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Analytic functions associated with Caputos

fractional differentiation defined by Hilbert space

operator

G. Murugusundaramoorthy, K.Uma and M. Darus

Abstract. In this paper, we introduce a new class of functions
which are analytic and univalent with negative coefficients defined
by using certain fractional operators described in the Caputo sense.
Characterization property, the results on modified Hadamard prod-
uct and integral transforms are discussed. Further, distortion the-
orem and radii of starlikeness and convexity are also determined
here.

Resumen. En este trabajo, presentamos una nueva clase de fun-
ciones que son anaĺıticas y univalente con coeficientes negativos,
definidos usando ciertos operadores fraccionarios en el sentido de
Caputo. Discutimos la propiedad de caracterización, los resultados
sobre el producto de Hadamard modificado y transformaciones inte-
grales. Además, determinamos el teorema de distorsión y los radios
de “starlikeness” y convexidad.

1 Introduction

Fractional calculus operators have recently found interesting application in the
theory of analytic functions. The classical definition of fractional calculus and
their other generalizations have fruitfully been applied in obtaining, the charac-
terization properties, coefficient estimates and distortion inequalities for various
subclasses of analytic functions. Let A denote the class of functions of the form

f(z) = z +

∞∑
k=2

akz
k (1.1)
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which are analytic in the open disc U = {z : z ∈ C; |z| < 1}. Also denote by
T , a subclass of A consisting of functions of the form

f(z) = z −
∞∑
k=2

akz
k, ak ≥ 0; z ∈ U (1.2)

introduced and studied by Silverman [9]. For functions f ∈ A given by (1.1)

and g ∈ A given by g(z) = z +
∞∑
k=2

bkz
k, we define the convolution product (or

Hadamard ) of f and g by

(f ∗ g)(z) = (g ∗ f)(z) = z +

∞∑
k=2

akbkz
k, z ∈ U. (1.3)

Let H be a complex Hilbert space and let L(H) denote the algebra of all
bounded linear operators onH. For a complex-valued function f analytic in a
domain E of the complex z-plane containing the spectrum σ(P) of the bounded
linear operator P, let f(P) denote the operator on H defined by Dunford [3],

f(P) =
1

2πi

∫
C

(zI− P)−1f(z)dz, (1.4)

where I is the identity operator on H and C is a positively-oriented simple
rectifiable closed contour containing the spectrum σ(P) in the interior domain.
The operator f(P) can also be defined by the following series:

f(P) =

∞∑
n=1

f (n)(0)

n!
Pn

which converges in the norm topology (cf. [3]).
Now we look at the Caputos [2]definition which shall be used throughout

the paper. Caputos definition of the fractional-order derivative is defined as

Dαf(t) =
1

Γ(n− α)

t∫
a

f (n)(τ)

(t− τ)α+1−n (1.5)

where n− 1 < Re(α) ≤ n, n ∈ N, and the parameter α is allowed to be real
or even complex, a is the initial value of the function f .

We recall the following definitions [6] .

Definition 1. [6] Let the function f(z) be analytic in a simply - connected
region of the z− plane containing the origin. The fractional integral of f of
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order µ is defined by

D−µz f(z) =
1

Γ(µ)

z∫
0

f(ξ)

(z − ξ)1−µ
dξ, µ > 0, (1.6)

where the multiplicity of (z− ξ)1−µ is removed by requiring log(z− ξ) to be real
when z − ξ > 0.

Definition 2. [6] The fractional derivatives of order µ, is defined for a function
f(z), by

Dµ
z f(z) =

1

Γ(1− µ)

d

dz

z∫
0

f(ξ)

(z − ξ)µ
dξ, 0 ≤ µ < 1, (1.7)

where the function f(z) is constrained, and the multiplicity of the function (z−
ξ)−µ is removed as in Definition 1.

Definition 3. Under the hypothesis of Definition 2, the fractional derivative of
order n+ µ is defined by

Dn+µ
z f(z) =

dn

dzn
Dµ
z f(z), (0 ≤ µ < 1 ; n ∈ N0). (1.8)

With the aid of the above definitions, and their known extensions involving
fractional derivative and fractional integrals, Srivastava and Owa [13] introduced
the operator Ωδ (δ ∈ R; δ 6= 2, 3, 4, . . . ) : A → A defined by

Ωδf(z) = Γ(2− δ)zδDδ
zf(z) = z +

∞∑
n=2

Φ(n, δ)anz
n (1.9)

where

Φ(n, δ) =
Γ(n+ 1)Γ(2− δ)

Γ(n+ 1− δ)
. (1.10)

For f ∈ A and various choices of δ, , we get different operators

Ω0f(z) := f(z) = z +

∞∑
k=2

akz
k (1.11)

Ω1f(z) := zf ′(z) = z +

∞∑
k=2

kakz
k (1.12)

Ωjf(z) := Ω(Ωj−1f(z)) = z +

∞∑
k=2

kjakz
k, (j = 1, 2, 3, ...) (1.13)
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which is known as Salagean operator[7] .Also note that

Ω−1f(z) =
2

z

∫ z

0

f(t)dt := z +

∞∑
k=2

(
2

k + 1

)
akz

k

and

Ω−jf(z) := Ω−1(Ω−j+1f(z)) := z +

∞∑
k=2

(
2

k + 1

)j
akz

k, (j = 1, 2, 3, ...) (1.14)

called Libera integral operator.We note that the Libera integral operator is
generalized as Bernardi integral operator given by Bernardi[1],

1 + ν

zν

∫ z

0

tν−1f(t)dt := z +
∞∑
k=2

(
1 + ν

k + 1

)
akz

k, (ν = 1, 2, 3, ...).

Making use of these results Recently Salah and Darusin [8], introduced the
following operator

J ηµ =
Γ(2 + η − µ)

Γ(η − µ)
zµ−η

∫ z

0

Ωηf(t)

(z − t)µ+1−η dt (1.15)

where η(real number) and (η − 1 < µ < η < 2). By simple calculations for
functions f(z) ∈ A, we get

J ηµ f(z) = z +

∞∑
k=2

(Γ(k + 1))2Γ(2 + η − µ)Γ(2− η)

Γ(k + η − µ+ 1)Γ(k − η + 1)
akz

k (z ∈ U), (1.16)

and for the sake of brevity we let

Ck(η, µ) =
(Γ(k + 1))2Γ(2 + η − µ)Γ(2− η)

Γ(k + η − µ+ 1)Γ(k − η + 1)
(1.17)

and

C2(η, µ) =
4Γ(2 + η − µ)Γ(2− η)

Γ(3 + η − µ)Γ(1− η)

unless otherwise stated.
Further, note that J 0

0 f(z) = f(z) and J 1
1 f(z) = zf ′(z). In this paper,

by making use of the operator J ηµ we introduced a new subclass of analytic
functions with negative coefficients and discuss some interesting properties of
this generalized function class.

For 0 ≤ α < 1
2 , we let J ηµ (λ, α) be the subclass of A consisting of functions

of the form (1.1) and satisfying the inequality∥∥∥∥∥ J λµ,η(P)− 1

J λµ,η(P)− (2α− 1)

∥∥∥∥∥ < 1 (1.18)
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where

J λµ,ηf(P) =
P(J ηµ f(P))′

J ηµ f(P)
+
λP2(J ηµ f(P))′′

J ηµ f(P)
, (1.19)

0 ≤ λ ≤ 1, J ηµ f(z) is given by (1.16) . We further let T J ηµ(λ, α) = J ηµ (λ, α)∩T .

In the following section we obtain coefficient estimates for f ∈ T J ηµ(λ, α).

2 Coefficient Bounds

Theorem 1. Let the function f be defined by (1.2). Then f ∈ T J ηµ(λ, α) if
and only if

∞∑
k=2

(k[1 + λ(k − 1)]− α)Ck(η, µ)ak ≤ (1− α). (2.1)

The result is sharp for the function

f(z) = z − (1− α)

(k[1 + λ(k − 1)]− α)Ck(η, µ)
zk, k ≥ 2. (2.2)

Proof. Suppose f satisfies (2.1). Then for ‖z‖,∥∥J λµ,η(P)− 1
∥∥ < ∥∥J λµ,η(P) + 1− 2α

∥∥
=

∥∥∥∥z −∑∞k=2 kCk(η, µ)akz
k − λ

∑∞
k=2 k(k − 1)Ck(η, µ)akz

k

z −
∑∞
k=2 Ck(η, µ)akzk

− 1

∥∥∥∥
<

∥∥∥∥2(1− α)−
z −

∑∞
k=2 kCk(η, µ)akz

k − λ
∑∞
k=2 k(k − 1)Ck(η, µ)akz

k

z −
∑∞
k=2 Ck(η, µ)akzk

∥∥∥∥
≤
∞∑
k=2

(k[1 + λ(k − 1)]− 1) Ck(η, µ)ak ≤ 2(1− α)−
∞∑
k=2

(k[1 + λ(k − 1)] + (1− 2α))Ck(η, µ)ak

=

∞∑
k=2

(k[1 + λ(k − 1)]− α)Ck(η, µ)ak − (1− α)

≤ 0, by (2.1).

Hence, by maximum modulus theorem and (1.18), f ∈ T J ηµ(λ, α). To prove the
converse, assume that

∥∥∥∥∥ J λµ,η(P)− 1

J λµ,η(P) + 1− 2α

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
−
∞∑
k=2

(k[1 + λ(k − 1)]− 1)Ck(η, µ)akz
k−1

2(1− α)−
∞∑
k=2

(k[1 + λ(k − 1)] + (1− 2α))Ck(η, µ)akzk−1

∥∥∥∥∥∥∥∥
≤ 1, z ∈ U.
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Equivalently,

Re


−
∞∑
k=2

(k[1 + λ(k − 1)]− 1)Ck(η, µ)akz
k−1

2(1− α)−
∞∑
k=2

(k[1 + λ(k − 1)] + (1− 2α))Ck(η, µ)akzk−1

 < 1. (2.3)

Since Re(z) ≤ ‖z‖ for all z. Choose values of z on the real axis so that J λµ,η(P)
is real. Upon clearing the denominator in (2.3) and letting ‖z‖ = P = rI(0 <
r < 1) and letting r → 1−, we obtain the desired assertion (2.1).

Corollary 1. If f(z) of the form (1.2) is in T J ηµ(λ, α), then

ak ≤
(1− α)

(k[1 + λ(k − 1)]− α)Ck(η, µ)
, k ≥ 2, (2.4)

with equality only for functions of the form (2.2).

In the following theorem we state the distortion bounds and extreme point
results for functions f ∈ T J ηµ(λ, α) without proof.

Theorem 2. If f ∈ T J ηµ(λ, α), then

r − (1− α)

[2(1 + λ)− α]C2(η, µ)
r2 ≤ ‖f(P)‖ ≤ r +

(1− α)

[2(1 + λ)− α]C2(η, µ)
r2(2.5)

1− 2(1− α)

[2(1 + λ)− α]C2(η, µ)
r ≤ ‖f ′(P)‖ ≤ 1 +

2(1− α)

[2(1 + λ)− α]C2(η, µ)
r.(2.6)

The bounds in (2.5) and (2.6) are sharp, since the equalities are attained by the
function

f(z) = z − (1− α)

[2(1 + λ)− α]C2(η, µ)
z2 z = ±r. (2.7)

Theorem 3. (Extreme Points) Let f1(z) = z andfk(z) = z− (1−α)
(k[1+λ(k−1)]−α)Ck(η,µ)

zk, k ≥
2, for 0 ≤ α < 1

2 , and 0 ≤ λ ≤ 1. Then f(z) is in the class T J ηµ(λ, α) if and

only if it can be expressed in the form f(z) =
∞∑
k=1

ωkfk(z), where ωk ≥ 0 and

∞∑
k=1

ωk = 1.
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3 Radius of Starlikeness and Convexity

The radii of close-to-convexity, starlikeness and convexity for the class T J ηµ(λ, α)
are given in this section.

Theorem 4. Let the function f(z) defined by (1.2) belong to the class T J ηµ(λ, α).
Then f(z) is close-to-convex of order δ (0 ≤ δ < 1) in the disc |z| < r1, where

r1 :=

[
(1− δ)(k[1 + λ(k − 1)]− α) Ck(η, µ)

k(1− α)

] 1
k−1

(k ≥ 2). (3.1)

The result is sharp, with extremal function f(z) given by (2.2).

Proof. Given f ∈ T and f is close-to-convex of order δ, we have

‖f ′(P)− 1‖ < 1− δ. (3.2)

For the left hand side of (3.2) we have

‖f ′(P)− 1‖ ≤
∞∑
k=2

kak‖P‖k−1.

The last expression is less than 1− δ if

∞∑
k=2

k

1− δ
ak‖P‖k−1 < 1.

Using the fact, that f ∈ T J ηµ(λ, α) if and only if

∞∑
k=2

(k[1 + λ(k − 1)]− α)ak Ck(η, µ)

(1− α)
≤ 1.

We can say (3.2) is true if

k

1− δ
‖P‖k−1 ≤ (k[1 + λ(k − 1)]− α)Ck(η, µ)

(1− α)
.

Or, equivalently,

‖P‖k−1 = rk−1 =

[
(1− δ)(k[1 + λ(k − 1)]− α) Ck(η, µ)

k(1− α)

]
which completes the proof.

Theorem 5. Let f ∈ T J ηµ(λ, α). Then
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1. f is starlike of order δ(0 ≤ δ < 1) in the disc ‖z‖ < r2; that is, Re
{
zf ′(z)
f(z)

}
>

δ, where

r2 = inf
k≥2

{
(1− δ)(k[1 + λ(k − 1)]− α) Ck(η, µ)

(1− α)(k − δ)

} 1
k−1

.

2. f is convex of order δ (0 ≤ δ < 1) in the disc |z| < r3, that is Re
{

1 + zf ′′(z)
f ′(z)

}
>

δ, where

r3 = inf
k≥2

{
(1− δ)(k[1 + λ(k − 1)]− α) Ck(η, µ)

(1− α)k(k − δ)

} 1
k−1

.

Each of these results are sharp for the extremal function f(z) given by (2.2).

Proof. Given f ∈ T and f is starlike of order δ, we have∥∥∥∥Pf ′(P)

f(P)
− 1

∥∥∥∥ < 1− δ, (P = r2I (0 < r2 < 1)) (3.3)

For the left hand side of (3.3) we have

∥∥∥∥Pf ′(P)

f(P)
− 1

∥∥∥∥ ≤
∞∑
k=2

(k − 1)ak ‖P‖k−1

1−
∞∑
k=2

ak ‖P‖k−1
.

The last expression is less than 1− δ, if

∞∑
k=2

k − δ
1− δ

ak ‖P‖k−1 < 1.

Using the fact, that f ∈ T J ηµ(λ, α), if and only if

∞∑
k=2

(k[1 + λ(k − 1)]− α)ak Ck(η, µ)

(1− α)
< 1.

We can say (3.3) is true if

k − δ
1− δ

‖P‖k−1 < (k[1 + λ(k − 1)]− α) Ck(η, µ)

(1− α)
.

Or, equivalently,

‖P‖k−1 < (1− δ)(k[1 + λ(k − 1)]− α) Ck(η, µ)

(1− α)(k − δ)
which yields the starlikeness of the family.
(2) Using the fact that f is convex if and only if zf ′ is starlike, we can
prove (2), on lines similar the proof of (1).
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4 Integral transform of the class T J η
µ(λ, α)

For f ∈ T J ηµ(λ, α) we define the integral transform

Vµ(f)(z) =

∫ 1

0

µ(t)
f(tz)

t
dt,

where µ is real valued, non-negative weight function normalized so that
∫ 1

0
µ(t)dt =

1. Since special cases of µ(t) are particularly interesting such as µ(t) = (1+c)tc,
c > −1, for which Vµ is known as the Bernardi operator, and

µ(t) =
(c+ 1)δ

µ(δ)
tc
(
log

1

t

)δ−1
, c > −1, δ ≥ 0

which gives the Komatu operator. For more details see [4].
First we show that the class T J ηµ(λ, α) is closed under Vµ(f).

Theorem 6. Let f ∈ T J ηµ(λ, α). Then Vµ(f) ∈ T J ηµ(λ, α).

Proof. By definition, we have

Vµ(f) =
(c+ 1)δ

µ(δ)

∫ 1

0

(−1)δ−1tc(logt)δ−1

(
z −

∞∑
k=2

akz
ktk−1

)
dt

=
(−1)δ−1(c+ 1)δ

µ(δ)
lim
r→0+

[∫ 1

r

tc(logt)δ−1

(
z −

∞∑
k=2

akz
ktk−1

)
dt

]
,

and a simple calculation gives

Vµ(f)(z) = z −
∞∑
k=2

(
c+ 1

c+ k

)δ
akz

k.

We need to prove that

∞∑
k=2

(k[1 + λ(k − 1)]− α) Ck(η, µ)

(1− α)

(
c+ 1

c+ k

)δ
ak < 1. (4.1)

On the other hand by Theorem 1, f ∈ T J ηµ(λ, α) if and only if

∞∑
k=2

(k[1 + λ(k − 1)]− α)ak Ck(η, µ)

(1− α)
< 1.

Hence c+1
c+n < 1. Therefore (4.1) holds and the proof is complete.
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Next we provide a starlike condition for functions in T J ηµ(λ, α) and Vµ(f)
on lines similar to Theorem 5 .

Theorem 7. Let f ∈ T J ηµ(λ, α). Then
(i) Vµ(f) is starlike of order 0 ≤ γ < 1 in |z| < R1 where

R1 = inf
k

[(
c+ k

c+ 1

)δ
(1− γ)(k[1 + λ(k − 1)]− α) Ck(η, µ)

(1− α)(k − γ)

] 1
k−1

(ii). Vµ(f) is convex of order 0 ≤ γ < 1 in |z| < R2 where

R2 = inf
k

[(
c+ k

c+ 1

)δ
(1− γ)(k[1 + λ(k − 1)]− α) Ck(η, µ)

(1− α)(k − γ)

] 1
k−1

.

5 Integral Means Inequalities

In this section, we obtain integral means inequalities for the functions in the
family T J ηµ(λ, α).

Lemma 1. [5] If the functions f and g are analytic in U with g ≺ f, then for
κ > 0, and 0 < r < 1,

2π∫
0

∣∣g(reiθ)
∣∣κ dθ ≤ 2π∫

0

∣∣f(reiθ)
∣∣κ dθ. (5.1)

In [9], Silverman found that the function f2(z) = z− z2

2 is often extremal over
the family T . He applied this function to resolve his integral means inequality,
conjectured in [10] and settled in [11], that

2π∫
0

∣∣f(reiθ)
∣∣κ dθ ≤ 2π∫

0

∣∣f2(reiθ)
∣∣κ dθ,

for all f ∈ T , κ > 0 and 0 < r < 1. In [11], he also proved his conjecture for
the subclasses of starlike functions of order α and convex functions of order α.

Applying Lemma 1, Theorem 1 and Theorem 3, we prove the following
result.

Theorem 8. Suppose f(z) ∈ T J ηµ(λ, α) and f2(z) is defined by f2(z) = z −
(1−α)

[2(1+λ)−α]C2(b,µ)
z2, Then for z = reiθ, 0 < r < 1, we have

2π∫
0

‖f(z)‖κ dθ ≤
2π∫
0

‖f2(z)‖κ dθ. (5.2)



Caputos fractional differentiation 121

Proof. For f(z) = z −
∞∑
k=2

akz
k, (5.2) is equivalent to proving that

2π∫
0

∥∥∥∥∥1−
∞∑
k=2

akz
k−1

∥∥∥∥∥
κ

dθ ≤
2π∫
0

∥∥∥∥1− (1− α)

[2(1 + λ)− α]C2(b, µ)
z

∥∥∥∥κ dθ.
By Lemma 1, it suffices to show that

1−
∞∑
k=2

ak‖P‖k−1 ≺ 1− (1− α)

[2(1 + λ)− α]‖C2(b, µ)‖
‖P‖.

Setting

1−
∞∑
k=2

ak‖P‖k−1 = 1− (1− α)

[2(1 + λ)− α]‖C2(b, µ)‖
w(z), (5.3)

and using (2.1), we obtain

‖w(z)‖ =

∥∥∥∥∥
∞∑
k=2

(1− α)

(k[1 + kλ− λ]− α)Ck(b, µ)
akz

k−1

∥∥∥∥∥
≤ ‖P‖

∞∑
k=2

(1− α)

(k[1 + kλ− λ]− α)‖Ck(b, µ)‖
|ak|

≤ ‖P‖.

This completes the proof Theorem 8.

6 Modified Hadamard Products

Let the functions fj(z)(j = 1, 2) be defined by (1.2). The modified Hadamard
product of f1(z) and f2(z) is defined by

(f1 ∗ f2)(z) = z −
∞∑
k=2

ak,1ak,2 z
k.

Using the techniques of Schild and Silverman [12], we prove the following results.

Theorem 9. For functions fj(z)(j = 1, 2) defined by (1.2), let f1 ∈ T J ηµ(λ, α)
and f2 ∈ T J ηµ(λ, γ). Then (f1 ∗ f2) ∈ T J ηµ(λ, ξ) where

ξ = 1− (3 + 2λ)(1− α)(1− γ)

(2 + 2λ− γ)(2 + 2λ− α)C2(η, µ)− (1− α)(1− γ)
.
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Proof. In view of Theorem 1, it suffice to prove that

∞∑
k=2

(k[1 + λ(k − 1)]− ξ)Ck(η, µ)

(1− ξ)
ak,1ak,2 ≤ 1, (0 ≤ ξ < 1)

where ξ is defined by (6.1). On the other hand, under the hypothesis, it follows
from (2.1) and the Cauchy’s-Schwarz inequality that

∞∑
k=2

(k[1 + λ(k − 1)]− γ)
1
2 (k[1 + λ(k − 1)]− α)

1
2Ck(η, µ)√

(1− α)(1− γ)

√
ak,1ak,2 ≤ 1.

(6.1)
We need to find the largest ξ such that

∞∑
k=2

(k[1 + λ(k − 1)]− ξ)Ck(η, µ)

(1− ξ)
ak,1ak,2

≤
∞∑
k=2

(k[1 + λ(k − 1)]− γ)
1
2 (k[1 + λ(k − 1)]− α)

1
2Ck(η, µ)√

(1− α)(1− γ)

√
ak,1ak,2

or, equivalently that

√
ak,1ak,2 ≤ (k[1 + λ(k − 1)]− γ)

1
2 (k[1 + λ(k − 1)]− α)

1
2√

(1− α)(1− γ)

1− ξ
(k[1 + λ(k − 1)]− ξ)

, (k ≥ 2).

By view of (6.1) it is sufficient to find largest ξ such that√
(1− α)(1− γ)

Ck(η, µ)(k[1 + λ(k − 1)]− γ)
1
2 (k[1 + λ(k − 1)]− α)

1
2

≤ (k[1 + λ(k − 1)]− γ)
1
2 (k[1 + λ(k − 1)]− α)

1
2√

(1− α)((1− γ))
× 1− ξ

(k[1 + λ(k − 1)]− ξ)

which yields

ξ ≤ 1− (k[1 + λ(k − 1)] + 1)(1− α)(1− γ)

(k[1 + λ(k − 1)]− γ)(k[1 + λ(k − 1)]− α)Ck(η, µ)− (1− α)(1− γ)

(6.2)

for k ≥ 2 it is an increasing function of k (k ≥ 2) for 0 ≤ α < 1; 0 < β ≤ 1; 0 ≤
λ ≤ 1 and letting k = 2 in (6.2), we have

ξ = 1− (3 + 2λ)(1− α)(1− γ)

(2 + 2λ− γ)(2 + 2λ− α)C2(η, µ)− (1− α)(1− γ)
.
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Theorem 10. Let the function f(z) defined by (1.2) be in the class T J ηµ(λ, α).

Also let g(z) = z −
∞∑
k=2

|bk|zk for |bk| ≤ 1. Then (f ∗ g) ∈ T J ηµ(λ, α).

Proof. Since

∞∑
k=2

(k[1 + λ(k − 1)]− α)Ck(η, µ)|akbk|

≤
∞∑
k=2

(k[1 + λ(k − 1)]− α)Ck(η, µ)ak

≤ (1− α)

it follows that (f ∗ g) ∈ T J ηµ(λ, α), by the view of Theorem 1.

Theorem 11. Let the functions fj(z)(j = 1, 2) defined by (1.2) be in the class

∈ T J ηµ(λ, α). Then the function h(z) defined by h(z) = z −
∞∑
k=2

(a2k,1 + a2k,2)zk

is in the class ∈ T J ηµ(λ, ξ), where

ξ = 1− 2(1− α)2[2(1 + λ)− 1]

[2(1 + λ)− α]2C2(η, µ)− 2(1− α)2

.

Proof. By virtue of Theorem 1, it is sufficient to prove that

∞∑
k=2

(k[1 + λ(k − 1)]− ξ)Ck(η, µ)

(1− ξ)
(a2k,1 + a2k,2) ≤ 1 (6.3)

where fj ∈ T J bµ(λ, ξ, ) we find from (2.1) and Theorem 1, that

∞∑
k=2

[
(k[1 + λ(k − 1)]− α)Ck(η, µ)

(1− α)

]2
a2k,j ≤

[ ∞∑
k=2

(k[1 + λ(k − 1)]− α)Ck(η, µ)

(1− α)
ak,j

]2
(6.4)

which yields

∞∑
k=2

1

2

[
(k[1 + λ(k − 1)]− α)Ck(η, µ)

(1− α)

]2
(a2k,1 + a2k,2) ≤ 1.

(6.5)

On comparing (6.4) and (6.5), it is easily seen that the inequality (6.3) will be
satisfied if

(k[1 + λ(k − 1)]− ξ)Ck(η, µ)

(1− ξ)
≤ 1

2

[
(k[1 + λ(k − 1)]− α)Ck(η, µ)

(1− α)

]2
, for k ≥ 2.
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That is an increasing function of k (k ≥ 2). Taking k = 2 in (6.6), we have,

ξ = 1− 2(1− α)2[2(1 + λ)− 1]

[2(1 + λ)− α]2C2(η, µ)− 2(1− α)2
, (6.6)

which completes the proof.
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