intersections of the straight line x = −1+k with the segments
ao and ac, respectively.

Subcase 2.1, when dC(p, b) ≥ 2k and dC(q, b) ≥ 2k. It is clear that dC(p, q) = 2k.
Thus we take p and q in the part of w and z.

Subcase 2.2, when dC(p, b) < 2k or dC(q, b) < 2k. We can assume that dC(p, b) < 2k
(in the other case our consideration is analogous). This assumption implies that there
exists a point t ∈ C whose translation u by ~v = 1

k

−→
pb is also a point of C. We intend to

show that g =
(
− (2k − 1), (2k − 1)α + 2− 3k

)
or h =

(
2k − 1, (2k − 1)β + k

)
belongs to

C (see Figure 4). Suppose instead that g /∈ C and h /∈ C.
Let Lg be the line through o and g. Its equation is y = −

(
α − 3k−2

2k−1

)
x. Denote the

right-hand side of this equation by g(x). Let Lh be the line through c and h. Its equation
is y =

(
β − 1−k

2k−1

)
x + 1. Denote its right-hand side by h(x). Take the common point e of

the lines Lg and x = −1. We have e = (−1, α− 3k−2
2k−1 ). The common point of Lh and the

line x = 1 is f = (1, β + 3k−2
2k−1 ).
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Figure 4

Let us denote the x-coordinate of a point m or vector ~m by xm, and its y-coordinate by
ym. Notice that xv > 1 + xh = 1 + |xg|. This, and the assumption that g /∈ C and h /∈ C
imply that the points t and u belong to the domain bounded by the sides of P and by the
lines Lg and Lh. Hence we can take either e in the part of t, or f in the part of u. This
depends on the directions of Lg and Lh. Then either of the following holds true.

(i) The translate of e by ~v is in the open half plane containing e bounded by the line
Lh. In this case 0 > ye + yv − h(xe + xv) = (α + β)(3 −

√
6) + 2 −

√
6. Hence from

α + β >
√

6
3 we obtain 0 > 0, which is a contradiction.

(ii) The translate of f by −~v is in the open half plane containing f bounded by the
line Lg. We get 0 < yf −yv−g(xf −xv) = 7−3

√
6−(

√
6−2)(α+β). From α+β >

√
6

3 we
conclude that the right-hand side of this inequality is negative, which is also impossible.

Thus g ∈ C or h ∈ C. We omit a calculation showing that if g ∈ C, then the
intersection of the line x = −(2k− 1) and C is a segment of length at least k. We take the
endpoints of this segment as w and z. Since the distance of the lines x = −(2k − 1) and
x = 1 is 2k, and since C ⊂ P , we conclude that dC(b, w) ≥ 2k and dC(b, z) ≥ 2k.

Similarly, it can be shown that if h ∈ C, then the intersection of C and the line
x = 2k − 1 is a segment of length at least k. Now we use the endpoints of this segment in
the part of w and z.

We have shown that there exists a triangle in C whose all sides have relative lengths
at least 1

5 (2+2
√

6). But Theorem 2 of [7] says that if an arbitrary convex body C contains
an n-gon whose all sides are of relative lengths at least d, then C permits to inscribe an
n-gon whose sides are of equal relative length at least d. �

In Theorem 3 of [7] it is shown that if C ⊂ E2 is a convex body and if P is a polygon
inscribed in C, then all sides of P have the same relative length d if and only if the
consecutive homothetical copies of C with homothety centers at the vertices of P and with
ratio d

2+d touch each other (this also follows from Lemma 2 of [5]). Thus from Theorem
and Proposition we get the following corollary.

Corollary. Every plane convex body C can be packed by its seven homothetical copies
with homothety ratio at least 1

4 touching the boundary of C from inside such that every
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two succesive of those copies touch each other. Here the estimate 1
4 cannot be improved.

Moreover, every plane convex body C can be packed by its three homothetical copies with
homothety ratio at least 1

6

√
6 touching its boundary from inside such that every two of

those copies touch each other.
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