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Abstract. We shall consider three results on factoring finite abelian
groups by subsets. These are the Hajós’, Rédei’s and simulation the-
orems. As L. Fuchs has done in the case of Hajós’ theorem we shall
obtain families of infinite abelian groups to which these results cannot
be extended. We shall then describe classes of infinite abelian groups
for which the extension does hold.
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1. Introduction

Throughout the paper the word group will be used to mean additive abelian group.
Let Ai, i ∈ I be a family of subsets of a group G with 0 ∈ Ai for each i. If each
element g ∈ G can be written uniquely as

g =
∑

ai, ai ∈ Ai

and only a finite number of elements ai being non-zero, then

G =
∑

Ai
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is called a factorization of G. If A is a finite subset of G and g is an element of
finite order of G, then |A| and |g| denote, respectively the orders of A and of g.
A subset A of G is said to be cyclic if there is an element a of G and an integer r
with 2 ≤ r ≤ |a| such that

A = {0, a, 2a, . . . , (r − 1)a}.

Clearly A is a subgroup if and only if r = |a|. G. Hajós proved a long standing
conjecture of H. Minkowski by showing that this geometric conjecture was equiv-
alent to the statement that, in any factorization of a finite group G into cyclic
subsets, one of the subsets must be a subgroup and then proving that this is so
[6].

L. Rédei proved that in any factorization of a finite group G into factors of
prime order one of the factors must be a subgroup [7].

Rédei’s theorem is a generalization of Hajós’ theorem. If r = st, s ≥ 2, t ≥ 2,
then

{0, a, 2a, . . . , (r − 1)a = {0, a, 2a, . . . , (s− 1)a}+ {0, sa, 2sa, . . . , (t− 1)sa}.

The first set is a subgroup if and only if |a| = r. This holds if and only if |sa| = t
and so if and only if the last set is a subgroup. By continuing in this way each
cyclic set is seen to be a sum of cyclic sets of prime order. The original set is a
subgroup if and only if one of these sets of prime order is a subgroup.

A subset A of order at least 3 is said to be simulated by a subgroup H of a
group G if either A = H or there is exactly one element of A not in H and exactly
one element of H not in A. Thus in this second case

H = (A ∩H) ∪ {h}, A = (A ∩H) ∪ {h + d}, h ∈ H \ {0}, d 6∈ H.

In the finite case an equivalent definition is that |A| = |H| ≤ |A∩H|+1. As usual
it is assumed that 0 ∈ A. The case |A| = 2 is omitted because every subgroup of
order 2 would simulate every subset {0, a}. In addition in the |A| = 2 case A is a
cyclic subset.

In [3] it is shown that if a finite group G is a direct sum of simulated subsets,
then one of these subsets must be a subgroup.

In [5, 85.1] it is shown that each group G may be decomposed into a sum of
cyclic subsets of prime order. Thus it makes sense, for each group, to ask if the
Hajós’ or Rédei’s theorem holds true.

A group G will be said to satisfy Hajós’ theorem if in every decomposition of
G into a direct sum of cyclic subsets one of these subsets must be a subgroup.
The group G will be said to satisfy Rédei’s theorem if in every decomposition
of G into a direct sum of subsets of prime order one of these subsets must be a
subgroup. All finite groups belong to both classes. In the infinite case examples
will be presented to show that there are groups which satisfy Hajós’ theorem but
do not satisfy Rédei’s theorem.

The standard definitions of abelian group theory as found in Fuchs [5] will be
used. The symbol Z(n) will denote the cyclic group of order n. If p is a prime,
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then Z(p∞) will denote the quasi-cyclic or Prüferian group belonging to p. (See
Fuchs [5, §4].) 〈A〉 will be used to denote the subgroup generated by a subset A.

L. Fuchs [4, 5] has shown that any group satisfying Hajós’ theorem must be
of the form

G = F +
s∑

i=1

Z(p∞i ) +
∑

µ

Z(p),

where F is finite p, p1, . . . , ps are primes and µ is any cardinal. It will be shown
that if

G = F +
s∑

i=1

Z(p∞i ),

where F is a finite group and p1, . . . , ps are distinct primes not dividing |F |, then
Rédei’s theorem, and hence Hajós’ theorem, holds for G. Fuchs [4, 5] claims that
Hajós’ theorem holds for groups G of type

F +
∑

µ

Z(p),

where F is finite and p is any prime and µ is any cardinal. We believe that the
condition p does not divide |F | is needed for his proof to hold and shall present a
modification of his proof. Clearly the groups∑

µ

Z(p)

satisfy Hajós’ theorem. We shall show that, if p ≥ 3 and µ is an infinite cardinal,
then they do not satisfy Rédei’s theorem. We shall show that if

G = F +
∑

µ

Z(2),

where F is a finite group of odd order and µ is any cardinal, then G satisfy Rédei’s
theorem.

A group G is said to satisfy the simulation theorem if in every decomposition
of G into a direct sum of simulated factors one factor must be a subgroup. In this
case the factors may be infinite. It is shown that in any factorization of this type
involving only a finite number of factors one of the factors must be a subgroup.
It is deduced that all subgroups of groups of the form

s∑
i=1

Z(p∞i ) +
∑

µ

Q,

where p1, . . . , ps are primes and µ is a finite cardinal, satisfy the simulation theo-
rem. A group which is an infinite direct sum of non-zero subgroups will be shown
not to satisfy the simulation theorem.

A subset A of a group G is said to be periodic if there exist g ∈ G, g 6= 0, such
that g + A = A. The set of all such periods together with 0 forms a subgroup H
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of G. If K is any subgroup of H, then A is a union of cosets of K. Equivalently
there is a subset D of G such that A = K + D, where the sum is direct. Any
periodic set which is cyclic or has prime order or is simulated must itself be a
subgroup of G.

A finite group G is said to have the Hajós k-property if in any factorization

G = A1 + · · ·+ Ak,

at least one of the factors Ai is periodic.

2. Preliminary results

Results are presented which will be used later or are of more general interest.

Lemma 1. If A is a direct factor of a group G and A + d ⊆ A for some d ∈ G,
d 6= 0, then d is a period of A.

Proof. Let B be a subset such that G = A + B, where the sum is direct. Let
a ∈ A. Now A + d + B = G + d = G. So there exist a′ ∈ A, b ∈ B with
(a′+d)+ b = a+0. Now a′+d ∈ A. Since the sum of A and B is direct it follows
that a′ + d = a, b = 0. Hence A + d = A and d is a period of A.

It should be noted that some condition on A is required. If G = Z and A is the
set of positive integers, then A + d ⊆ A for all d ∈ A, but A is not periodic.

Lemma 2. If a finite subset A is a direct factor of a torsion group G, then |A|
divides

∣∣〈A〉∣∣.
Proof. Let G = A + B. Since A ⊆ 〈A〉 it follows that 〈A〉 = A +

(
B ∩ 〈A〉

)
. Since

G is a torsion group and A is finite it follows that 〈A〉 is finite. Hence |A| divides∣∣〈A〉∣∣.
In particular if {0, a, 2a, . . . , (r − 1)a} is a cyclic direct factor of a torsion group
G, then r divides |a|.

A direct factor A of a group G is said to be replaceable by a subset D of G if
whenever G = A+B is a factorization, then so also is G = D+B. In Proposition
3 [10] it is shown that if A is a finite direct factor of G and k is relatively prime
to |A|, then A may be replaced by kA = {ka : a ∈ A}. Two consequences of this
result are now presented.

Let G be a torsion group. Then if the set P of primes is expressed as a disjoint
union P1 ∪ P2, G is a direct sum of the subgroups

H =
∑
p∈P1

Gp, K =
∑
p∈P2

Gp.

Let A be a subset of G. Then each a ∈ A may be written uniquely as

a = aH + aK , aH ∈ H, aK ∈ K.
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This gives rise to subsets

AH = {aH : a ∈ A}, AK = {aK : a ∈ A}.

With these conditions satisfied the following replacement results hold.

Theorem 1. Let A be a finite direct factor of a torsion group G. Let P be the
set of primes and let P1 = {p ∈ P : p divides |A|}. Then A may be replaced by
AH .

Proof. Let the lowest common multiple of the orders of the elements in AH be
n and let the lowest common multiple of the orders of the elements in AK be
m. Then m and n are relatively prime. Hence there exists k such that mk ≡ 1
(mod n). By Proposition 3 [10] A may be replaced by mkA. Let a = aH + aK ,
where a ∈ A. Then mkaK = 0 and mkaH = aH . Hence mkA = AH , as required.

We should note that Proposition 3 [10] also implies that |A| = |AH |, that is, the
elements aH , a ∈ A are distinct. This implies that A∩K = {0} as aH = 0 implies
a = 0.

Theorem 2. Let A be a finite direct factor of a torsion group G. Let P be the
set of primes and let P1 = {p ∈ P : p divides |A|}. Then A may be replaced by
a set D such that AH = DH and each non-zero dK, d ∈ D, has prime order q,
where q depends only on A.

Proof. Let the lowest common multiple of the orders of the elements in AH be
n and let the lowest common multiple of the orders of the elements in AK be m.
If m = 1, then A = AH and we may choose A = D. Otherwise let q be a prime
factor of m. Then there exists l such that (m/q)l ≡ 1 (mod n). If q divides l we
may replace l by l+n. Thus we may assume that l has been chosen in such a way
that q does not divide l. By Proposition 3 [10] we may replace A by D = (m/q)lA.
Then AH = DH . Let a ∈ A. If (m/q)aK = 0, then the corresponding element
dK = 0, where d = (m/q)la. Since m is the lowest common multiple of the orders
of the elements in AK there exists a ∈ A such that (m/q)aK 6= 0. Thus aK has
order q. Since q does not divide l it follows that dK = (m/q)laK has order q.
Thus D has the required property.

Again we should note that |D| = |A|. We should note also that in this case A is a
subgroup of G if and only if AH is a subgroup of G and A = AH . So if A is not a
subgroup of G it is being replaced by a subset which is also not a subgroup of G.

If G =
∑

Ai is a factorization of a group G and Ai is replaceable by a subset
Bi for each i, then clearly any finite direct sum Ai(1) + · · ·+Ai(k) may be replaced
by Bi(1) + · · ·+ Bi(k). Also the sum

∑
Bi is direct since any g in

∑
Bi belongs to

such a finite direct sum. In general we cannot claim that
∑

Bi = G. For example
if G = Z, then

Z = {0, 1}+ {0,−2}+ {0, 4}+ · · · .
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Here Ai = {0, (−2)i−1}. We may replace each Ai by 3Ai. Clearly
∑

3Ai = 3Z 6=
Z.

If A is a subset of a torsion group G and p is a prime we shall use (A)p rather
than AGp to denote the subset consisting of the p-components of the elements
of A. (A)p′ will be used to denote the subset consisting of the complimentary
components. If a is an element of a torsion group G and p is a prime we will use
(a)p to denote aGp , that is, the p-component of a.

Theorem 3. Let G be a torsion group and let

G =
∑
i∈I

Ai

be a factorization in which each factor has prime power order. If, for some prime
p, Gp is finite, then

Gp =
∑

(Ai)p,

where the summation is taken over all i such that |Ai| is a power of p.

Proof. Let I1 = {i ∈ I : |Ai| is a power of p}. Then∑
i∈I1

(Ai)p

is a direct sum contained in Gp. Since Gp is finite it follows that I1 is finite. Let
I2 = I \ I1. Then

G =
∑
i∈I1

(Ai)p +
∑
i∈I2

Ai.

Let g ∈ Gp. Then there exists ai ∈ Ai such that

g =
∑
i∈I1

(ai)p +
∑
i∈I2

ai.

Since g ∈ Gp it follows that

g =
∑
i∈I

(ai)p

and that ∑
i∈I2

(ai)p′ = 0.

Now for i ∈ I2 we may replace Ai by (Ai)p′ and so∑
i∈I2

(Ai)p′

is a direct sum. Hence (ai)p′ = 0 for all i ∈ I2. We also have that |Ai| =
∣∣(Ai)p′

∣∣.
Thus (ai)p′ = 0 implies that ai = 0. Therefore

g =
∑
i∈I1

(ai)p.
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Thus
Gp =

∑
i∈I1

(Ai)p,

as required.

We note also that
|Gp| =

∏
i∈I1

|Ai|.

Let G be a torsion group and let G =
∑

i∈I Ai be a factorization in which each |Ai|
is a power of a prime. Let P1 be a set of primes such that, for each p ∈ P1, Gp is
finite. Let H =

∑
p∈P1

Gp. Then H =
∑

p∈P1

∑
(Ai)p, where the inner summation

is taken over all i such that |Ai| is equal to a power of p.

Theorem 4. Let G be a torsion group such that every finitely generated subgroup
is cyclic and let there be a factorization G = A1 + · · · + Ak + B, where each Ai

has order a power of a given prime p. Then one of the factors of G is periodic.

Proof. Let H = 〈A1 ∪ · · · ∪ Ak〉. Then H is a finite cyclic group. Let C be a
complete set of coset representatives for G modulo H. Then, for each c ∈ C

A1 + · · ·+ Ak +
(
B ∩ (H + c)

)
= H + c.

There is a translate Bc, containing 0, of B∩(H+c) such that A1+· · ·+Ak+Bc = H.
It follows by Theorem 2 [10] that one of these factors is periodic. If no factor Ai

is periodic, then Bc is periodic for each c ∈ C.
In order to complete the proof a closer examination of the proof of Theorem

2 [10] is needed. Each subset Ai may be replaced by its p-component. If none of
these subsets (Ai)p is periodic, it is shown in [10] that the unique subgroup P of
H of order p is a group of periods of Bc. Since

B =
⋃
c∈C

(
B ∩ (H + c)

)
it follows that P is a group of periods of B. If one of the subsets, say (A1)p, is
periodic there is defined a subgroup K depending only on A1. If K = {0}, then
it is shown that A1 is periodic. If K 6= {0}, then it is shown that K is a group of
periods of Bc. As above it follows that B is periodic.

Corollary. If p is a prime G = Z(p∞) and G = A1+· · ·+Ak+B is a factorization
in which each Ai is finite, then some factor is periodic.

Proof. Let H = 〈A1 ∪ · · · ∪ Ak〉. Then H is a finite subgroup and so H = Z(pn)
for some n. Since A1 + · · ·+Ak +(B∩H) = H it follows that each |Ai| is a power
of p. The result now follows from Theorem 4.

Theorem 5. If p, q are distinct primes G = Z(p∞) + Z(q) and G = A1 + · · · +
Ak + B is a factorization in which all the subsets Ai are finite, then one of the
factors of G is periodic.
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Proof. If all the factors Ai have order equal to some power of p, then the result
follows by Theorem 4. If this is not so then q divides |Ai| for some value of i. Let
then H = 〈A1 ∪ · · · ∪Ak〉. So H = Z(pn) + Z(q) for some n. Let C be a complete
set of coset representatives for G modulo H. Then, for each c ∈ C,

A1 + · · ·+ Ak +
(
B ∩ (H + c)

)
= H + c.

As before there exists Bc containing 0 and equal to a translate of B ∩ (H + c)
such that A1 + · · ·+ Ak + Bc = H. Since Z(pn) + Z(q) has the Hajós m-property
(Theorem 2 [9]) it follows that one of these subsets is periodic. If no subset Ai

is periodic it follows that Bc is periodic for each c ∈ C. Since q divides |Ai| for
some i, it follows that Bc has order a power of p. Hence the unique subgroup P
of order p is a group of periods of Bc. As before it follows that P is a group of
periods of B.

Theorem 6. If p, q are distinct primes G = Z(p∞) + Z(q) and

G =
∑
i∈I

Ai

is a factorization in which all the subsets Ai are finite, then one of these factors
is periodic.

Proof. Let H be the subgroup of G of order pq. Then each element of H is
contained in a finite sum of factors Ai. Hence there exists a finite subset J of I
such that

H ⊆
∑
i∈J

Ai.

Let
B =

∑
i∈I\J

Ai.

Then
G = B +

∑
i∈J

Ai.

By Theorem 5 one of these factors is periodic. If B is periodic it has either a
period of order p or a period of order q. Now these elements belong to H and
H ⊆

∑
i∈J Ai implies that H + B is a direct sum. Thus it is not possible for B

to have a group of periods of order p or q. Hence one of the subsets Ai, i ∈ J is
periodic.

Theorem 7. If p, q are distinct primes G = Z(p∞) + Z(q) and

G = B +
∑
i∈I

Ai

is a factorization in which all the factors Ai are finite, then one of the factors of
G is periodic.



A. D. Sands, S. Szabó: The Possibility of Extending Factorization. . . 159

Proof. If I is finite, then the result follows by Theorem 5. Since G is countable,
I is countable and we may assume that I = {1, 2, 3, . . .}. For each k ∈ I let

Hk = 〈A1 ∪ · · · ∪ Ak〉, Bk+1 = B +
∑
i>k

Ai.

Let Ck be a complete set of coset representatives for G modulo Hk. Thus, for
each c ∈ Ck,

A1 + · · ·+ Ak +
(
Bk+1 ∩ (Hk + c)

)
= Hk + c.

As before either one of the factors from A1, . . . , Ak is periodic or there is a period
of Bk+1 ∩ (Hk + c) which depends only on A1, . . . , Ak and not on c. Thus Bk+1

is periodic with an element a of order p or an element b of order q as period. It
follows that either a is a period of Bk+1 for infinitely many k or that b is so.

Suppose that this holds for d, say. Let g ∈ B. Then g ∈ Bk+1 and so
g + d ∈ Bk+1 for infinitely many k. Let k = r be such a value. Then

g + d = ar+1 + · · ·+ ar+s + b′,

where ai ∈ Ai, b′ ∈ B. Let k = t > r + s be another such value. Then

g + d = at+1 + · · ·+ at+v + b′′,

where ai ∈ Ai, b′′ ∈ B. Now the sum B +
∑

Ai is direct. It follows that

ar+1 = · · · = ar+s = at+1 = · · · = at+v = 0, b′ = b′′.

Hence g + d ∈ B. Therefore B + d ⊆ B. Since B is a direct factor of G it follows
by Lemma 1 that d is a period of B.

It is possible to prove the results in Theorems 5, 6, 7 for G = Z(p∞) by similar
methods. They also may be proved as follows. Let a be a non-zero element in
Z(p∞) and let b have order q in Z(q). Let

D = {0, b, 2b, . . . , (q − 2)b, (q − 1)b + a}.

Then D is finite and is not periodic. Since Z(p∞) + D = Z(p∞) + Z(q) any
counterexample to these results for Z(p∞) can be extended to a counterexample
for Z(p∞) + Z(q).

These results are in a certain sense best possible. Z(p∞) is generated by
elements a1, a2, . . . , ar, . . . satisfying pa1 = 0, par+1 = ar, r ≥ 1. Let

Ar = {0, ar, 2ar, . . . , (p− 1)ar}.

Then Z(p∞) =
∑

Ai. Plainly A1 is a subgroup. Hence the other factors, and
sums of the other factors, cannot be periodic. In [2] results are given which show
that the groups

Z(p3) + Z(q2), Z(p3) + Z(q) + Z(r)
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admit factorizations in which no factor is periodic. Hence the same holds for

Z(p∞) + Z(q2), Z(p∞) + Z(q) + Z(r)

by adding on the factors
∑

i≥4 Ai. These can be regarded as a single infinite factor
or a family of finite factors or as an infinite factor plus a family of finite factors.
So Theorems 5, 6, 7 do not extend to these groups.

Also in [2, 8] results are given which show that the groups

Z(p2) + Z(p), p ≥ 5,

Z(33) + Z(3), Z(23) + Z(22), Z(24) + Z(2) + Z(2)

admit factorizations in which no factor is periodic. As above this implies that
Theorems 5, 6, 7 do not hold for

Z(p∞) + Z(p), p ≥ 3,

Z(2∞) + Z(22), Z(2∞) + Z(2) + Z(2).

It is shown in [1] that Z(2n) + Z(2) has the Hajós m-property. Thus counterex-
amples as above cannot be constructed for G = Z(2∞)+Z(2). We now show that
the result analogous to Theorem 5 does hold for this group. We use the methods
involving group characters which are used in [1]. The necessary results used are
also described there.

Theorem 8. Let G = Z(2∞) + Z(2). If G = A1 + · · ·+ Ak + B is a factorization
in which each factor Ai is finite, then some factor is periodic.

Proof. Let a in Z(2∞) have order 2 and let b be another element of order 2. Let
H = 〈A1 ∪ · · · ∪ Ak〉. Let C be a complete set of coset representatives for G
modulo H. Then for each c ∈ C,

A1 + · · ·+ Ak +
(
B ∩ (H + c)

)
= H + c.

For some translate Bc of B ∩ (H + c) with 0 ∈ Bc we have that

A1 + · · ·+ Ak + Bc = H.

Since H is a finite subgroup of G, either H = Z(2n) or H = Z(2n) + Z(2) for
some n.

If some Ai is periodic, then there is nothing to prove. Assume that no factor Ai

is periodic and try to establish that each Bc has a common period independently
of c. This will give that B is periodic. If H = Z(2n), then a is a period of Bc for
each c.

If H = Z(2n) + Z(2) then, we will use the method of the proof of Theorem
10 [1]. Let ρ be a primitive (2n)th root of unity and let d in H be such that
2n−1d = a. Let characters of H be defined by

χ1(d) = ρ, χ1(b) = 1 and χ2(d) = ρ, χ2(b) = −1.
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Clearly, χ1 is not the principal character of H and so

0 = χ1(H) = χ1(A1) · · ·χ1(Ak)χ1(Bc).

It follows that χ1(D) = 0 for some factor D of the factorization H = A1+· · ·+Ak+
Bc. Similarly χ2(D) = 0 for some factor. If for some factor χ1(D) = χ2(D) = 0,
then by Theorem 1 [11], a is a period of D. We may assume that χ1(D) = 0,
χ2(D) = 0 does not hold for any D.

If χ1(Ai) = 0 and χ2(Aj) = 0, then by Theorem 2 [11] there are subsets P ,
Q, R, S of H such that

Ai =
(
{0, 2n−1d}+P

)
∪

(
{0, 2n−1d+b}+Q

)
, Aj =

(
{0, 2n−1d}+R

)
∪

(
{0, b}+S

)
,

where the sums are direct and the unions are disjoint. Since Ai is not periodic, P
and Q are non-empty sets. Since Aj is not periodic, R and S are non-empty sets.
Choose a ∈ P , b ∈ R and consider the factorization

H = H − a− b = A1 + · · ·+ (Ai − a) + · · ·+ (Aj − b) + · · ·+ Ak + Bc.

By the factorization the sum Ai + Aj is direct and so (Ai − a) ∩ (Aj − b) = {0}.
On the other hand 2n−1d ∈ (Ai − a) ∩ (Aj − b). This contradiction shows that
either Ai or Aj is periodic.

If χ1(Ai) = 0 and χ2(Bc) = 0, then by Theorem 2 [11] there exist subsets P ,
Q, R, S of H such that

Ai =
(
{0, 2n−1d}+P

)
∪

(
{0, 2n−1d+b}+Q

)
, Bc =

(
{0, 2n−1d}+R

)
∪

(
{0, b}+S

)
,

where the sums are direct and the unions are disjoint. Since Ai is not periodic, P
and Q are non-empty sets. Since Ai + Bc is direct, as above, it follows that R is
empty. Hence b is a period of Bc for all c.

Similarly, if χ2(Aj) = 0 and χ1(Bc) = 0, then it follows that 2n−1d + b is a
period of Bc for all c.

The results analogous to Theorems 6, 7 can now be deduced from Theorem 8 in a
similar way to the deductions of Theorems 6, 7 from Theorem 5.

3. The simulation theorem

It has been shown in [3] that if a finite group G is a direct sum of simulated
subsets, then one of these subsets must be a subgroup. An infinite group G will
be said to satisfy the simulation theorem if the result holds for it. The following
replacement result has been proved for finite groups by using group characters
and sums of roots of unity in [3]. In fact this method is not needed and the result
holds also for infinite groups.

Theorem 9. If a subset A is simulated by a subgroup H of a group G and
G = A + B is a factorization, then so also is G = H + B.
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Proof. If A = H, then there is nothing to prove. So we may assume that

H = (A ∩H) ∪ {h}, A = (A ∩H) ∪ {h + d}, h 6= 0, d 6= 0.

Let b ∈ B. Then h + b = a + b1, for some a ∈ A, b1 ∈ B.
If a = 0, then h + b = b1. Let h1 ∈ (A ∩H), h1 6= 0. Then h + h1 ∈ (A ∩H)

and (h+h1 + b) = h1 + b1. Since A+B is a direct sum it follows that h+h1 = h1.
This is false and so a 6= 0.

If a ∈ (A ∩H), then h− a ∈ (A ∩H). Thus b = (h− a) + b1. Since A + B is
a direct sum it follows that h− a = 0, which is false.

So the remaining case in which a = h+d must occur. Thus h+ b = h+d+ b1.
Hence (−d) + b ∈ B. Therefore (−d) + B ⊆ B. By Lemma 1 it follows that
(−d) + B = B and so that B = d + B. Then h + B = h + d + B and so
H + B = A + B. The desired result now follows.

Theorem 10. If a group G is a direct sum of a finite number of simulated subsets,
then one of these subsets is equal to its simulating subgroup.

Proof. Let G = A1 + · · · + Ak be a factorization in which each subset Ai is
simulated by a subgroup Hi. If k = 1, then the result is trivial and we may
proceed by induction on k. It may be supposed that Ai 6= Hi and so that

Hi = (Ai ∩Hi) ∪ {hi}, Ai = (Ai ∩Hi) ∪ {hi + di}, hi 6= 0, di 6= 0.

By Theorem 9, the factor Ai may be replaced by the subgroup Hi. This leads to
the factorization

G/Hi =
∑
r 6=i

(Ar + Hi)/Hi.

By the inductive assumption some subset here is equal to its simulating subgroup.
So there exists f(i) 6= i such that Af(i) + Hi = Hf(i) + Hi. Then hf(i) + df(i) =
h′f(i) +h′i for some h′f(i) ∈ Hf(i), h′i ∈ Hi. Since, by Theorem 9, the sum Af(i) +Hi

is direct it follows that h′f(i) 6∈ Af(i) and so that h′f(i) = hf(i). Therefore df(i) ∈ Hi.
Such a mapping f must give rise to a cycle among the indices 1, 2, . . . , k. By

reordering the subsets it may be assumed that 1, 2, . . . , r is such a cycle. Thus it
follows that

d2 ∈ H1, . . . , dr ∈ Hr−1, d1 ∈ Hr.

Consider the element

g = (h1 + d1) + (h2 + d2) + · · ·+ (hr + dr),

which is in A1 + A2 + · · · + Ar. Since di+1 ∈ Hi, di+1 6= 0, it follows that
hi + di+1 ∈ Ai ∩Hi, 1 ≤ i ≤ r − 1, and similarly that d1 + hr ∈ Ar ∩Hr. Then

g = (h1 + d2) + (h2 + d3) + · · ·+ (hr−1 + dr) + (hr + d1).

Since the sum
∑

Ai is direct it follows that

h1 + d1 = h1 + d2, . . . , hr + dr = hr + d1.
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Thus d1 = d2 ∈ H1 ∩Hr. By using two applications of Theorem 9 it may be seen
that the sum H1 + Hr is direct. Therefore H1 ∩Hr = {0} and so d1 = 0. This is
false.

It follows that Aj = Hj for some j. The result now follows by induction.

Theorem 11. If a group G satisfies the simulation theorem and G is the direct
sum of subgroups H and K, then these direct summands of G also satisfy the
simulation theorem.

Proof. Let H =
∑

Ai, where the subsets are simulated by subgroups Hi.
Suppose first that K contains at least three elements. Choose h ∈ H, f ∈ K

with h 6= 0, f 6= 0 and form B from K by replacing f by f + h, that is set

B =
(
K \ {f}

)
∪ {f + h}.

Then B is simulated by K and B 6= K. Now

G = K + H = B + H = B +
∑

Ai.

Since G satisfies the simulation theorem it follows that Ai = Hi for some i.
Now suppose that K = {0, f} has only two elements. Let B = A1 ∪ (H1 + f).

Then B is simulated by H1 + K. Also

B +
∑
i6=1

Ai =
(
A1 ∪ (H1 + f)

)
+

∑
i6=1

Ai

=
(
A1 +

∑
i6=1

Ai

)
∪

(
f + H1 +

∑
i6=1

Ai

)
=

(∑
Ai

)
∪

(
f + A1 +

∑
i6=1

Ai

)
(by Theorem 9)

= H ∪ (f + H)

= {0, f}+ H

= K + H

= G.

Since B 6= H1 + K it follows that Ai = Hi for some i.
Therefore H satisfies the simulation theorem.

Lemma 3. Let G be a direct sum of countable many subgroups that are not of
exponent two. Then G does not satisfy the simulation theorem.

Proof. Let

G =
∞∑
i=1

Hi,

where Hi are subgroups that are not of exponent two. For each i choose fi ∈ Hi

such that 2fi 6= 0. Form the subset Ai from Hi by replacing fi by fi + fi+1. Then
Ai is simulated by Hi, Ai 6= Hi,

Ai = (Ai ∩Hi) ∪ {fi + fi+1}.
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Let g ∈ G, g 6= 0. Suppose that r is the least value and s is the greatest value
of i such that the Hi-component of g is non-zero. We define the length of g by
n(g) = s− r. We shall show that g ∈

∑
i≥r Ai by using induction on length.

If n(g) = 0, then g ∈ Hr. If g ∈ Ar, then the desired result holds. If g 6∈ Ar,
then

g = fr = (fr + fr+1) + (−fr+1).

Now −fr+1 6= fr+1 and so −fr+1 ∈ Ar+1. Hence g ∈ Ar + Ar+1. So the result
holds for n(g) = 0.

Let n(g) = k and assume that the result holds for all elements of length less
than k. Then g = hr + · · · + hr+k, where hr 6= 0, hr+k 6= 0. If hr ∈ Ar, then
g = ar +h, where n(h) < k. By the inductive assumption h ∈

∑
i>r Ai. Therefore

g ∈
∑

i≥r Ai. If hr 6∈ Ar, then hr = fr. Thus

g = fr = (fr + fr+1) + (−fr+1) + hr+1 + · · ·+ hr+k = fr + fr+1 + h,

where n(h) < k. As before it follows that g ∈
∑

i≥r Ai.
It follows that

∑
Ai = G.

We now show that this sum is direct. Suppose that

g =
∑
i≥r

ai =
∑
i≥s

a′i, ai, a
′
i ∈ Ar.

Then the Hr-component of g is either ar or fr from g =
∑

i≥r ai. It follows that
the same arises from g =

∑
i≥s a′i, since

∑
Hi is a direct sum. Since fr arises once

only from ar = fr + fr+1 it follows that r = s and ar = a′r. By repeating this
process we see that the expression for g is unique. Thus the sum is direct and
since Ai 6= Hi for any i, in this case G does not satisfy the simulation theorem.

Lemma 4. Let G be a direct sum of countable many subgroups that are all
isomorphic to Z(2) + Z(2). Then G does not satisfy the simulation theorem.

Proof. Let

G =
∞∑
i=1

Hi,

where Hi is isomorphic to Z(2) + Z(2). Let Hi = {0, di, bi, di + bi}. We define

Ai = {0, di, bi, di + bi + di+1}.

Then Ai is simulated by Hi and Ai 6= Hi.
Exactly as in the previous proof by considering the Hr-component of any

element g ∈ G we may show that the sum of the subsets Ai is direct.
Let g ∈ G, g 6= 0. We define the length n(g) of G as before. If n(g) = 0, then

g ∈ Hr and either g ∈ Ar or

g = (dr + br + dr+1) + dr+1 ∈ Ar + Ar+1.
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In the general case let r be the smallest index such that g has non-zero Hr-
component. We show that g ∈

∑
i≥r Ai by induction on n(g). Suppose that

n(g) = k and that the result holds for elements of length less than k. Now

g = hr + · · ·+ hr+k, hi ∈ Hi.

If hr ∈ Ar, then g = ar + h, ar ∈ Ar, where n(h) < k. Hence h ∈
∑

i>r Ai and so
g ∈

∑
i≥r Ai, as required. If hr 6∈ Ar, then

g = (dr + br + dr+1) + dr+1 + h,

where n(dr+1 +h) < k. Hence g ∈ Ar +
∑

i>r Ai =
∑

i≥r Ai, as required. It follows
that

∑
Ai = G. Therefore G does not satisfy the simulation theorem.

Theorem 12. If a group G is a direct sum of an infinite family of subgroups,
then G does not satisfy the simulation theorem.

Proof. A countable subset indexed by the positive integers may be chosen from
this infinite family. By Theorem 11 it suffices to consider this direct summand.
So without loss of generality it may be assumed that G =

∑
i≥1 Hi, where the

sum is direct and each Hi is a subgroup of G.
Consider first the case where infinitely many subgroups Hi are not of exponent

two. Again, by Theorem 11, it may then be supposed that no subgroup Hi has
exponent two. By Lemma 3, G does not satisfy the simulation theorem.

There remains the case where all but a finitely number of subgroups Hi have
exponent two. Each subgroup of exponent 2 is a vector space over the field of
order 2 so is a direct sum of copies of Z(2). Again by Theorem 11 we may assume
that G =

∑
i≥1 Hi, where each Hi is isomorphic to Z(2) + Z(2). By Lemma 4, G

does not satisfy the simulation theorem.
This completes the proof.

It is now clear from Theorem 9 that if G =
∑k

i=1 Ai, where Ai are subsets simu-

lated by subgroups Hi, then G =
∑k

i=1 Hi. We have not been able to extend this
result to infinite direct sums. So there is a gap between Theorem 10 and Theorem
12 which we have not been able to close. We can, though, deduce that certain
groups do satisfy the simulation theorem.

The basic divisible groups are the Prüferian groups Z(p∞) and the group Q
of the rationals. Every divisible group may be expressed uniquely as a direct sum
of these groups.

Theorem 13. If an abelian group G is contained in a finite direct sum of basic
divisible groups, then G satisfies the simulation theorem.

Proof. Let D be a direct sum of k basic divisible subgroups. Let a subgroup H
of D be a direct sum of r non-zero subgroups Hi. Then the divisible hull Ei of
Hi may be assumed to be a subgroup of D and the sum E of the subgroups Ei is
direct and is the divisible hull of H. Since E is divisible there is a subgroup F of
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D such that D = E +F , E∩F = {0} and F is divisible. Then k = s+ t, where E
is the direct sum of s basic divisible subgroups and F of t such subgroups. Hence
r ≤ s ≤ k.

Now if G =
∑

i∈I Ai is a factorization of G into simulated factors Ai and |I|
is infinite or |I| > k then it follows from Theorem 9 that G contains a subgroup
which is a direct sum of k + 1 non-zero subgroups. This is not possible. Hence
|I| ≤ k. By Theorem 10 it follows that G satisfies the simulation theorem.

4. Rédei’s Theorem

Since the factors in Hajós’ theorem may be assumed to have prime order it fol-
lows that any infinite group satisfying Rédei’s theorem must also satisfy Hajós’
theorem. The following example shows that not all groups satisfying Hajós’ theo-
rem also satisfy Rédei’s theorem. For any odd prime p, Hajós’ theorem holds for∑

Z(p), but by Lemma 3 Rédei’s theorem does not hold if the sum is infinite.

Theorem 14. If H is a subgroup of a group G and Rédei’s theorem holds for G
it also holds for H.

Proof. The proof of this result for Hajós’ theorem in [5, 85.3] shows that any
counterexample for H extends to a counterexample for G using cyclic subsets.
Since these may be assumed to have prime order, the same proof applies to Rédei’s
theorem.

Theorem 15. If the group G satisfies Rédei’s theorem, then G is of the form

G = F +
s∑

i=1

Z(p∞i ) +
∑

µ

Z(2),

where F is a finite group and µ is any cardinal.

Proof. As has already been stated if a group G satisfies Rédei’s theorem it must
satisfy Hajós’ theorem and so be of the form given by Fuchs [4, 5]. From Lemma
3 it follows that

∑
µ Z(p) does not satisfy Rédei’s theorem for p > 2 and µ being

infinite. Hence G must be of the given form.

Theorem 16. If

G = F +
∑

µ

Z(2),

where F is finite and µ is any cardinal, then G satisfies Rédei’s theorem.

Proof. Let G =
∑

i∈I Ai, where each Ai has prime order, say pi. If pi 6= 2, then
(Ai)pi

⊆ F . Since F is finite and the sum
∑

(Ai)pi
is direct it follows that the set

of i with pi 6= 2 is finite.
Since F is finite and each f ∈ F is contained in a finite sum of factors there

exists a finite subset, say {1, . . . , n} of I with F ⊆
∑n

i=1 Ai. We may assume
that all subsets Ai with |Ai| 6= 2 are included here. For each i with |Ai| = 2 let
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Ai = {0, bi}. Let J = 〈A1∪· · ·∪An〉. Then J is finite and, as above, there is a finite
subset, say {1, . . . , n+k}, of I such that J ⊆

∑n+k
i=1 Ai. Let K = 〈A1∪· · ·∪An+k〉.

Let b ∈ K. Since G =
∑

Ai there exists l such that b =
∑n+k+l

i=1 ai, with ai ∈ Ai.

Let c = b−
∑n+k

i=1 ai. Then
∑n+k+l

i=n+k+1 ai = c ∈ K. Since c ∈ K there exist integers
ri,j such that

c =
n+k∑
i=1

∑
j

ri,jai,j, ai,j ∈ Ai.

Now
n∑

i=1

∑
j

ri,jai,j ∈ 〈A1 ∪ · · · ∪ An〉 = J.

Therefore there exist a′i ∈ Ai such that

n∑
i=1

∑
j

ri,jai,j =
n+k∑
i=1

a′i.

For i ≥ n + 1, Ai = {0, bi}. Hence Ai = 〈bi〉 and so
∑

ri,jai,j may be replaced by
ribi. Also

n+k∑
i=n+1

a′i =
n+k∑

i=n+1

tibi, 0 ≤ ti ≤ 1.

Let
ri + ti = 2ui + si, 0 ≤ si ≤ 1.

Since 2G ⊆ F we have that

−
∑

2uibi =
n∑

i=1

a′′i , a′′i ∈ Ai.

Hence
n+k+l∑

i=n+k+1

ai +
n∑

i=1

a′′i =
n∑

i=1

a′i +
n+k∑

i=n+1

sibi.

Since
∑

Ai is direct it follows that ai = 0, n + k + 1 ≤ i ≤ n + k + l. Hence
c = 0 and so b ∈

∑n+k
i=1 Ai. It follows that K =

∑n+k
i=1 Ai. Since K is finite,

Rédei’s theorem implies that some Ai is a subgroup. Therefore G satisfies Rédei’s
theorem.

Theorem 17. If

G = F +
r∑

i=1

Z(p∞i ),

where F is a finite group and p1, . . . , pr are distinct primes not dividing |F |, then
Rédei’s theorem holds for G.

Proof. Let G =
∑

i∈I Ai be a factorization in which each subset Ai has prime
order. Let Ai have order q. Then q divides

∣∣〈Ai〉
∣∣ and so either q divides |F | or
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q = pj for some j. Since p1, . . . , pr do not divide |F | it follows by the remark after
the proof of Theorem 3 that the set of i such that |Ai| divides |F | is finite and
that F =

∑
(Ai)qi

, where |Ai| = qi and the sum is taken over all i such that qi

divides |F |.
Since G is countable we may choose the positive integers as the index set

I. Thus we may suppose that F =
∑k

i=1(Ai)qi
. The remaining subsets Ai have

cardinality taken from the set of primes {p1, . . . , pr}. Let Ij = {i ∈ I : |Ai| = pj}
for 1 ≤ j ≤ r. Then, for i ∈ Ij, (Ai)pj

⊆ Z(p∞j ) and
∣∣(Ai)pj

∣∣ = pj.
By Theorem 2 we may replace each subset Ai, 1 ≤ i ≤ k, by a subset Di such

that (Ai)F = (Di)F and the components in
∑r

j=1 Z(p∞j ) of elements of Di are zero
or are of prime order. Without renaming the subsets we shall assume that this
replacement has been made.

Let Hj be the unique subgroup of order pj in Z(p∞j ). Let f ∈ Hj, f 6= 0. We
may choose an ascending family of finite subsets Kj,l of Ij such that ∪lKj,l = Ij.
Then ∑

i∈Kj,l

(Ai)pj
+

( ∑
i6∈Kj,l

Ai ∩ Z(p∞j )
)

= Z(p∞j ).

By the remark following the proof of Theorem 6, f is a period of one of these
factors. If no subset (Ai)pj

, i ∈ Ij, is periodic, then f ∈
(∑

i6∈Kj,l
Ai

)
for all l.

Since these sums are direct it follows that

f ∈
⋂

l

( ∑
i∈Kj,l

Ai

)
=

∑
i6∈Ij

Ai.

Let f ∈
∑

i6∈Ij
ai. Then f =

∑
(ai)pj

and
∑

(ai)p′
j

= 0. For i 6∈ Ij,
∑

(Ai)pj
is

direct. Hence (ai)pj
= 0 for each i. Also |Ai| =

∣∣(Ai)pj

∣∣ for i 6∈ Ij. Hence ai = 0
and so f = 0. This is false. Therefore there exists i ∈ Ij such that f is a period
of (Ai)pj

. Since
∣∣(Ai)pj

∣∣ = |Ai| = pj it follows that (Ai)pj
= Hj.

Let these subsets Ai be Ak+1, . . . , Ak+r with (Ak+j)pj
= Hj. We may re-

place these subsets Ak+j by subsets Bk+j such that (Ak+j)pj
= (Bk+j)pj

and
such that the p′j-components in Bk+j have prime order. We shall assume that
this replacement has been made without renaming the subsets. Let H = F +
H1 + · · · + Hr. Then H contains all elements of G of prime order. Hence
A1, . . . , Ak, Ak+1, . . . , Ak+r are contained in H. Since |A1 + · · · + Ak| = |F | and
|Ak+1| = |KJ | it follows that

∑k+r
i=1 Ai = H. Since H is finite it follows by Rédei’s

theorem that some Ai is a subgroup.
Therefore G satisfies Rédei’s theorem.

In the case of finite cyclic groups there is a generalization of Rédei’s theorem. In
Theorem 1 [9], it is shown that if the order of each factor is a prime power and
the finite group is cyclic, then one factor must be periodic. This result extends to
the infinite case as follows.

Theorem 18. Let

G = F +
r∑

j=1

Z(p∞j ),
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where F is a finite cyclic group and p1, . . . , pr are distinct primes not dividing |F |.
Then if G =

∑
i∈I Ai is a factorization in which each |Ai| is a prime power, one

of the factors is periodic.

Proof. Let J = {i ∈ I : |Ai| divides |F |}. By the remark after the proof to
Theorem 3, F =

∑
i∈I (Ai)F . By Theorem 2 we may replace each of this finite

set of factors Ai by a factor Di such that (Ai)F = (Di)F and Di ⊆ F +
∑r

j=1 Kj,
where Kj is the subgroup of Z(p∞j ) of order pj. Without renaming the factors we
shall assume that this replacement has been made.

Let Ij = {i ∈ I : |Ai| is a power of pj}, 1 ≤ j ≤ r. Since Z(p∞j )
is countable we may assume, for some chosen j, that Ij is the set of positive
integers. For each k let

Bk = Z(p∞j ) ∩
(∑

i6∈Ij

Ai +
∑
i>k

Ai

)
.

By Theorem 1 we may replace the finite set of factors Ai, 1 ≤ i ≤ k, by the factors
(Ai)pj

. Hence

Bk +
k∑

i=1

(Ai)pj
= Z(p∞j ).

By the Corollary to Theorem 4 one of these factors is periodic. If no factor (Ai)pj

is periodic, then Kj is a group of periods of Bk for all k. Let c ∈ Kj, c 6= 0. Then
c ∈ ∩k≥1Bk. Since

∑
Ai is a direct sum it is easily seen that⋂

Bk = Z(p∞j ) ∩
(∑

i6∈Ij

Ai

)
.

By the remark at the end of the proof of Theorem 2 this intersection is {0}, where
K = Z(p∞j ), A =

∑
i6∈Ij

Ai. Thus c ∈ Bk for all k is not possible and so some

subset (Ai)pj
has Kj as a group of periods. Let the corresponding value of i be

denoted by i(j). Again, without renaming the factors, we may assume that

Ai(j) ⊆ F + K1 + · · ·+ Kr + Z(p∞j ).

Let Lj =
〈
(Ai(j))pj

〉
. Then Kj ⊆ Lj and, for all i ∈ J , Ai ⊆ F +

∑r
j=1 Lj. Let

Dj = Lj ∩
(∑

i6=i(j) Ai

)
. Consider the sum

∑
i∈J

Ai +
r∑

j=1

Ai(j) +
r∑

j=1

Dj.

We claim that this sum is direct. Let∑
i∈J

ai +
r∑

j=1

ai(j) +
r∑

j=1

dj =
∑
i∈J

a′i +
r∑

j=1

a′i(j) +
r∑

j=1

d′j, ai, a
′
i ∈ Ai, dj, d

′
j ∈ Dj.
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Choose m with 1 ≤ m ≤ r. Then

∑
i∈J

(ai)pm +
r∑

j=1

(ai(j))pm + dm =
∑
i∈J

(a′i)pm +
r∑

j=1

(a′i(j))pm + d′m.

Now (ai)pm ∈ Km, i ∈ J and (ai(j))pm ∈ Km for j 6= m. Km is a group of periods
of (Ai(m))pm . It follows that

∑
i∈J

(ai)pm +
r∑

j=1

(ai(j))pm ∈ (Ai(m))pm

and similarly ∑
i∈J

(a′i)pm +
r∑

j=1

(a′i(j))pm ∈ (Ai(m))pm .

Now from (Ai(m))pm +
∑

i6=i(m) Ai = G and Ai(m) ⊆ Lm it follows that Dm +

(Ai(m))pm = Lm and that the sum is direct. Therefore dm = d′m. This is true for
each m, 1 ≤ m ≤ r. Hence

∑
i∈J

ai +
r∑

j=1

ai(j) =
∑
i∈J

a′i +
r∑

j=1

a′i(j).

Since the sum
∑

Ai is direct it follows that ai = a′i, i ∈ J , ai(j) = a′i(j), 1 ≤ j ≤ r.
Thus the original claim is correct. Now

∑
i∈J

Ai +
r∑

j=1

Ai(j) +
r∑

j=1

Dj ⊆ F +
r∑

j=1

Lj.

Also |F | =
∏

i∈J |Ai|,

|Lj| = |Dj|
∣∣(Ai(j))pj

∣∣ = |Dj||Ai(j)|.

It follows that

F +
r∑

j=1

Lj =
∑
i∈J

Ai +
r∑

j=1

Ai(j) +
r∑

j=1

Dj.

Since this group is finite it follows by Theorem 2 [9] that some factor is periodic.
Since Dj ⊆ Lj ⊆ Z(p∞j ), if Dj is periodic then Kj is a group of periods of Dj.
However Kj is a group of periods of (Ai(j))pj

and the sum (Ai(j))pj
+ Dj is direct.

Therefore Dj is not periodic. Thus one of the factors Ai is periodic.
This completes the proof.

5. Hajós’ theorem

This theorem states that if a finite abelian group is a direct sum of cyclic subsets
then one of these subsets is a subgroup. Fuchs [4, 5] considered the problem of
determining the infinite abelian groups for which this theorem holds. He showed
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that any group which satisfies Hajós’ theorem must belong to the class of groups
of the form

G = F +
t∑

i=1

Z(p∞i ) +
∑

µ

Z(p),

where F is any finite group, p, p1, . . . , pt are prime numbers and µ is any cardinal.
In the opposite direction he showed that it held for the groups F +

∑
µ Z(p).

However it seems to us that his proof of this latter case requires also the condition
that p does not divide |F |. In the extreme case where F is a finite p-group the
proof would involve J = K = {0} and so no deduction could be made. In other
cases it is required that g ∈ F implies g ∈ J which need not hold. As we now
show, however, a modification of his proof will suffice to prove the desired result.

Theorem 19. If

G = F +
∑

µ

Z(p),

where F is finite, p is prime and µ is any cardinal, then G satisfies Hajós’ theorem.

Proof. Let G =
∑

i∈I Ai be a factorization in which each Ai is cyclic of prime
order. Let

Ai = {0, ai, 2ai, . . . , (pi − 1)ai}.
If pi 6= p, then (Ai)pi

⊆ F . Since F is finite and
∑

(Ai)pi
is direct it follows that

only finitely many subsets Ai exist with |Ai| 6= pi. Since F is finite there exists a
finite subset of I, which we may assume to be {1, . . . , n} by renaming elements of
I, such that F ⊆

∑n
i=1 Ai. We may also assume that the factors Ai with |Ai| 6= p

are included here.
Let J = 〈A1∪· · ·∪An〉. Since G is a torsion group, J is a finite subgroup of G.

As above there exists a finite subset, say {1, . . . , n + k} such that J ⊆
∑n+k

i=1 Ai.
Let K = 〈A1 ∪ · · · ∪ An+k〉. Then K is a finite subgroup of G. Let b ∈ K. Then

b =
n+k+m∑

i=1

tiai, 0 ≤ ti ≤ pi − 1.

Let c = b −
∑n+k

i=1 tiai. Then c ∈ K and c =
∑n+k+m

i=n+k+1 tiai. Since c ∈ K there

exist integers ri such that c =
∑n+k

i=1 riai. Then
∑n

i=1 riai ∈ J . Hence

n∑
i=1

riai =
n+k∑
i=1

wiai, 0 ≤ wi ≤ pi − 1.

Let
wi + ri = pui + si, 0 ≤ si ≤ p− 1

for n + 1 ≤ i ≤ n + k. Since pG ⊆ F it follows that

−
n+k∑

i=n+1

puiai =
n∑

i=1

viai, 0 ≤ vi ≤ pi − 1.
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Hence

c−
n+k∑

i=n+1

puiai =
n∑

i=1

wiai +
n+k∑

i=n+1

siai =
n+k+m∑

i=n+k+1

tiai +
n∑

i=1

viai,

where 0 ≤ wi, si, ti, vi ≤ pi − 1. Since
∑

i∈I Ai is direct it follows that ti = 0,
n + k + 1 ≤ i ≤ n + k + m.

Therefore b =
∑n+k

i=1 tiai ∈
∑n+k

i=1 Ai. It follows that
∑n+k

i=1 Ai = K. Since K
is a finite group it follows, by Hajós’ theorem, that some subset Ai is a subgroup.
Thus Hajós’ theorem holds for G.

Theorem 20. If

G = F +
r∑

j=1

Z(p∞j ),

where F is a finite group and p1, . . . , pr are distinct primes not dividing |F |, then
G satisfies Hajós’ theorem.

Proof. Since cyclic subsets may be assumed to have prime order this follows
immediately from Theorem 17.
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[3] Corrádi, K.; Sands, A. D.; Szabó, S.: Simulated factorizations. J. Algebra

151 (1992), 12–25. Zbl 0774.20030−−−−−−−−−−−−
[4] Fuchs, L.: On the possibility of extending Hajós’ theorem to infinite abelian

groups. Publ. Math. Debrecen 5 (1959), 338–347. Zbl 0080.24804−−−−−−−−−−−−
[5] Fuchs, L.: Abelian Groups. Pergamon Press, Oxford-London-New York-Paris

1960. Zbl 0100.02803−−−−−−−−−−−−
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