A class of Buekenhout unitals in the Hall plane

S. G. Barwick

Abstract

Let U be the classical unital in $PG(2, q^2)$ secant to ℓ_{∞} . By deriving $PG(2, q^2)$ with respect to a derivation set disjoint from U we obtain a new unital U' in the Hall plane of order q^2 . We show that this unital contains O'Nan configurations and is not isomorphic to the known unitals of the Hall plane, hence it forms a new class of unitals in the Hall plane.

1 Introduction

A unital is a $2 \cdot (q^3 + 1, q + 1, 1)$ design. A unital embedded in a projective plane of order q^2 is a set U of $q^3 + 1$ points such that every line of the plane meets U in 1 or q + 1 points. A line is a **tangent line** or a **secant line** of U if it contains 1 or q + 1 points of U respectively. A point of U lies on 1 tangent and q^2 secant lines of U. A point not in U lies on q + 1 tangent lines and $q^2 - q$ secant lines of U.

An example of a unital in $PG(2, q^2)$, the Desarguesian projective plane of order q^2 , is the **classical unital** which consists of the absolute points and non-absolute lines of a unitary polarity. It is well known that the classical unital contains no **O'Nan configurations**, a configuration of four distinct lines meeting in six distinct points (a quadrilateral). In 1976 Buekenhout [4] proved the existence of unitals in all translation planes of dimension at most 2 over their kernel.

Let U be the classical unital in $PG(2, q^2)$ secant to ℓ_{∞} . We derive $PG(2, q^2)$ with respect to a derivation set disjoint from U. Let U' be the set of points of $\mathcal{H}(q^2)$,

Bull. Belg. Math. Soc. 3 (1996), 113-124

Received by the editors November 1994

Communicated by J. Thas

AMS Mathematics Subject Classification : 51E20.

Keywords : Unitals, derivation, Hall planes.

the Hall plane of order q^2 , that corresponds to the point set of U. We prove the following results about U'.

Theorem 1 The set U' forms a Buckenhout unital with respect to ℓ'_{∞} in $\mathcal{H}(q^2)$.

Theorem 2 The unital U' contains no O'Nan configurations with two or three vertices on ℓ'_{∞} . If U' contains an O'Nan configuration l_1, l_2, l_3, l_4 with one vertex $T = l_1 \cap l_2$ on ℓ'_{∞} , then the lines $\overline{l_1} = l_1 \cap U'$ and $\overline{l_2} = l_2 \cap U'$ are disjoint in PG(4, q).

Theorem 3 If q > 5, the unital U' contains O'Nan configurations. If H is a point of $U' \setminus \ell'_{\infty}$ and l a secant of U' through H that meets the classical derivation set, then there is an O'Nan configuration of U' that contains H and l.

The only unitals previously investigated in the Hall plane is a class of Buekenhout unitals found by Grüning [5] by deriving $PG(2, q^2)$ with respect to $U \cap \ell_{\infty}$. We show that the class of unitals U' is not isomorphic to Grüning's unital and so forms a new class of unitals in $\mathcal{H}(q^2)$. In [2] the Buekenhout and Buekenhout-Metz unitals of the Hall plane are studied.

2 Background Results

We will make use of the André [1] and Bruck and Bose [3] representation of a translation plane \mathcal{P} of dimension 2 over its kernel in PG(4,q). The results of this section are discussed in [6, Section 17.7]. Let Σ_{∞} be a hyperplane of PG(4,q) and \mathcal{S} a spread of Σ_{∞} . The affine plane $\mathcal{P} \setminus \ell_{\infty}$ can be represented by the affine space $PG(4,q) \setminus \Sigma_{\infty}$ as follows: the points of $\mathcal{P} \setminus \ell_{\infty}$ are the points of $PG(4,q) \setminus \Sigma_{\infty}$, the lines of $\mathcal{P} \setminus \ell_{\infty}$ are the planes of PG(4,q) that meet Σ_{∞} in a line of \mathcal{S} and incidence is the natural inclusion. We complete the representation to a projective space by letting points of ℓ_{∞} correspond to lines of the spread \mathcal{S} . Note that \mathcal{P} is Desarguesian if and only if the spread \mathcal{S} is regular.

We use the phrase **a subspace of** $PG(4,q) \setminus \Sigma_{\infty}$ to mean a subspace of PG(4,q) that is not contained in Σ_{∞} .

Under this representation, Baer subplanes of \mathcal{P} secant to ℓ_{∞} (that is, meeting ℓ_{∞} in q + 1 points) correspond to planes of PG(4, q) that are not contained in Σ_{∞} and do not contain a line of the spread \mathcal{S} . Baer sublines of \mathcal{P} meeting ℓ_{∞} in a point T correspond to lines of PG(4, q) that meet Σ_{∞} in a point of t, the line of \mathcal{S} that corresponds to T. A Baer subplane tangent to ℓ_{∞} at T corresponds to a ruled cubic surface of PG(4, q) that consists of q + 1 lines of $PG(4, q) \setminus \Sigma_{\infty}$, each incident with the line t of \mathcal{S} and such that no two are contained in a plane about t, [9].

Let U be the classical unital in $PG(2, q^2)$ secant to ℓ_{∞} . Buekenhout [4] showed that the set of points \mathcal{U} in PG(4, q) corresponding to U forms a non-singular quadric that meets the underlying spread in a regulus. If U is a unital of a translation plane \mathcal{P} of dimension at most 2 over its kernel and \mathcal{U} corresponds to a non-singular quadric of PG(4, q) that contains a regulus of the underlying spread, then U is called a **Buekenhout unital** with respect to ℓ_{∞} . Note that the classical unital is Buekenhout with respect to any secant line.

Let $PG(2, q^2)$ be the Desarguesian plane of order q^2 and let $\mathcal{D} = \{T_0, \ldots, T_q\}$ be a derivation set of ℓ_{∞} . Deriving $PG(2, q^2)$ with respect to \mathcal{D} gives the Hall plane of order q^2 , $\mathcal{H}(q^2)$ (see [8]). The affine points of $\mathcal{H}(q^2)$ are the affine points of $PG(2, q^2)$. The affine lines of $\mathcal{H}(q^2)$ are the lines of $PG(2, q^2)$ not meeting \mathcal{D} together with the Baer subplanes of $PG(2, q^2)$ that contain \mathcal{D} . The line at infinity of $\mathcal{H}(q^2)$ consists of the points of $\ell_{\infty} \setminus \mathcal{D}$ and q + 1 new points, $\mathcal{D}' = \{R_0, \ldots, R_q\}$. If we derive $\mathcal{H}(q^2)$ with respect to \mathcal{D}' , we get $PG(2, q^2)$. The Hall plane contains other derivation sets of ℓ_{∞}' , we call \mathcal{D}' the **classical derivation set of** $\mathcal{H}(q^2)$.

Let Σ_{∞} be a hyperplane of PG(4, q) and let S be the regular spread of Σ_{∞} that generates $PG(2, q^2)$. Let $\mathcal{R} = \{t_0, \ldots, t_q\}$ be the regulus of S that corresponds to \mathcal{D} . The spread S' obtained from S by replacing the regulus \mathcal{R} with its complementary regulus $\mathcal{R}' = \{r_0, \ldots, r_q\}$ (that is, $S' = S \setminus \mathcal{R} \cup \mathcal{R}'$) generates the Hall plane $\mathcal{H}(q^2)$.

We use the following notation throughout this paper: we denote the lines at infinity of $PG(2, q^2)$ and $\mathcal{H}(q^2)$ by ℓ_{∞} and ℓ'_{∞} respectively; if \mathcal{D} is the derivation set used to derive $PG(2, q^2)$ to give $\mathcal{H}(q^2)$, then we denote by \mathcal{D}' the classical derivation set of ℓ'_{∞} ; in PG(4, q), we denote the spreads of Σ_{∞} that generate $PG(2, q^2)$ and $\mathcal{H}(q^2)$ by \mathcal{S} and \mathcal{S}' respectively. If T is a point of ℓ_{∞} , we denote the corresponding line of the spread in PG(4, q) by t. Let \mathcal{U} be the non-singular quadric of PG(4, q)that corresponds to U and U'.

3 The Buekenhout unital

Let U be the classical unital in $PG(2, q^2)$ that is secant to ℓ_{∞} . Derive the plane using a derivation set \mathcal{D} that is disjoint from U. Let U' be the set of points in $\mathcal{H}(q^2)$ that corresponds to the point set of U.

Theorem 1 The set U' forms a unital in $\mathcal{H}(q^2)$.

Proof The set U' contains $q^3 + 1$ points of $\mathcal{H}(q^2)$. We show that every line of $\mathcal{H}(q^2)$ meets U' in either 1 or q + 1 points, from which it follows that U' is a unital. Clearly ℓ'_{∞} meets U' in q + 1 points since ℓ_{∞} meets U in q + 1 points.

Let l be a line of $\mathcal{H}(q^2)$ that meets ℓ'_{∞} in the point T. If T is not in the derivation set \mathcal{D}' , then the points of l lie on a line of $PG(2, q^2)$ and so l contains 1 or q + 1 points of U. Hence l contains 1 or q + 1 points of U'.

Suppose T is in the derivation set \mathcal{D}' , then $T \notin U'$. Let \mathcal{U} be the non-singular quadric of PG(4, q) that corresponds to U, then \mathcal{U} also corresponds to U'. Let α be the plane that corresponds to the line l, so $\alpha \cap \Sigma_{\infty} = t$, the line of the spread corresponding to T. Now α meets \mathcal{U} in either a point, a line, a conic or two lines. If $\alpha \cap \mathcal{U}$ contains a line, then t contains a point of \mathcal{U} which is a contradiction as $T \notin U'$. Thus α meets \mathcal{U} in either 1 or q + 1 points and so l meets U' in either 1 or q + 1 points. Note that if l is secant to U', then the q + 1 points $l \cap U'$ are not collinear in $PG(2, q^2)$; they form a conic in the Baer subplane that corresponds to land a (q + 1)-arc of $PG(2, q^2)$.

The proof of this theorem shows in fact that U' is a Buekenhout unital with respect to ℓ'_{∞} in $\mathcal{H}(q^2)$. We will show that the designs U and U' are not isomorphic by constructing an O'Nan configuration in U'. We first investigate whether U' can contain an O'Nan configuration with a vertex on ℓ'_{∞} .

Theorem 2 The unital U' contains no O'Nan configurations with two or three vertices on ℓ'_{∞} . If U' contains an O'Nan configuration l_1, l_2, l_3, l_4 with one vertex $T = l_1 \cap l_2$ on ℓ'_{∞} , then the lines $\overline{l_1} = l_1 \cap U'$ and $\overline{l_2} = l_2 \cap U'$ are disjoint in PG(4, q).

Proof Suppose U' contains an O'Nan configuration with two or three vertices on ℓ'_{∞} . Such a configuration consists of four lines that each meet ℓ'_{∞} in a point of U'. Since the derivation set is disjoint from the unital, these lines are also secants of U giving an O'Nan configuration in the classical unital U, which is a contradiction. Thus U' cannot contain an O'Nan configuration with two or three vertices on ℓ'_{∞} .

Suppose U' contains an O'Nan configuration with lines l_1 , l_2 , l_3 , l_4 that has one vertex $T = l_1 \cap l_2$ on ℓ'_{∞} . Let the vertices of the O'Nan configuration be $A = l_1 \cap l_3, B = l_2 \cap l_3, C = l_3 \cap l_4, X = l_1 \cap l_4, Y = l_2 \cap l_4$, and T.

We use the representation of $\mathcal{H}(q^2)$ in PG(4,q) and let \mathcal{U} be the non-singular quadric corresponding to U'. Since U' is Buekenhout with respect to ℓ'_{∞} , the sets $\overline{l_1} = l_1 \cap U'$ and $\overline{l_2} = l_2 \cap U'$ are Baer sublines of $\mathcal{H}(q^2)$ and correspond to lines of PG(4,q) that meet Σ_{∞} in a point of t (the line of \mathcal{S}' that corresponds to T). These lines either meet in a point of t or they are disjoint in PG(4,q).

Suppose the lines $\overline{l_1}$ and $\overline{l_2}$ meet in a point of t in PG(4,q), then they are contained in a unique plane α of PG(4,q) that does not contain a line of the spread (if the plane contained t, it would meet \mathcal{U} in 3q+1 points which is impossible). Now $X, Y, A, B \in \alpha$, hence $XY \cap AB = C \in \alpha$, thus $C \notin \mathcal{U}$, as α already contains 2q+1points of \mathcal{U} . Hence, in $\mathcal{H}(q^2)$, $l_3 \cap l_4 = C \notin U$, a contradiction. Hence $\overline{l_1} = l_1 \cap U'$ and $\overline{l_2} = l_2 \cap U'$ are disjoint in PG(4,q).

In order to prove the existence of O'Nan configurations in U' we will need several preliminary lemmas.

We need to know what a conic in a Baer subplane \mathcal{B} of $PG(2, q^2)$ looks like in the Bruck and Bose representation in PG(4, q). If \mathcal{B} is secant to ℓ_{∞} , then \mathcal{B} corresponds to a plane α of PG(4, q) and the points of a conic in \mathcal{B} form a conic of α . If \mathcal{B} is tangent to ℓ_{∞} , then \mathcal{B} corresponds to a ruled cubic surface in PG(4, q). The following lemma shows that certain conics of these Baer subplanes correspond to (q+1)-arcs of PG(3,q) in PG(4,q) (that is, q+1 points lying in a three dimensional subspace of PG(4,q), with no four points coplanar).

Lemma A Let \mathcal{B} be a Baer subplane of $PG(2, q^2)$ that meets ℓ_{∞} in the point T. Let $\mathcal{C} = \{T, K_1, \ldots, K_q\}$ be a conic of \mathcal{B} . In the Bruck and Bose representation of $PG(2, q^2)$ in PG(4, q), the points K_1, \ldots, K_q form a q-arc of a three dimensional subspace of PG(4, q).

Proof In PG(4, q), \mathcal{B} corresponds to a ruled cubic surface \mathcal{V} that meets Σ_{∞} in the line t of the spread. The points of \mathcal{V} lie on q + 1 disjoint lines of \mathcal{V} , l_1, \ldots, l_{q+1} , called **generators**. Each generator meets Σ_{∞} in a distinct point of t. The lines of \mathcal{B} not through T correspond to conics of \mathcal{V} in PG(4, q). We label the points of \mathcal{C} so that the point K_i lies on the line l_i , $i = 1, \ldots, q$ (since at most one point of $\mathcal{C} \setminus T$ lies on each l_i).

Suppose that l_1, l_2, l_3 span a three dimensional subspace Σ_1 . Let X be a point of \mathcal{B} not incident with l_1, l_2 or l_3 , then a line l of \mathcal{B} through X meets each of l_1, l_2, l_3 . Now l corresponds to a conic in PG(4, q) with three points in Σ_1 , hence all points of l lie in Σ_1 . Thus every point of \mathcal{V} lies in Σ_1 , a contradiction as \mathcal{V} spans four dimensional space. Hence no three of the l_i lie in a three dimensional subspace.

As a consequence of this, if A, B, C are points of \mathcal{V} lying on different generators l_1, l_2, l_3 of \mathcal{V} , then A, B, C are not collinear in PG(4, q). Since, suppose A, B, C lie

on a line m of PG(4,q), then m and t span a three dimensional subspace which contains two points of each l_i , i = 1, 2, 3 and so contains three generators l_1, l_2, l_3 of \mathcal{V} , a contradiction.

We now show that in PG(4,q), no four of the K_i lie in a plane. Suppose K_1, K_2 , K_3, K_4 lie in a plane α , then α corresponds to an affine Baer subplane \mathcal{B}' of $PG(2,q^2)$ (since no three of the K_i lie on a line of $PG(2,q^2)$). However K_1, K_2, K_3, K_4 form a quadrangle of $PG(2,q^2)$ and so are contained in a unique Baer subplane of $PG(2,q^2)$. This is a contradiction as $\mathcal{B} \neq \mathcal{B}'$. Hence no four of the K_i are coplanar.

Let the three dimensional subspace spanned by K_1, K_2, K_3, K_4 be Σ . Note that Σ meets t in one point and so can contain at most one of the l_i . Suppose one of l_1, l_2, l_3, l_4 lies in Σ , without loss of generality suppose $l_1 \in \Sigma$. Let $L_0 = l_1 \cap t$, $L_1 = K_1, L_i = l_i \cap \Sigma, i = 2, \ldots, q + 1$ (so $L_i = K_i, i = 1, 2, 3, 4$).

Note that by the above, no three of the L_i , $i \ge 1$ are collinear in PG(4, q). Since the only lines of \mathcal{V} meeting t are the generators, no three of the L_i , $i \ge 0$ are collinear in PG(4,q). We show that no three of the L_i are collinear in $PG(2,q^2)$. Suppose that L_i , L_j and L_k , i, j, k > 0, are collinear in $PG(2,q^2)$, then the line l containing them corresponds to a plane β in PG(4,q) which lies in Σ . Now in $PG(2,q^2)$, lcontains three points of \mathcal{B} , and so l contains q + 1 points of \mathcal{B} . Hence l contains a point of each l_i . Thus in PG(4,q), β contains a point of each of l_i , hence β contains L_2, \ldots, L_{q+1} as these are the only points of l_2, \ldots, l_{q+1} respectively in Σ . However, $L_i = K_i$, i = 2, 3, 4, so in $PG(2, q^2)$, the points K_2, K_3, K_4 lie on the line l which is a contradiction as the K_i form a conic of \mathcal{B} . Therefore no three of the L_i , i > 0 are collinear in $PG(2, q^2)$.

If L_i , L_j and $L_0 = T$ are collinear in $PG(2, q^2)$, then the line containing them has three points in \mathcal{B} and so has q+1 points in \mathcal{B} . This is a contradiction as the only lines of \mathcal{B} through T are the generators l_i , and the points L_i and L_j lie on different generators. Therefore, no three of the L_i , $i \ge 0$ are collinear in $PG(2, q^2)$.

Suppose that four of the L_i lie in a plane α of PG(4,q), then α corresponds to a line or an affine Baer subplane of $PG(2,q^2)$. If α corresponds to a line of $PG(2,q^2)$, then four of the L_i are collinear in $PG(2,q^2)$ which is not possible by the above. If α corresponds to an affine Baer subplane of $PG(2,q^2)$, then the L_i cannot form a quadrangle of $PG(2,q^2)$ (as a quadrangle is contained in a unique Baer subplane). Hence three of the L_i must be collinear in $PG(2,q^2)$ which again contradicts the above. Therefore no four of the L_i are coplanar in PG(4,q).

Thus $L_0, L_1, \ldots, L_{q+1}$ form a set of q+2 points of Σ , no four of them lying in a plane. This is impossible as the maximum size of a k-arc in PG(3,q) is k = q+1. Hence l_1 cannot lie in Σ . Similarly $l_2, l_3, l_4 \notin \Sigma$. Thus if one of the l_i lie in Σ , then $i \neq 1, 2, 3, 4$.

We now let $l_i \cap \Sigma = L_i$ if $l_i \notin \Sigma$ (so $L_i = K_i$, i = 1, 2, 3, 4). If $l_i \in \Sigma$, we let $L_i = l_i \cap t$. Using the same arguments as above, no three of the L_i are collinear in $PG(2, q^2)$ and consequently no four of the L_i are coplanar in PG(4, q). Hence the set of points $\mathcal{C}' = \{L_1, \ldots, L_{q+1}\}$ satisfy the property that no four of them are coplanar and so \mathcal{C}' is a (q + 1)-arc of Σ .

Now the set \mathcal{C}' corresponds to a set of q + 1 points of \mathcal{B} with no three of them collinear (since no three of the L_i are collinear in $PG(2, q^2)$). Moreover,

 $C = \{T, K_1, \ldots, K_q\}$ and C' have five points in common, T, K_1, K_2, K_3, K_4 , hence C = C'. Thus $L_i = K_i$, $i = 1, \ldots, q$ and $L_{q+1} = l_{q+1} \cap t$. Hence in PG(4, q), the K_i together with L_{q+1} form a (q+1)-arc of a three dimensional subspace Σ and the K_i form a q-arc of Σ .

Let \mathcal{U} be a non-singular quadric in PG(4,q). A **tangent hyperplane** of \mathcal{U} is a hyperplane that meets \mathcal{U} in a conic cone. Let G be the group of automorphisms of PG(4,q) that fixes \mathcal{U} . There are $q^4(q^2+1)$ planes of PG(4,q) that meet \mathcal{U} in a conic. By [7, Theorem 22.6.6], the set of conics of \mathcal{U} acted on by G has two orbits. If q is odd, one orbit contains **internal conics** and the other contains **external conics**. There are $\frac{1}{2}q^3(q-1)(q^2+1)$ internal conics and $\frac{1}{2}q^3(q+1)(q^2+1)$ external conics of \mathcal{U} ([7, Theorem 22.9.1]). If q is even, one orbit consists of **nuclear conics** while the other contains **non-nuclear conics**. There are $q^2(q^2+1)$ nuclear conic and $q^2(q^4-1)$ non-nuclear conics of \mathcal{U} ([7, Theorem 22.9.2]). The next lemma describes how many tangent hyperplanes of \mathcal{U} contain a given conic of \mathcal{U} .

Lemma B 1. If q is odd, every internal conic of \mathcal{U} is contained in zero tangent hyperplanes of \mathcal{U} , and every external conic of \mathcal{U} is contained in two tangent hyperplanes of \mathcal{U} .

2. If q is even, every nuclear conic of \mathcal{U} is contained in q+1 tangent hyperplanes of \mathcal{U} , and every non-nuclear conic of \mathcal{U} is contained in one tangent hyperplane of \mathcal{U} .

Proof There are $q^3 + q^2 + q + 1$ tangent hyperplanes of \mathcal{U} ([7, Theorem 22.8.2]) and \mathcal{U} contains $q^3 + q^2 + q + 1$ points. Since G is transitive on the points of \mathcal{U} ([7, Theorem 22.6.4]), each point of \mathcal{U} is the vertex of exactly one tangent hyperplane.

Let \mathcal{U} meet the hyperplane Σ_{∞} in a hyperbolic quadric \mathcal{H}_3 . Every point V of \mathcal{H}_3 is the vertex of a conic cone of \mathcal{U} that meets \mathcal{H}_3 in the two lines containing V. This accounts for $(q+1)^2$ of the tangent hyperplanes of \mathcal{U} , the remaining $q^3 - q$ meet Σ_{∞} in a plane that contains a conic of \mathcal{H}_3 . Suppose q is odd. Let x be the number of tangent hyperplanes containing a given internal conic and let y be the number of tangent hyperplanes containing a given external conic. By counting the number of conics of \mathcal{U} in two ways we deduce that:

x internal conics of $\mathcal{U}| + y$ external conics of $\mathcal{U}|$

= |tangent hyperplanes of \mathcal{U} |.|conics of \mathcal{U} in a tangent hyperplane|.

Therefore:

$$\frac{1}{2}q^{3}(q-1)(q^{2}+1)x + \frac{1}{2}q^{3}(q+1)(q^{2}+1)y = q^{3}(q^{3}+q^{2}+q+1)$$
$$(y+x)q + (y-x) = 2q+2.$$

Equating like powers of q implies that y = 2 and x = 0. Therefore, every external conic in contained in two tangent hyperplanes of \mathcal{U} and every internal conic is contained in zero tangent hyperplanes of \mathcal{U} .

Suppose q is even. Let x be the number of tangent hyperplanes containing a given nuclear conic and let y be the number of tangent hyperplanes containing a

given non-nuclear conic. By counting the number of conics of \mathcal{U} in two ways as above, we deduce that:

$$\begin{array}{rcl} q^2(q^2+1)x+q^2(q^4-1)y &=& q^3(q^3+q^2+q+1)\\ && x+y(q^2-1) &=& q^2+q. \end{array}$$

This has solution y = 1, x = q + 1 in the required range $0 \le x, y \le q + 1$. Therefore, every nuclear conic is contained in q + 1 tangent hyperplanes of \mathcal{U} and every nonnuclear conic is contained in one tangent hyperplane of \mathcal{U} . Consequently, a nuclear conic is not contained in any hyperbolic quadrics or elliptic quadrics of \mathcal{U} , since the q + 1 hyperplanes containing it are all tangent hyperplanes of \mathcal{U} . \Box

Lemma C Let U be the classical unital in $PG(2, q^2)$ and let \mathcal{B} be a Baer subplane of $PG(2, q^2)$, then \mathcal{B} meets U in one point, q + 1 points of a conic or line of \mathcal{B} , or in 2q + 1 points of a line pair of \mathcal{B} .

Proof We work in PG(4, q). Recall that the classical unital is Buekenhout with respect to any secant line and Buekenhout-Metz with respect to any tangent line. Let l be a secant line of U, then in PG(4, q) with l as the line at infinity, U corresponds to a non-singular quadric. All Baer subplanes secant to l correspond to planes of PG(4, q), [5] Any plane of PG(4, q) meets a non-singular quadric in one point, q + 1points of a conic or line, or 2q + 1 points of two lines. So in $PG(2, q^2)$, a Baer subplane secant to l meets \mathcal{U} in one point, a conic, a line, or two lines.

If, however, we take a tangent line of U to be our line at infinity, and work in PG(4,q), then U corresponds to an orthogonal cone in PG(4,q). A Baer subplane secant to the line at infinity corresponds to a plane of PG(4,q). A plane of PG(4,q) meets an orthogonal cone in either a point, a line, a conic, or two lines. Thus all Baer subplanes of $PG(2,q^2)$ meet the classical unital in one point, q+1 points of a conic or a line, or in a line pair.

We are now able to show that the unital U' does contain O'Nan configurations. We do this by constructing a configuration in the classical unital that derives to an O'Nan configuration of U'.

Theorem 3 If q > 5, the unital U' contains O'Nan configurations. If H is a point of $U' \setminus \ell'_{\infty}$ and l a secant of U' through H that meets the classical derivation set, then there is an O'Nan configuration of U' that contains H and l.

Proof We will show that U' contains an O'Nan configuration whose four lines meet ℓ'_{∞} in the distinct points A, B, C, D where $A \in \mathcal{D}'$ and $B, C, D \notin \mathcal{D}'$. We prove this by constructing a configuration in the classical unital U in $PG(2, q^2)$ that will derive to an O'Nan configuration of U' in $\mathcal{H}(q^2)$.

The configuration that we construct in U is illustrated in the figure. It consists of six lines l_{A_1} , l_{A_2} , l_{A_3} , l_B , l_C , l_D and six points H, J, K, X, Y, Z of U with intersections as illustrated and such that the line l_* meets ℓ_{∞} in the point * where $* \in \{A_1, A_2, A_3, B, C, D\}$ and with $A_1, A_2, A_3 \in \mathcal{D}$ and $B, C, D \notin \mathcal{D}$.

Note that J, K, H, A_1, A_2, A_3 form a quadrangle and so are contained in a unique Baer subplane which contains \mathcal{D} (as A_1, A_2, A_3 are contained in the unique Baer subline \mathcal{D}). Hence derivation with respect to \mathcal{D} leaves l_B , l_C and l_D unchanged in $\mathcal{H}(q^2)$ with H, J, K collinear in $\mathcal{H}(q^2)$, giving an O'Nan configuration in U'.

Let U be the classical unital in $PG(2, q^2)$ and \mathcal{D} a derivation set of ℓ_{∞} disjoint from U, as above. Let l_{A_1} be a secant line of U that meets \mathcal{D} in the point A_1 . Let H and J be two points of U that lie on l_{A_1} . There is a unique Baer subplane \mathcal{B} that contains H, J and \mathcal{D} since a quadrangle is contained in a unique Baer subplane. Now the Baer subline $\mathcal{B} \cap l_{A_1}$ meets U in 0, 1, 2 or q + 1 points and since $H, J \in U$ and $A_1 \notin U$ we have $\mathcal{B} \cap l_{A_1}$ meets U in two points. By Lemma C, \mathcal{B} meets U in q + 1 points that form a conic in \mathcal{B} , as \mathcal{D} is disjoint from U. Denote the points of the conic $\mathcal{B} \cap U$ by H, K_1, K_2, \ldots, K_q (so $J = K_i$ for some i).

Through H there are q^2 secants of U, let l_D be a secant through H that meets ℓ_{∞} in the point $D \notin \mathcal{D}$. Label the points of U on l_D by H, Y_1, \ldots, Y_q , then the lines $K_j Y_i, i, j = 1, \ldots, q$, each contain two points of U and hence are secant to U.

We want to show that for some $i \neq j$ and $m \neq n$ the secants $K_i Y_m$ and $K_j Y_n$ meet in a point Z of U with $K_i Y_m \cap \ell_\infty \notin \mathcal{D}$ and $K_j Y_n \cap \ell_\infty \notin \mathcal{D}$. The configuration containing the points H, K_i, K_j, Y_m, Y_n, Z is the required configuration of U that will derive to an O'Nan configuration of U'.

In order to complete the construction of the configuration we will use the Bruck and Bose representation of $PG(2, q^2)$ in PG(4, q) taking the line $HD = l_D$ as the line at infinity. Recall that the classical unital is Buekenhout with respect to any secant line. Hence in PG(4, q), U corresponds to a non-singular quadric \mathcal{U} that meets the spread of Σ_{∞} in the regulus $\mathcal{R} = \{h, y_1, \ldots, y_q\}$. If l is a secant of U that meets $l_D \cap U$, then $\overline{l} = l \cap U$ is a Baer subline of $PG(2, q^2)$ and corresponds to a line of PG(4, q) that meets Σ_{∞} in a point of \mathcal{R} .

The line l_D is tangent to \mathcal{B} as $D \notin \mathcal{D}$, so in PG(4, q), \mathcal{B} corresponds to a ruled cubic surface. By Lemma A, the K_i form a q-arc of a three dimensional subspace Σ in PG(4, q).

If l is a secant of U, let \overline{l} denote the q+1 points of $l \cap U$. In PG(4,q), let $\overline{K_iH} \cap h = H_i, i = 1, \ldots, q$, and let $\overline{K_iY_j} \cap y_j = Y_{ji}, i, j = 1, \ldots, q$.

We now show that the set of points $C_1 = \{H_1, Y_{11}, \ldots, Y_{q1}\}$ forms a conic in Σ_{∞} and hence that K_1C_1 is a conic cone. If the three points H_1, Y_{11}, Y_{21} are collinear, then the lines $K_1H_1, K_1Y_{11}, K_1Y_{21}$ are contained in a plane of PG(4, q) that meets \mathcal{U} in 3q + 1 points which is not possible. Thus \mathcal{C}_1 is a set of q + 1 points, no three collinear.

Now consider the three dimensional subspace Σ_1 spanned by the lines K_1H_1 , K_1Y_{11} , K_1Y_{21} . It meets \mathcal{U} in either a hyperbolic quadric, an elliptic quadric or a conic cone, hence Σ_1 meets \mathcal{U} in a conic cone whose vertex is K_1 . The only lines of PG(4,q) through K_1 that are secant lines of \mathcal{U} are those that meet a line of \mathcal{R} . Hence $K_1\mathcal{C}_1$ is a conic cone and \mathcal{C}_1 forms a conic of the plane $\Sigma_1 \cap \Sigma_\infty$.

Similarly $C_i = \{H_i, Y_{1i}, \ldots, Y_{qi}\}$ is a conic for each $i = 1, \ldots, q$, and $K_i C_i$ forms a conic cone of \mathcal{U} . We denote the three dimensional subspace containing the conic cone $K_i C_i$ by Σ_i , $i = 1, \ldots, q$.

Recall that Σ is the hyperplane of PG(4, q) containing the K_i . Suppose $\Sigma_1 = \Sigma$, then q-1 of the lines of the cone K_1C_1 are K_1K_2, \ldots, K_1K_q . In $PG(2, q^2)$, this means that q-1 of the lines K_1Y_1, \ldots, K_1Y_q meet \mathcal{D} .

Let $\mathcal{D} = \{T_0, \ldots, T_q\}$ with $H \in K_1T_0$ and consider the lines K_1T_1, \ldots, K_1T_q . Suppose that $HD = l_1$ meets y of these lines K_1T_1, \ldots, K_1T_y in a point of U, that is, y of the lines K_1Y_j meet ℓ_{∞} in a point of \mathcal{D} . Now any other secant line l_2 of U through H can meet at most one of the lines K_1T_1, \ldots, K_1T_y in a point of U, otherwise we would have an O'Nan configuration in U. So l_2 meets at most q - y + 1of the lines K_1T_1, \ldots, K_1T_q in a point of U.

So if we pick any other secant of U through H, we can ensure that $\Sigma_1 \neq \Sigma$. By excluding at most q secants of U through H we can ensure that $\Sigma_i \neq \Sigma$, $i = 1, \ldots, q$. There are $q^2 - q - 1$ possibilities for D, as $D \notin D$, so there are enough choices left for D if $q^2 > 2q + 1$; that is, if q > 2.

So Σ_1 meets Σ in a plane that contains at most three of the K_i , since no four of the K_i are coplanar. By Lemma B, if q is even, the C_i are all distinct and if q is odd, a given C_i is distinct from at least q-2 of the C_i 's. Hence if q is even, we can pick $K_i \notin \Sigma_1$ with $C_i \neq C_1$ for $i = 2, \ldots, q-2$ (since two of the K_i may lie in Σ_1). If q is odd, we can pick $K_i \notin \Sigma_1$ with $C_i \neq C_1$ for $i = 2, \ldots, q-3$ (since two of the K_i may lie in Σ_1 and one of the C_i may equal C_1). Thus if $q \ge 4$, we can pick Σ_1 and Σ_2 so that $C_1 \neq C_2$ and $K_2 \notin \Sigma_1$.

Let α_{12} be the plane $\Sigma_1 \cap \Sigma_2$. We investigate how α_{12} meets the conic cones $K_1\mathcal{C}_1$ and $K_2\mathcal{C}_2$ by looking at how it meets \mathcal{U} . Since \mathcal{U} and $K_i\mathcal{C}_i$ are quadrics, a plane must meet them in a quadric; that is, in a point, a line, a conic or two lines. We list the four possibilities explicitly for $\alpha_{12} \cap K_2\mathcal{C}_2$; the same possibilities occur for $\alpha_{12} \cap K_1\mathcal{C}_1$.

- (a) $\tilde{\alpha}_{12}$ meets $K_2 C_2$ in the vertex K_2 ,
- (b) α_{12} meets $K_2 C_2$ in a line through K_2 ,
- (c) α_{12} meets $K_2 C_2$ in a conic and $K_2 \notin \alpha_{12}$,
- (d) α_{12} meets $K_2 C_2$ in two lines through K_2 .

Now since $K_2 \notin \Sigma_1$, possibilities (a), (b) and (d) cannot occur for $\alpha_{12} \cap K_2 \mathcal{C}_2$, thus $\alpha_{12} \cap K_2 \mathcal{C}_2$ is a conic and α_{12} meets \mathcal{U} in a conic. Hence α_{12} meets $K_1 \mathcal{C}_1$ in a conic or the vertex K_1 . If $K_1 \in K_2 \mathcal{C}_2$, then $K_1 \in K_2 Y_{i2}$ for some *i*. However, there is only one line of \mathcal{U} from K_1 to y_i , so $K_2 Y_{i2} \in \alpha_{12}$, a contradiction. Thus α_{12} meets $K_1 \mathcal{C}_1$ in the conic $\alpha_{12} \cap \mathcal{U}$. We have deduced that every line of the cone $K_1\mathcal{C}_1$ meets a line of the cone $K_2\mathcal{C}_2$. At most two of these intersections occur in Σ_{∞} since α_{12} meets Σ_{∞} in a line which meets \mathcal{C}_i in at most two points, hence \mathcal{C}_1 and \mathcal{C}_2 have at most two points in common. If $H_1 \neq H_2$, then one of the points of $\mathcal{U} \cap \alpha_{12}$ lies in K_1H_1 and one lies in K_2H_2 , since K_1H_1 does not meet K_2H_2 . Thus we have at least q-3 pairs of lines of \mathcal{U} , K_1Y_{n1} and K_2Y_{m2} , $n \neq m$, that meet in a point of $PG(4,q) \setminus \Sigma_{\infty}$.

The line K_1Y_{n1} is contained in a unique plane γ about y_m . Recall that y_m corresponds to the point Y_m in $PG(2, q^2)$ and γ corresponds to the line of $PG(2, q^2)$ through K_1 and Y_m . Therefore, in $PG(2, q^2)$, we have at least q-3 pairs of secants of U, K_1Y_n and K_2Y_m , $n \neq m$, that meet in a point Z of U. In order to complete the proof that we have constructed the required configuration in the classical unital of $PG(2, q^2)$, we need to ensure that for one of these pairs both the lines K_1Y_n and K_2Y_m are disjoint from \mathcal{D} .

Suppose that x of the lines K_1Y_1, \ldots, K_1Y_q meet \mathcal{D} , that is, $HD = l_1$ meets x of the lines K_1T_1, \ldots, K_1T_q in a point of U (recall that K_1H meets \mathcal{D} in T_0). As before, if l_2 is a different secant line of U through H, then l_1 and l_2 can meet at most one common K_1T_1, \ldots, K_1T_q in a point of U, otherwise we have an O'Nan configuration in U. If l_1 meets none of the K_1T_1, \ldots, K_1T_q , then we retain l_1 . Otherwise l_1 meets K_1T_i for some i. There are q other secants of U through H that contain a point of $K_1T_i \cap U$, we label them l_2, \ldots, l_{q+1} . In the worst case, each l_k meets exactly one of the $K_1T_j, j \neq i$, in point of U. However, there are q + 1 lines l_i and only q - 1lines $K_1T_j, j \neq i$, thus at least one of the l_k meets K_1T_i in a point of U, and no further $K_1T_j, j \neq i$, in a point of U. Thus by excluding at most q - 1 choices of a secant line through H, we can ensure that at most one of the lines K_1Y_1, \ldots, K_1Y_q meets \mathcal{D} . We have already excluded at most q choices for D, there are $q^2 - q - 1$ possibilities for D, so if $q^2 > 3q$, that is, q > 3, there are enough choices left for D.

In order to ensure that at least one of the above q-3 pairs K_1Y_n , K_2Y_m that meet in a point of U are disjoint from \mathcal{D} , it suffices to show that at least two of the q-3 lines K_2Y_m are disjoint from \mathcal{D} (since at most one of the q-3 lines K_1Y_n meets \mathcal{D}). Thus we need at least five of the lines K_2Y_1, \ldots, K_2Y_q disjoint from \mathcal{D} . Hence we need $q \geq 5$.

Suppose x < 5 of the lines K_2Y_1, \ldots, K_2Y_q are disjoint from \mathcal{D} , so q - x of them meet \mathcal{D} . If q - 3 > 2, we can pick $K_3 \notin \Sigma_1$ with $\mathcal{C}_3 \neq \mathcal{C}_1$. Repeating the above argument gives q - 3 pairs K_1Y_j , K_3Y_k , $j \neq k$, that meet in a point of U. Now if K_2Y_i meets \mathcal{D} , then K_3Y_i cannot meet \mathcal{D} , otherwise $Y_i \in \mathcal{B}$ which is a contradiction. Thus, in the worst case, exactly $\frac{q}{2}$ of the K_2Y_1, \ldots, K_2Y_q meet \mathcal{D} and $\frac{q}{2}$ of the K_3Y_1, \ldots, K_3Y_q meet \mathcal{D} . So if $\frac{q}{2} \geq 5$, that is, $q \geq 10$, we have two lines that meet in a point of U and are disjoint from \mathcal{D} , hence we have constructed the required configuration in U when $q \geq 10$.

If q-3 > 3 with q odd, or q-2 > 3 with q even, that is $q \ge 6$, then we can pick $K_4 \notin \Sigma_1$ and $\mathcal{C}_4 \neq \mathcal{C}_1$. The above argument gives q-3 pairs K_1Y_j , K_4Y_k , $j \neq k$, that meet in a point of U. In the worst case, exactly $\frac{q}{3}$ of the K_iY_1, \ldots, K_iY_q , i = 2, 3, 4 meet \mathcal{D} . So if $q - \frac{q}{3} \ge 5$, that is, $q \ge 8$, we have a pair K_1Y_j , K_iY_k that meet in a point of U and are disjoint from \mathcal{D} . Hence if $q \ge 8$, we can construct the required configuration in the classical unital.

If q = 7, q is not divisible by three, so in the worst case, we can pick two of the K_2Y_1, \ldots, K_2Y_q meeting \mathcal{D} and so 7-2=5 of them are disjoint from \mathcal{D} , giving the required configuration.

Therefore, if q > 5, we have constructed the required configuration in the classical unital that will derive to an O'Nan configuration of U.

We have shown that for any point H of $U \setminus \ell_{\infty}$ and for any Baer subplane \mathcal{B} of $PG(2, q^2)$ containing \mathcal{D} , H and q + 1 points of U, we can construct the required configuration in the classical unital through H and two other points of $U \cap \mathcal{B}$. Thus in U', for any point H of $U' \setminus \ell'_{\infty}$ and secant line l of U' through H that meets the classical derivation set \mathcal{D}' , the above configuration in the classical unital derives to an O'Nan configuration of U' containing H and l.

As U' contains O'Nan configurations and U does not contain O'Nan configurations, we obtain the immediate corollary that the designs U and U' are not isomorphic.

Corollary 4 The unital U' is not isomorphic to the classical unital U.

The only unital of the Hall plane examined in detail has been the Buekenhout unital obtained by Grüning [5]. This is constructed by taking the classical unital U in $PG(2, q^2)$ secant to ℓ_{∞} and deriving with respect to $U \cap \ell_{\infty}$. By examining the occurrence of O'Nan configurations in the two unitals, we show that they are non-isomorphic. Therefore the class of unitals investigated here have not previously been studied in detail.

Theorem 5 The class of Buekenhout unitals U' in $\mathcal{H}(q^2)$, q > 3, is not isomorphic to the class of Buekenhout unitals in $\mathcal{H}(q^2)$ found by Grüning [5].

Proof We show the two unitals are non-isomorphic by examining the frequency distribution of O'Nan configurations in them. Let V be Grüning's unital of $\mathcal{H}(q^2)$ and let $\overline{l} = V \cap \ell'_{\infty}$. Grüning showed that (i) V contains no O'Nan configurations with two or more points on \overline{l} and (ii) for any point $P \in \overline{l}$, if l_1, l_2 are lines of V through P and l_3 a line of U that meets l_1 and l_2 , then there exists an O'Nan configuration of U containing l_1, l_2 and l_3 . Let U be a unital and \overline{l} a line of U. We call \overline{l} a **G-O axis** (Grüning-O'Nan axis) of U if it satisfies (i) and (ii). We show that U' does not contain a G-O axis.

There are three possibilities for such an axis in $U': U' \cap \ell'_{\infty}$, a secant line of U' that meets ℓ'_{∞} in a point of U', a secant line of U' that meets ℓ'_{∞} in a point not in U'.

Let P be a point of $U' \cap \ell'_{\infty}$. Let l_1, l_2 be secants of U' through P. In PG(4, q), $\overline{l_1} = l_1 \cap U'$ and $\overline{l_2} = l_2 \cap U'$ are lines of PG(4, q) that meet the line p of the spread \mathcal{S}' . Choose l_1 and l_2 such that $\overline{l_1}$ and $\overline{l_2}$ meet in a point of p in PG(4, q). By Theorem 2,, there is no O'Nan configuration that contains l_1 and l_2 . This violates (ii), thus $U' \cap \ell'_{\infty}$ is not a G-O axis of U'. The same example shows that any other line of U'through P cannot be a G-O axis of U'.

Let l be a secant line of U' that meets ℓ'_{∞} in a point not in U'. Let Q be a point of U' on l and let l_1 and l_2 be secants of U' through Q that contain a point of $U' \cap \ell'_{\infty}$. There is no O'Nan configuration of U' containing l_1 , l_2 and $U' \cap \ell'_{\infty}$ as U' contains no O'Nan configurations with three vertices on ℓ'_{∞} (Theorem 2). Therefore, l does not satisfy (ii) and cannot be a G-O axis of U'. Hence no line of U' is a G-O axis and so U' is not isomorphic to V.

References

- J. André. Über nicht-Desarguessche Ebenen mit transitiver Translationgruppe. Math. Z., 60 (1954) 156-186.
- [2] S. G. Barwick. Unitals in the Hall plane. To appear, J. Geom.
- [3] R. H. Bruck and R. C. Bose. The construction of translation planes from projective spaces. J. Algebra, 1 (1964) 85-102.
- [4] F. Buekenhout. Existence of unitals in finite translation planes of order q^2 with a kernel of order q. Geom. Dedicata, 5 (1976) 189-194.
- [5] K. Grüning. A class of unitals of order q which can be embedded in two different translation planes of order q². J. Geom., 29 (1987) 61-77.
- [6] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford University Press, 1985.
- [7] J. W. P. Hirschfeld and J. A. Thas. *General Galois geometries*. Oxford University Press, 1991.
- [8] D. R. Hughes and F. C. Piper. Projective planes. Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [9] C. T. Quinn and L. R. A. Casse. Concerning a characterisation of Buekenhout-Metz unitals. J. Geom., 52 (1995) 159-167.

Pure Mathematics Department University of Adelaide Adelaide 5005 Australia