A class of Buekenhout unitals in the Hall plane

S. G. Barwick

Abstract

Let U be the classical unital in $P G\left(2, q^{2}\right)$ secant to ℓ_{∞}. By deriving $P G\left(2, q^{2}\right)$ with respect to a derivation set disjoint from U we obtain a new unital U^{\prime} in the Hall plane of order q^{2}. We show that this unital contains O'Nan configurations and is not isomorphic to the known unitals of the Hall plane, hence it forms a new class of unitals in the Hall plane.

1 Introduction

A unital is a $2-\left(q^{3}+1, q+1,1\right)$ design. A unital embedded in a projective plane of order q^{2} is a set U of $q^{3}+1$ points such that every line of the plane meets U in 1 or $q+1$ points. A line is a tangent line or a secant line of U if it contains 1 or $q+1$ points of U respectively. A point of U lies on 1 tangent and q^{2} secant lines of U. A point not in U lies on $q+1$ tangent lines and $q^{2}-q$ secant lines of U.

An example of a unital in $P G\left(2, q^{2}\right)$, the Desarguesian projective plane of order q^{2}, is the classical unital which consists of the absolute points and non-absolute lines of a unitary polarity. It is well known that the classical unital contains no O'Nan configurations, a configuration of four distinct lines meeting in six distinct points (a quadrilateral). In 1976 Buekenhout [4] proved the existence of unitals in all translation planes of dimension at most 2 over their kernel.

Let U be the classical unital in $P G\left(2, q^{2}\right)$ secant to ℓ_{∞}. We derive $P G\left(2, q^{2}\right)$ with respect to a derivation set disjoint from U. Let U^{\prime} be the set of points of $\mathcal{H}\left(q^{2}\right)$,

[^0]the Hall plane of order q^{2}, that corresponds to the point set of U. We prove the following results about U^{\prime}.

Theorem 1 The set U^{\prime} forms a Buekenhout unital with respect to ℓ_{∞}^{\prime} in $\mathcal{H}\left(q^{2}\right)$.
Theorem 2 The unital U^{\prime} contains no O'Nan configurations with two or three vertices on ℓ_{∞}^{\prime}. If U^{\prime} contains an $O^{\prime} N a n$ configuration $l_{1}, l_{2}, l_{3}, l_{4}$ with one vertex $T=l_{1} \cap l_{2}$ on ℓ_{∞}^{\prime}, then the lines $\overline{l_{1}}=l_{1} \cap U^{\prime}$ and $\overline{l_{2}}=l_{2} \cap U^{\prime}$ are disjoint in $P G(4, q)$.

Theorem 3 If $q>5$, the unital U^{\prime} contains $O^{\prime} N a n$ configurations. If H is a point of $U^{\prime} \backslash \ell_{\infty}^{\prime}$ and l a secant of U^{\prime} through H that meets the classical derivation set, then there is an O'Nan configuration of U^{\prime} that contains H and l.

The only unitals previously investigated in the Hall plane is a class of Buekenhout unitals found by Grüning [5] by deriving $P G\left(2, q^{2}\right)$ with respect to $U \cap \ell_{\infty}$. We show that the class of unitals U^{\prime} is not isomorphic to Grüning's unital and so forms a new class of unitals in $\mathcal{H}\left(q^{2}\right)$. In [2] the Buekenhout and Buekenhout-Metz unitals of the Hall plane are studied.

2 Background Results

We will make use of the André [1] and Bruck and Bose [3] representation of a translation plane \mathcal{P} of dimension 2 over its kernel in $P G(4, q)$. The results of this section are discussed in [6, Section 17.7]. Let Σ_{∞} be a hyperplane of $P G(4, q)$ and \mathcal{S} a spread of Σ_{∞}. The affine plane $\mathcal{P} \backslash \ell_{\infty}$ can be represented by the affine space $P G(4, q) \backslash \Sigma_{\infty}$ as follows: the points of $\mathcal{P} \backslash \ell_{\infty}$ are the points of $P G(4, q) \backslash \Sigma_{\infty}$, the lines of $\mathcal{P} \backslash \ell_{\infty}$ are the planes of $P G(4, q)$ that meet Σ_{∞} in a line of \mathcal{S} and incidence is the natural inclusion. We complete the representation to a projective space by letting points of ℓ_{∞} correspond to lines of the spread \mathcal{S}. Note that \mathcal{P} is Desarguesian if and only if the spread \mathcal{S} is regular.

We use the phrase a subspace of $P G(4, q) \backslash \Sigma_{\infty}$ to mean a subspace of $P G(4, q)$ that is not contained in Σ_{∞}.

Under this representation, Baer subplanes of \mathcal{P} secant to ℓ_{∞} (that is, meeting ℓ_{∞} in $q+1$ points) correspond to planes of $P G(4, q)$ that are not contained in Σ_{∞} and do not contain a line of the spread \mathcal{S}. Baer sublines of \mathcal{P} meeting ℓ_{∞} in a point T correspond to lines of $P G(4, q)$ that meet Σ_{∞} in a point of t, the line of \mathcal{S} that corresponds to T. A Baer subplane tangent to ℓ_{∞} at T corresponds to a ruled cubic surface of $P G(4, q)$ that consists of $q+1$ lines of $P G(4, q) \backslash \Sigma_{\infty}$, each incident with the line t of \mathcal{S} and such that no two are contained in a plane about $t,[9]$.

Let U be the classical unital in $P G\left(2, q^{2}\right)$ secant to ℓ_{∞}. Buekenhout [4] showed that the set of points \mathcal{U} in $\operatorname{PG}(4, q)$ corresponding to U forms a non-singular quadric that meets the underlying spread in a regulus. If U is a unital of a translation plane \mathcal{P} of dimension at most 2 over its kernel and \mathcal{U} corresponds to a non-singular quadric of $P G(4, q)$ that contains a regulus of the underlying spread, then U is called a Buekenhout unital with respect to ℓ_{∞}. Note that the classical unital is Buekenhout with respect to any secant line.

Let $P G\left(2, q^{2}\right)$ be the Desarguesian plane of order q^{2} and let $\mathcal{D}=\left\{T_{0}, \ldots T_{q}\right\}$ be a derivation set of ℓ_{∞}. Deriving $P G\left(2, q^{2}\right)$ with respect to \mathcal{D} gives the Hall plane of order $q^{2}, \mathcal{H}\left(q^{2}\right)$ (see [8]). The affine points of $\mathcal{H}\left(q^{2}\right)$ are the affine points of $P G\left(2, q^{2}\right)$. The affine lines of $\mathcal{H}\left(q^{2}\right)$ are the lines of $P G\left(2, q^{2}\right)$ not meeting \mathcal{D} together with the

Baer subplanes of $P G\left(2, q^{2}\right)$ that contain \mathcal{D}. The line at infinity of $\mathcal{H}\left(q^{2}\right)$ consists of the points of $\ell_{\infty} \backslash \mathcal{D}$ and $q+1$ new points, $\mathcal{D}^{\prime}=\left\{R_{0}, \ldots, R_{q}\right\}$. If we derive $\mathcal{H}\left(q^{2}\right)$ with respect to \mathcal{D}^{\prime}, we get $P G\left(2, q^{2}\right)$. The Hall plane contains other derivation sets of ℓ_{∞}^{\prime}, we call \mathcal{D}^{\prime} the classical derivation set of $\mathcal{H}\left(q^{2}\right)$.

Let Σ_{∞} be a hyperplane of $P G(4, q)$ and let \mathcal{S} be the regular spread of Σ_{∞} that generates $P G\left(2, q^{2}\right)$. Let $\mathcal{R}=\left\{t_{0}, \ldots, t_{q}\right\}$ be the regulus of \mathcal{S} that corresponds to \mathcal{D}. The spread \mathcal{S}^{\prime} obtained from \mathcal{S} by replacing the regulus \mathcal{R} with its complementary regulus $\mathcal{R}^{\prime}=\left\{r_{0}, \ldots, r_{q}\right\}$ (that is, $\mathcal{S}^{\prime}=\mathcal{S} \backslash \mathcal{R} \cup \mathcal{R}^{\prime}$) generates the Hall plane $\mathcal{H}\left(q^{2}\right)$.

We use the following notation throughout this paper: we denote the lines at infinity of $P G\left(2, q^{2}\right)$ and $\mathcal{H}\left(q^{2}\right)$ by ℓ_{∞} and ℓ_{∞}^{\prime} respectively; if \mathcal{D} is the derivation set used to derive $P G\left(2, q^{2}\right)$ to give $\mathcal{H}\left(q^{2}\right)$, then we denote by \mathcal{D}^{\prime} the classical derivation set of ℓ_{∞}^{\prime}; in $P G(4, q)$, we denote the spreads of Σ_{∞} that generate $P G\left(2, q^{2}\right)$ and $\mathcal{H}\left(q^{2}\right)$ by \mathcal{S} and \mathcal{S}^{\prime} respectively. If T is a point of ℓ_{∞}, we denote the corresponding line of the spread in $P G(4, q)$ by t. Let \mathcal{U} be the non-singular quadric of $P G(4, q)$ that corresponds to U and U^{\prime}.

3 The Buekenhout unital

Let U be the classical unital in $P G\left(2, q^{2}\right)$ that is secant to ℓ_{∞}. Derive the plane using a derivation set \mathcal{D} that is disjoint from U. Let U^{\prime} be the set of points in $\mathcal{H}\left(q^{2}\right)$ that corresponds to the point set of U.

Theorem 1 The set U^{\prime} forms a unital in $\mathcal{H}\left(q^{2}\right)$.
Proof The set U^{\prime} contains $q^{3}+1$ points of $\mathcal{H}\left(q^{2}\right)$. We show that every line of $\mathcal{H}\left(q^{2}\right)$ meets U^{\prime} in either 1 or $q+1$ points, from which it follows that U^{\prime} is a unital. Clearly ℓ_{∞}^{\prime} meets U^{\prime} in $q+1$ points since ℓ_{∞} meets U in $q+1$ points.

Let l be a line of $\mathcal{H}\left(q^{2}\right)$ that meets ℓ_{∞}^{\prime} in the point T. If T is not in the derivation set \mathcal{D}^{\prime}, then the points of l lie on a line of $P G\left(2, q^{2}\right)$ and so l contains 1 or $q+1$ points of U. Hence l contains 1 or $q+1$ points of U^{\prime}.

Suppose T is in the derivation set \mathcal{D}^{\prime}, then $T \notin U^{\prime}$. Let \mathcal{U} be the non-singular quadric of $P G(4, q)$ that corresponds to U, then \mathcal{U} also corresponds to U^{\prime}. Let α be the plane that corresponds to the line l, so $\alpha \cap \Sigma_{\infty}=t$, the line of the spread corresponding to T. Now α meets \mathcal{U} in either a point, a line, a conic or two lines. If $\alpha \cap \mathcal{U}$ contains a line, then t contains a point of \mathcal{U} which is a contradiction as $T \notin U^{\prime}$. Thus α meets \mathcal{U} in either 1 or $q+1$ points and so l meets U^{\prime} in either 1 or $q+1$ points. Note that if l is secant to U^{\prime}, then the $q+1$ points $l \cap U^{\prime}$ are not collinear in $P G\left(2, q^{2}\right)$; they form a conic in the Baer subplane that corresponds to l and a $(q+1)$-arc of $P G\left(2, q^{2}\right)$.

The proof of this theorem shows in fact that U^{\prime} is a Buekenhout unital with respect to ℓ_{∞}^{\prime} in $\mathcal{H}\left(q^{2}\right)$. We will show that the designs U and U^{\prime} are not isomorphic by constructing an O'Nan configuration in U^{\prime}. We first investigate whether U^{\prime} can contain an O^{\prime} Nan configuration with a vertex on ℓ_{∞}^{\prime}.

Theorem 2 The unital U^{\prime} contains no O'Nan configurations with two or three vertices on ℓ_{∞}^{\prime}. If U^{\prime} contains an O'Nan configuration $l_{1}, l_{2}, l_{3}, l_{4}$ with one vertex $T=l_{1} \cap l_{2}$ on ℓ_{∞}^{\prime}, then the lines $\overline{l_{1}}=l_{1} \cap U^{\prime}$ and $\overline{l_{2}}=l_{2} \cap U^{\prime}$ are disjoint in $P G(4, q)$.

Proof Suppose U^{\prime} contains an O'Nan configuration with two or three vertices on ℓ_{∞}^{\prime}. Such a configuration consists of four lines that each meet ℓ_{∞}^{\prime} in a point of U^{\prime}. Since the derivation set is disjoint from the unital, these lines are also secants of U giving an O'Nan configuration in the classical unital U, which is a contradiction. Thus U^{\prime} cannot contain an O'Nan configuration with two or three vertices on ℓ_{∞}^{\prime}.

Suppose U^{\prime} contains an O'Nan configuration with lines $l_{1}, l_{2}, l_{3}, l_{4}$ that has one vertex $T=l_{1} \cap l_{2}$ on ℓ_{∞}^{\prime}. Let the vertices of the O'Nan configuration be $A=l_{1} \cap l_{3}, B=l_{2} \cap l_{3}, C=l_{3} \cap l_{4}, X=l_{1} \cap l_{4}, Y=l_{2} \cap l_{4}$, and T.

We use the representation of $\mathcal{H}\left(q^{2}\right)$ in $P G(4, q)$ and let \mathcal{U} be the non-singular quadric corresponding to U^{\prime}. Since U^{\prime} is Buekenhout with respect to ℓ_{∞}^{\prime}, the sets $\overline{l_{1}}=l_{1} \cap U^{\prime}$ and $\overline{l_{2}}=l_{2} \cap U^{\prime}$ are Baer sublines of $\mathcal{H}\left(q^{2}\right)$ and correspond to lines of $P G(4, q)$ that meet Σ_{∞} in a point of t (the line of \mathcal{S}^{\prime} that corresponds to T). These lines either meet in a point of t or they are disjoint in $P G(4, q)$.

Suppose the lines $\overline{l_{1}}$ and $\overline{l_{2}}$ meet in a point of t in $P G(4, q)$, then they are contained in a unique plane α of $P G(4, q)$ that does not contain a line of the spread (if the plane contained t, it would meet \mathcal{U} in $3 q+1$ points which is impossible). Now $X, Y, A, B \in \alpha$, hence $X Y \cap A B=C \in \alpha$, thus $C \notin \mathcal{U}$, as α already contains $2 q+1$ points of \mathcal{U}. Hence, in $\mathcal{H}\left(q^{2}\right), l_{3} \cap l_{4}=C \notin U$, a contradiction. Hence $\overline{l_{1}}=l_{1} \cap U^{\prime}$ and $\overline{l_{2}}=l_{2} \cap U^{\prime}$ are disjoint in $P G(4, q)$.

In order to prove the existence of O'Nan configurations in U^{\prime} we will need several preliminary lemmas.

We need to know what a conic in a Baer subplane \mathcal{B} of $P G\left(2, q^{2}\right)$ looks like in the Bruck and Bose representation in $P G(4, q)$. If \mathcal{B} is secant to ℓ_{∞}, then \mathcal{B} corresponds to a plane α of $\operatorname{PG}(4, q)$ and the points of a conic in \mathcal{B} form a conic of α. If \mathcal{B} is tangent to ℓ_{∞}, then \mathcal{B} corresponds to a ruled cubic surface in $\operatorname{PG}(4, q)$. The following lemma shows that certain conics of these Baer subplanes correspond to $(q+1)$-arcs of $P G(3, q)$ in $P G(4, q)$ (that is, $q+1$ points lying in a three dimensional subspace of $P G(4, q)$, with no four points coplanar).

Lemma A Let \mathcal{B} be a Baer subplane of $P G\left(2, q^{2}\right)$ that meets ℓ_{∞} in the point T. Let $\mathcal{C}=\left\{T, K_{1}, \ldots, K_{q}\right\}$ be a conic of \mathcal{B}. In the Bruck and Bose representation of $P G\left(2, q^{2}\right)$ in $P G(4, q)$, the points K_{1}, \ldots, K_{q} form a q-arc of a three dimensional subspace of $P G(4, q)$.
Proof In $P G(4, q), \mathcal{B}$ corresponds to a ruled cubic surface \mathcal{V} that meets Σ_{∞} in the line t of the spread. The points of \mathcal{V} lie on $q+1$ disjoint lines of $\mathcal{V}, l_{1}, \ldots, l_{q+1}$, called generators. Each generator meets Σ_{∞} in a distinct point of t. The lines of \mathcal{B} not through T correspond to conics of \mathcal{V} in $P G(4, q)$. We label the points of \mathcal{C} so that the point K_{i} lies on the line $l_{i}, i=1, \ldots, q$ (since at most one point of $\mathcal{C} \backslash T$ lies on each l_{i}).

Suppose that l_{1}, l_{2}, l_{3} span a three dimensional subspace Σ_{1}. Let X be a point of \mathcal{B} not incident with l_{1}, l_{2} or l_{3}, then a line l of \mathcal{B} through X meets each of l_{1}, l_{2}, l_{3}. Now l corresponds to a conic in $\operatorname{PG}(4, q)$ with three points in Σ_{1}, hence all points of l lie in Σ_{1}. Thus every point of \mathcal{V} lies in Σ_{1}, a contradiction as \mathcal{V} spans four dimensional space. Hence no three of the l_{i} lie in a three dimensional subspace.

As a consequence of this, if A, B, C are points of \mathcal{V} lying on different generators l_{1}, l_{2}, l_{3} of \mathcal{V}, then A, B, C are not collinear in $P G(4, q)$. Since, suppose A, B, C lie
on a line m of $P G(4, q)$, then m and t span a three dimensional subspace which contains two points of each $l_{i}, i=1,2,3$ and so contains three generators l_{1}, l_{2}, l_{3} of \mathcal{V}, a contradiction.

We now show that in $P G(4, q)$, no four of the K_{i} lie in a plane. Suppose K_{1}, K_{2}, K_{3}, K_{4} lie in a plane α, then α corresponds to an affine Baer subplane \mathcal{B}^{\prime} of $P G\left(2, q^{2}\right)$ (since no three of the K_{i} lie on a line of $P G\left(2, q^{2}\right)$). However $K_{1}, K_{2}, K_{3}, K_{4}$ form a quadrangle of $P G\left(2, q^{2}\right)$ and so are contained in a unique Baer subplane of $P G\left(2, q^{2}\right)$. This is a contradiction as $\mathcal{B} \neq \mathcal{B}^{\prime}$. Hence no four of the K_{i} are coplanar.

Let the three dimensional subspace spanned by $K_{1}, K_{2}, K_{3}, K_{4}$ be Σ. Note that Σ meets t in one point and so can contain at most one of the l_{i}. Suppose one of $l_{1}, l_{2}, l_{3}, l_{4}$ lies in Σ, without loss of generality suppose $l_{1} \in \Sigma$. Let $L_{0}=l_{1} \cap t$, $L_{1}=K_{1}, L_{i}=l_{i} \cap \Sigma, i=2, \ldots, q+1$ (so $L_{i}=K_{i}, i=1,2,3,4$).

Note that by the above, no three of the $L_{i}, i \geq 1$ are collinear in $P G(4, q)$. Since the only lines of \mathcal{V} meeting t are the generators, no three of the $L_{i}, i \geq 0$ are collinear in $P G(4, q)$. We show that no three of the L_{i} are collinear in $P G\left(2, q^{2}\right)$. Suppose that L_{i}, L_{j} and $L_{k}, i, j, k>0$, are collinear in $P G\left(2, q^{2}\right)$, then the line l containing them corresponds to a plane β in $P G(4, q)$ which lies in Σ. Now in $P G\left(2, q^{2}\right), l$ contains three points of \mathcal{B}, and so l contains $q+1$ points of \mathcal{B}. Hence l contains a point of each l_{i}. Thus in $P G(4, q), \beta$ contains a point of each of l_{i}, hence β contains L_{2}, \ldots, L_{q+1} as these are the only points of l_{2}, \ldots, l_{q+1} respectively in Σ. However, $L_{i}=K_{i}, i=2,3,4$, so in $P G\left(2, q^{2}\right)$, the points K_{2}, K_{3}, K_{4} lie on the line l which is a contradiction as the K_{i} form a conic of \mathcal{B}. Therefore no three of the $L_{i}, i>0$ are collinear in $P G\left(2, q^{2}\right)$.

If L_{i}, L_{j} and $L_{0}=T$ are collinear in $P G\left(2, q^{2}\right)$, then the line containing them has three points in \mathcal{B} and so has $q+1$ points in \mathcal{B}. This is a contradiction as the only lines of \mathcal{B} through T are the generators l_{i}, and the points L_{i} and L_{j} lie on different generators. Therefore, no three of the $L_{i}, i \geq 0$ are collinear in $P G\left(2, q^{2}\right)$.

Suppose that four of the L_{i} lie in a plane α of $P G(4, q)$, then α corresponds to a line or an affine Baer subplane of $P G\left(2, q^{2}\right)$. If α corresponds to a line of $P G\left(2, q^{2}\right)$, then four of the L_{i} are collinear in $P G\left(2, q^{2}\right)$ which is not possible by the above. If α corresponds to an affine Baer subplane of $P G\left(2, q^{2}\right)$, then the L_{i} cannot form a quadrangle of $P G\left(2, q^{2}\right)$ (as a quadrangle is contained in a unique Baer subplane). Hence three of the L_{i} must be collinear in $\operatorname{PG}\left(2, q^{2}\right)$ which again contradicts the above. Therefore no four of the L_{i} are coplanar in $\operatorname{PG}(4, q)$.

Thus $L_{0}, L_{1}, \ldots, L_{q+1}$ form a set of $q+2$ points of Σ, no four of them lying in a plane. This is impossible as the maximum size of a k-arc in $P G(3, q)$ is $k=q+1$. Hence l_{1} cannot lie in Σ. Similarly $l_{2}, l_{3}, l_{4} \notin \Sigma$. Thus if one of the l_{i} lie in Σ, then $i \neq 1,2,3,4$.

We now let $l_{i} \cap \Sigma=L_{i}$ if $l_{i} \notin \Sigma$ (so $L_{i}=K_{i}, i=1,2,3,4$). If $l_{i} \in \Sigma$, we let $L_{i}=l_{i} \cap t$. Using the same arguments as above, no three of the L_{i} are collinear in $P G\left(2, q^{2}\right)$ and consequently no four of the L_{i} are coplanar in $P G(4, q)$. Hence the set of points $\mathcal{C}^{\prime}=\left\{L_{1}, \ldots, L_{q+1}\right\}$ satisfy the property that no four of them are coplanar and so \mathcal{C}^{\prime} is a $(q+1)$-arc of Σ.

Now the set \mathcal{C}^{\prime} corresponds to a set of $q+1$ points of \mathcal{B} with no three of them collinear (since no three of the L_{i} are collinear in $P G\left(2, q^{2}\right)$). Moreover,
$\mathcal{C}=\left\{T, K_{1}, \ldots, K_{q}\right\}$ and \mathcal{C}^{\prime} have five points in common, $T, K_{1}, K_{2}, K_{3}, K_{4}$, hence $\mathcal{C}=\mathcal{C}^{\prime}$. Thus $L_{i}=K_{i}, i=1, \ldots, q$ and $L_{q+1}=l_{q+1} \cap t$. Hence in $P G(4, q)$, the K_{i} together with L_{q+1} form a $(q+1)$-arc of a three dimensional subspace Σ and the K_{i} form a q-arc of Σ.

Let \mathcal{U} be a non-singular quadric in $P G(4, q)$. A tangent hyperplane of \mathcal{U} is a hyperplane that meets \mathcal{U} in a conic cone. Let G be the group of automorphisms of $P G(4, q)$ that fixes \mathcal{U}. There are $q^{4}\left(q^{2}+1\right)$ planes of $P G(4, q)$ that meet \mathcal{U} in a conic. By [7, Theorem 22.6.6], the set of conics of \mathcal{U} acted on by G has two orbits. If q is odd, one orbit contains internal conics and the other contains external conics. There are $\frac{1}{2} q^{3}(q-1)\left(q^{2}+1\right)$ internal conics and $\frac{1}{2} q^{3}(q+1)\left(q^{2}+1\right)$ external conics of \mathcal{U} ([7, Theorem 22.9.1]). If q is even, one orbit consists of nuclear conics while the other contains non-nuclear conics. There are $q^{2}\left(q^{2}+1\right)$ nuclear conic and $q^{2}\left(q^{4}-1\right)$ non-nuclear conics of $\mathcal{U}([7$, Theorem 22.9.2]). The next lemma describes how many tangent hyperplanes of \mathcal{U} contain a given conic of \mathcal{U}.

Lemma B 1. If q is odd, every internal conic of \mathcal{U} is contained in zero tangent hyperplanes of \mathcal{U}, and every external conic of \mathcal{U} is contained in two tangent hyperplanes of \mathcal{U}.
2. If q is even, every nuclear conic of \mathcal{U} is contained in $q+1$ tangent hyperplanes of \mathcal{U}, and every non-nuclear conic of \mathcal{U} is contained in one tangent hyperplane of \mathcal{U}.
Proof There are $q^{3}+q^{2}+q+1$ tangent hyperplanes of \mathcal{U} ([7, Theorem 22.8.2]) and \mathcal{U} contains $q^{3}+q^{2}+q+1$ points. Since G is transitive on the points of \mathcal{U} ([7, Theorem 22.6.4]), each point of \mathcal{U} is the vertex of exactly one tangent hyperplane.

Let \mathcal{U} meet the hyperplane Σ_{∞} in a hyperbolic quadric \mathcal{H}_{3}. Every point V of \mathcal{H}_{3} is the vertex of a conic cone of \mathcal{U} that meets \mathcal{H}_{3} in the two lines containing V. This accounts for $(q+1)^{2}$ of the tangent hyperplanes of \mathcal{U}, the remaining $q^{3}-q$ meet Σ_{∞} in a plane that contains a conic of \mathcal{H}_{3}. Suppose q is odd. Let x be the number of tangent hyperplanes containing a given internal conic and let y be the number of tangent hyperplanes containing a given external conic. By counting the number of conics of \mathcal{U} in two ways we deduce that:
$x \mid$ internal conics of $\mathcal{U}|+y|$ external conics of $\mathcal{U} \mid$
$=\mid$ tangent hyperplanes of $\mathcal{U}|$.$| conics of \mathcal{U}$ in a tangent hyperplane \mid.

Therefore:

$$
\begin{aligned}
\frac{1}{2} q^{3}(q-1)\left(q^{2}+1\right) x+\frac{1}{2} q^{3}(q+1)\left(q^{2}+1\right) y & =q^{3}\left(q^{3}+q^{2}+q+1\right) \\
(y+x) q+(y-x) & =2 q+2
\end{aligned}
$$

Equating like powers of q implies that $y=2$ and $x=0$. Therefore, every external conic in contained in two tangent hyperplanes of \mathcal{U} and every internal conic is contained in zero tangent hyperplanes of \mathcal{U}.

Suppose q is even. Let x be the number of tangent hyperplanes containing a given nuclear conic and let y be the number of tangent hyperplanes containing a
given non-nuclear conic. By counting the number of conics of \mathcal{U} in two ways as above, we deduce that:

$$
\begin{aligned}
q^{2}\left(q^{2}+1\right) x+q^{2}\left(q^{4}-1\right) y & =q^{3}\left(q^{3}+q^{2}+q+1\right) \\
x+y\left(q^{2}-1\right) & =q^{2}+q
\end{aligned}
$$

This has solution $y=1, x=q+1$ in the required range $0 \leq x, y \leq q+1$. Therefore, every nuclear conic is contained in $q+1$ tangent hyperplanes of \mathcal{U} and every nonnuclear conic is contained in one tangent hyperplane of \mathcal{U}. Consequently, a nuclear conic is not contained in any hyperbolic quadrics or elliptic quadrics of \mathcal{U}, since the $q+1$ hyperplanes containing it are all tangent hyperplanes of \mathcal{U}.

Lemma C Let U be the classical unital in $P G\left(2, q^{2}\right)$ and let \mathcal{B} be a Baer subplane of $\operatorname{PG}\left(2, q^{2}\right)$, then \mathcal{B} meets U in one point, $q+1$ points of a conic or line of \mathcal{B}, or in $2 q+1$ points of a line pair of \mathcal{B}.
Proof We work in $P G(4, q)$. Recall that the classical unital is Buekenhout with respect to any secant line and Buekenhout-Metz with respect to any tangent line. Let l be a secant line of U, then in $P G(4, q)$ with l as the line at infinity, U corresponds to a non-singular quadric. All Baer subplanes secant to l correspond to planes of $P G(4, q)$, [5] Any plane of $P G(4, q)$ meets a non-singular quadric in one point, $q+1$ points of a conic or line, or $2 q+1$ points of two lines. So in $P G\left(2, q^{2}\right)$, a Baer subplane secant to l meets \mathcal{U} in one point, a conic, a line, or two lines.

If, however, we take a tangent line of U to be our line at infinity, and work in $P G(4, q)$, then U corresponds to an orthogonal cone in $P G(4, q)$. A Baer subplane secant to the line at infinity corresponds to a plane of $P G(4, q)$. A plane of $P G(4, q)$ meets an orthogonal cone in either a point, a line, a conic, or two lines. Thus all Baer subplanes of $P G\left(2, q^{2}\right)$ meet the classical unital in one point, $q+1$ points of a conic or a line, or in a line pair.

We are now able to show that the unital U^{\prime} does contain O'Nan configurations. We do this by constructing a configuration in the classical unital that derives to an O'Nan configuration of U^{\prime}.

Theorem 3 If $q>5$, the unital U^{\prime} contains $O^{\prime} N a n ~ c o n f i g u r a t i o n s . ~ I f ~ H ~ i s ~ a ~$ point of $U^{\prime} \backslash \ell_{\infty}^{\prime}$ and l a secant of U^{\prime} through H that meets the classical derivation set, then there is an O'Nan configuration of U^{\prime} that contains H and l.
Proof We will show that U^{\prime} contains an O'Nan configuration whose four lines meet ℓ_{∞}^{\prime} in the distinct points A, B, C, D where $A \in \mathcal{D}^{\prime}$ and $B, C, D \notin \mathcal{D}^{\prime}$. We prove this by constructing a configuration in the classical unital U in $P G\left(2, q^{2}\right)$ that will derive to an O'Nan configuration of U^{\prime} in $\mathcal{H}\left(q^{2}\right)$.

The configuration that we construct in U is illustrated in the figure. It consists of six lines $l_{A_{1}}, l_{A_{2}}, l_{A_{3}}, l_{B}, l_{C}, l_{D}$ and six points H, J, K, X, Y, Z of U with intersections as illustrated and such that the line l_{*} meets ℓ_{∞} in the point $*$ where $* \in\left\{A_{1}, A_{2}, A_{3}, B, C, D\right\}$ and with $A_{1}, A_{2}, A_{3} \in \mathcal{D}$ and $B, C, D \notin \mathcal{D}$.

Note that $J, K, H, A_{1}, A_{2}, A_{3}$ form a quadrangle and so are contained in a unique Baer subplane which contains \mathcal{D} (as A_{1}, A_{2}, A_{3} are contained in the unique Baer subline \mathcal{D}). Hence derivation with respect to \mathcal{D} leaves l_{B}, l_{C} and l_{D} unchanged in $\mathcal{H}\left(q^{2}\right)$ with H, J, K collinear in $\mathcal{H}\left(q^{2}\right)$, giving an O'Nan configuration in U^{\prime}.

Let U be the classical unital in $P G\left(2, q^{2}\right)$ and \mathcal{D} a derivation set of ℓ_{∞} disjoint from U, as above. Let $l_{A_{1}}$ be a secant line of U that meets \mathcal{D} in the point A_{1}. Let H and J be two points of U that lie on $l_{A_{1}}$. There is a unique Baer subplane \mathcal{B} that contains H, J and \mathcal{D} since a quadrangle is contained in a unique Baer subplane. Now the Baer subline $\mathcal{B} \cap l_{A_{1}}$ meets U in $0,1,2$ or $q+1$ points and since $H, J \in U$ and $A_{1} \notin U$ we have $\mathcal{B} \cap l_{A_{1}}$ meets U in two points. By Lemma C, \mathcal{B} meets U in $q+1$ points that form a conic in \mathcal{B}, as \mathcal{D} is disjoint from U. Denote the points of the conic $\mathcal{B} \cap U$ by $H, K_{1}, K_{2}, \ldots, K_{q}$ (so $J=K_{i}$ for some i).

Through H there are q^{2} secants of U, let l_{D} be a secant through H that meets ℓ_{∞} in the point $D \notin \mathcal{D}$. Label the points of U on l_{D} by H, Y_{1}, \ldots, Y_{q}, then the lines $K_{j} Y_{i}, i, j=1, \ldots, q$, each contain two points of U and hence are secant to U.

We want to show that for some $i \neq j$ and $m \neq n$ the secants $K_{i} Y_{m}$ and $K_{j} Y_{n}$ meet in a point Z of U with $K_{i} Y_{m} \cap \ell_{\infty} \notin \mathcal{D}$ and $K_{j} Y_{n} \cap \ell_{\infty} \notin \mathcal{D}$. The configuration containing the points $H, K_{i}, K_{j}, Y_{m}, Y_{n}, Z$ is the required configuration of U that will derive to an O'Nan configuration of U^{\prime}.

In order to complete the construction of the configuration we will use the Bruck and Bose representation of $P G\left(2, q^{2}\right)$ in $P G(4, q)$ taking the line $H D=l_{D}$ as the line at infinity. Recall that the classical unital is Buekenhout with respect to any secant line. Hence in $P G(4, q), U$ corresponds to a non-singular quadric \mathcal{U} that meets the spread of Σ_{∞} in the regulus $\mathcal{R}=\left\{h, y_{1}, \ldots, y_{q}\right\}$. If l is a secant of U that meets $l_{D} \cap U$, then $\bar{l}=l \cap U$ is a Baer subline of $P G\left(2, q^{2}\right)$ and corresponds to a line of $P G(4, q)$ that meets Σ_{∞} in a point of \mathcal{R}.

The line l_{D} is tangent to \mathcal{B} as $D \notin \mathcal{D}$, so in $\operatorname{PG}(4, q), \mathcal{B}$ corresponds to a ruled cubic surface. By Lemma A, the K_{i} form a q-arc of a three dimensional subspace Σ in $P G(4, q)$.

If l is a secant of U, let \bar{l} denote the $q+1$ points of $l \cap U$. In $P G(4, q)$, let $\overline{K_{i} H} \cap h=H_{i}, i=1, \ldots, q$, and let $\overline{K_{i} Y_{j}} \cap y_{j}=Y_{j i}, i, j=1, \ldots, q$.

We now show that the set of points $\mathcal{C}_{1}=\left\{H_{1}, Y_{11}, \ldots, Y_{q 1}\right\}$ forms a conic in Σ_{∞} and hence that $K_{1} \mathcal{C}_{1}$ is a conic cone. If the three points H_{1}, Y_{11}, Y_{21} are collinear, then the lines $K_{1} H_{1}, K_{1} Y_{11}, K_{1} Y_{21}$ are contained in a plane of $P G(4, q)$ that meets
\mathcal{U} in $3 q+1$ points which is not possible. Thus \mathcal{C}_{1} is a set of $q+1$ points, no three collinear.

Now consider the three dimensional subspace Σ_{1} spanned by the lines $K_{1} H_{1}$, $K_{1} Y_{11}, K_{1} Y_{21}$. It meets \mathcal{U} in either a hyperbolic quadric, an elliptic quadric or a conic cone, hence Σ_{1} meets \mathcal{U} in a conic cone whose vertex is K_{1}. The only lines of $P G(4, q)$ through K_{1} that are secant lines of \mathcal{U} are those that meet a line of \mathcal{R}. Hence $K_{1} \mathcal{C}_{1}$ is a conic cone and \mathcal{C}_{1} forms a conic of the plane $\Sigma_{1} \cap \Sigma_{\infty}$.

Similarly $\mathcal{C}_{i}=\left\{H_{i}, Y_{1 i}, \ldots, Y_{q i}\right\}$ is a conic for each $i=1, \ldots, q$, and $K_{i} \mathcal{C}_{i}$ forms a conic cone of \mathcal{U}. We denote the three dimensional subspace containing the conic cone $K_{i} \mathcal{C}_{i}$ by $\Sigma_{i}, i=1, \ldots, q$.

Recall that Σ is the hyperplane of $P G(4, q)$ containing the K_{i}. Suppose $\Sigma_{1}=\Sigma$, then $q-1$ of the lines of the cone $K_{1} \mathcal{C}_{1}$ are $K_{1} K_{2}, \ldots, K_{1} K_{q}$. In $P G\left(2, q^{2}\right)$, this means that $q-1$ of the lines $K_{1} Y_{1}, \ldots, K_{1} Y_{q}$ meet \mathcal{D}.

Let $\mathcal{D}=\left\{T_{0}, \ldots, T_{q}\right\}$ with $H \in K_{1} T_{0}$ and consider the lines $K_{1} T_{1}, \ldots, K_{1} T_{q}$. Suppose that $H D=l_{1}$ meets y of these lines $K_{1} T_{1}, \ldots, K_{1} T_{y}$ in a point of U, that is, y of the lines $K_{1} Y_{j}$ meet ℓ_{∞} in a point of \mathcal{D}. Now any other secant line l_{2} of U through H can meet at most one of the lines $K_{1} T_{1}, \ldots, K_{1} T_{y}$ in a point of U, otherwise we would have an O'Nan configuration in U. So l_{2} meets at most $q-y+1$ of the lines $K_{1} T_{1}, \ldots, K_{1} T_{q}$ in a point of U.

So if we pick any other secant of U through H, we can ensure that $\Sigma_{1} \neq \Sigma$. By excluding at most q secants of U through H we can ensure that $\Sigma_{i} \neq \Sigma, i=1, \ldots, q$. There are $q^{2}-q-1$ possibilities for D, as $D \notin \mathcal{D}$, so there are enough choices left for D if $q^{2}>2 q+1$; that is, if $q>2$.

So Σ_{1} meets Σ in a plane that contains at most three of the K_{i}, since no four of the K_{i} are coplanar. By Lemma B , if q is even, the \mathcal{C}_{i} are all distinct and if q is odd, a given \mathcal{C}_{i} is distinct from at least $q-2$ of the \mathcal{C}_{i} 's. Hence if q is even, we can pick $K_{i} \notin \Sigma_{1}$ with $\mathcal{C}_{i} \neq \mathcal{C}_{1}$ for $i=2, \ldots, q-2$ (since two of the K_{i} may lie in Σ_{1}). If q is odd, we can pick $K_{i} \notin \Sigma_{1}$ with $\mathcal{C}_{i} \neq \mathcal{C}_{1}$ for $i=2, \ldots, q-3$ (since two of the K_{i} may lie in Σ_{1} and one of the \mathcal{C}_{i} may equal \mathcal{C}_{1}). Thus if $q \geq 4$, we can pick Σ_{1} and Σ_{2} so that $\mathcal{C}_{1} \neq \mathcal{C}_{2}$ and $K_{2} \notin \Sigma_{1}$.

Let α_{12} be the plane $\Sigma_{1} \cap \Sigma_{2}$. We investigate how α_{12} meets the conic cones $K_{1} \mathcal{C}_{1}$ and $K_{2} \mathcal{C}_{2}$ by looking at how it meets \mathcal{U}. Since \mathcal{U} and $K_{i} \mathcal{C}_{i}$ are quadrics, a plane must meet them in a quadric; that is, in a point, a line, a conic or two lines. We list the four possibilities explicitly for $\alpha_{12} \cap K_{2} \mathcal{C}_{2}$; the same possibilities occur for $\alpha_{12} \cap K_{1} \mathcal{C}_{1}$.
(a) α_{12} meets $K_{2} \mathcal{C}_{2}$ in the vertex K_{2},
(b) α_{12} meets $K_{2} \mathcal{C}_{2}$ in a line through K_{2},
(c) α_{12} meets $K_{2} \mathcal{C}_{2}$ in a conic and $K_{2} \notin \alpha_{12}$,
(d) α_{12} meets $K_{2} \mathcal{C}_{2}$ in two lines through K_{2}.

Now since $K_{2} \notin \Sigma_{1}$, possibilities (a), (b) and (d) cannot occur for $\alpha_{12} \cap K_{2} \mathcal{C}_{2}$, thus $\alpha_{12} \cap K_{2} \mathcal{C}_{2}$ is a conic and α_{12} meets \mathcal{U} in a conic. Hence α_{12} meets $K_{1} \mathcal{C}_{1}$ in a conic or the vertex K_{1}. If $K_{1} \in K_{2} \mathcal{C}_{2}$, then $K_{1} \in K_{2} Y_{i 2}$ for some i. However, there is only one line of \mathcal{U} from K_{1} to y_{i}, so $K_{2} Y_{i 2} \in \alpha_{12}$, a contradiction. Thus α_{12} meets $K_{1} \mathcal{C}_{1}$ in the conic $\alpha_{12} \cap \mathcal{U}$.

We have deduced that every line of the cone $K_{1} \mathcal{C}_{1}$ meets a line of the cone $K_{2} \mathcal{C}_{2}$. At most two of these intersections occur in Σ_{∞} since α_{12} meets Σ_{∞} in a line which meets \mathcal{C}_{i} in at most two points, hence \mathcal{C}_{1} and \mathcal{C}_{2} have at most two points in common. If $H_{1} \neq H_{2}$, then one of the points of $\mathcal{U} \cap \alpha_{12}$ lies in $K_{1} H_{1}$ and one lies in $K_{2} H_{2}$, since $K_{1} H_{1}$ does not meet $K_{2} H_{2}$. Thus we have at least $q-3$ pairs of lines of \mathcal{U}, $K_{1} Y_{n 1}$ and $K_{2} Y_{m 2}, n \neq m$, that meet in a point of $P G(4, q) \backslash \Sigma_{\infty}$.

The line $K_{1} Y_{n 1}$ is contained in a unique plane γ about y_{m}. Recall that y_{m} corresponds to the point Y_{m} in $P G\left(2, q^{2}\right)$ and γ corresponds to the line of $P G\left(2, q^{2}\right)$ through K_{1} and Y_{m}. Therefore, in $P G\left(2, q^{2}\right)$, we have at least $q-3$ pairs of secants of $U, K_{1} Y_{n}$ and $K_{2} Y_{m}, n \neq m$, that meet in a point Z of U. In order to complete the proof that we have constructed the required configuration in the classical unital of $P G\left(2, q^{2}\right)$, we need to ensure that for one of these pairs both the lines $K_{1} Y_{n}$ and $K_{2} Y_{m}$ are disjoint from \mathcal{D}.

Suppose that x of the lines $K_{1} Y_{1}, \ldots, K_{1} Y_{q}$ meet \mathcal{D}, that is, $H D=l_{1}$ meets x of the lines $K_{1} T_{1}, \ldots, K_{1} T_{q}$ in a point of U (recall that $K_{1} H$ meets \mathcal{D} in T_{0}). As before, if l_{2} is a different secant line of U through H, then l_{1} and l_{2} can meet at most one common $K_{1} T_{1}, \ldots, K_{1} T_{q}$ in a point of U, otherwise we have an O'Nan configuration in U. If l_{1} meets none of the $K_{1} T_{1}, \ldots, K_{1} T_{q}$, then we retain l_{1}. Otherwise l_{1} meets $K_{1} T_{i}$ for some i. There are q other secants of U through H that contain a point of $K_{1} T_{i} \cap U$, we label them l_{2}, \ldots, l_{q+1}. In the worst case, each l_{k} meets exactly one of the $K_{1} T_{j}, j \neq i$, in point of U. However, there are $q+1$ lines l_{i} and only $q-1$ lines $K_{1} T_{j}, j \neq i$, thus at least one of the l_{k} meets $K_{1} T_{i}$ in a point of U, and no further $K_{1} T_{j}, j \neq i$, in a point of U. Thus by excluding at most $q-1$ choices of a secant line through H, we can ensure that at most one of the lines $K_{1} Y_{1}, \ldots, K_{1} Y_{q}$ meets \mathcal{D}. We have already excluded at most q choices for D, there are $q^{2}-q-1$ possibilities for D, so if $q^{2}>3 q$, that is, $q>3$, there are enough choices left for D.

In order to ensure that at least one of the above $q-3$ pairs $K_{1} Y_{n}, K_{2} Y_{m}$ that meet in a point of U are disjoint from \mathcal{D}, it suffices to show that at least two of the $q-3$ lines $K_{2} Y_{m}$ are disjoint from \mathcal{D} (since at most one of the $q-3$ lines $K_{1} Y_{n}$ meets \mathcal{D}). Thus we need at least five of the lines $K_{2} Y_{1}, \ldots, K_{2} Y_{q}$ disjoint from \mathcal{D}. Hence we need $q \geq 5$.

Suppose $x<5$ of the lines $K_{2} Y_{1}, \ldots, K_{2} Y_{q}$ are disjoint from \mathcal{D}, so $q-x$ of them meet \mathcal{D}. If $q-3>2$, we can pick $K_{3} \notin \Sigma_{1}$ with $\mathcal{C}_{3} \neq \mathcal{C}_{1}$. Repeating the above argument gives $q-3$ pairs $K_{1} Y_{j}, K_{3} Y_{k}, j \neq k$, that meet in a point of U. Now if $K_{2} Y_{i}$ meets \mathcal{D}, then $K_{3} Y_{i}$ cannot meet \mathcal{D}, otherwise $Y_{i} \in \mathcal{B}$ which is a contradiction. Thus, in the worst case, exactly $\frac{q}{2}$ of the $K_{2} Y_{1}, \ldots, K_{2} Y_{q}$ meet \mathcal{D} and $\frac{q}{2}$ of the $K_{3} Y_{1}, \ldots, K_{3} Y_{q}$ meet \mathcal{D}. So if $\frac{q}{2} \geq 5$, that is, $q \geq 10$, we have two lines that meet in a point of U and are disjoint from \mathcal{D}, hence we have constructed the required configuration in U when $q \geq 10$.

If $q-3>3$ with q odd, or $q-2>3$ with q even, that is $q \geq 6$, then we can pick $K_{4} \notin \Sigma_{1}$ and $\mathcal{C}_{4} \neq \mathcal{C}_{1}$. The above argument gives $q-3$ pairs $K_{1} Y_{j}, K_{4} Y_{k}, j \neq k$, that meet in a point of U. In the worst case, exactly $\frac{q}{3}$ of the $K_{i} Y_{1}, \ldots, K_{i} Y_{q}, i=2,3,4$ meet \mathcal{D}. So if $q-\frac{q}{3} \geq 5$, that is, $q \geq 8$, we have a pair $K_{1} Y_{j}, K_{i} Y_{k}$ that meet in a point of U and are disjoint from \mathcal{D}. Hence if $q \geq 8$, we can construct the required configuration in the classical unital.

If $q=7, q$ is not divisible by three, so in the worst case, we can pick two of the $K_{2} Y_{1}, \ldots, K_{2} Y_{q}$ meeting \mathcal{D} and so $7-2=5$ of them are disjoint from \mathcal{D}, giving the required configuration.

Therefore, if $q>5$, we have constructed the required configuration in the classical unital that will derive to an O'Nan configuration of U.

We have shown that for any point H of $U \backslash \ell_{\infty}$ and for any Baer subplane \mathcal{B} of $P G\left(2, q^{2}\right)$ containing \mathcal{D}, H and $q+1$ points of U, we can construct the required configuration in the classical unital through H and two other points of $U \cap \mathcal{B}$. Thus in U^{\prime}, for any point H of $U^{\prime} \backslash \ell_{\infty}^{\prime}$ and secant line l of U^{\prime} through H that meets the classical derivation set \mathcal{D}^{\prime}, the above configuration in the classical unital derives to an O'Nan configuration of U^{\prime} containing H and l.

As U^{\prime} contains O'Nan configurations and U does not contain O'Nan configurations, we obtain the immediate corollary that the designs U and U^{\prime} are not isomorphic.

Corollary 4 The unital U^{\prime} is not isomorphic to the classical unital U.
The only unital of the Hall plane examined in detail has been the Buekenhout unital obtained by Grüning [5]. This is constructed by taking the classical unital U in $P G\left(2, q^{2}\right)$ secant to ℓ_{∞} and deriving with respect to $U \cap \ell_{\infty}$. By examining the occurrence of O'Nan configurations in the two unitals, we show that they are non-isomorphic. Therefore the class of unitals investigated here have not previously been studied in detail.

Theorem 5 The class of Buekenhout unitals U^{\prime} in $\mathcal{H}\left(q^{2}\right), q>3$, is not isomorphic to the class of Buekenhout unitals in $\mathcal{H}\left(q^{2}\right)$ found by Grüning [5].
Proof We show the two unitals are non-isomorphic by examining the frequency distribution of O'Nan configurations in them. Let V be Grüning's unital of $\mathcal{H}\left(q^{2}\right)$ and let $\bar{l}=V \cap \ell_{\infty}^{\prime}$. Grüning showed that (i) V contains no O'Nan configurations with two or more points on \bar{l} and (ii) for any point $P \in \bar{l}$, if l_{1}, l_{2} are lines of V through P and l_{3} a line of U that meets l_{1} and l_{2}, then there exists an O'Nan configuration of U containing l_{1}, l_{2} and l_{3}. Let U be a unital and \bar{l} a line of U. We call \bar{l} a G-O axis (Grüning-O'Nan axis) of U if it satisfies (i) and (ii). We show that U^{\prime} does not contain a G-O axis.

There are three possibilities for such an axis in $U^{\prime}: U^{\prime} \cap \ell_{\infty}^{\prime}$, a secant line of U^{\prime} that meets ℓ_{∞}^{\prime} in a point of U^{\prime}, a secant line of U^{\prime} that meets ℓ_{∞}^{\prime} in a point not in U^{\prime}.

Let P be a point of $U^{\prime} \cap \ell_{\infty}^{\prime}$. Let l_{1}, l_{2} be secants of U^{\prime} through P. In $P G(4, q)$, $\overline{l_{1}}=l_{1} \cap U^{\prime}$ and $\overline{l_{2}}=l_{2} \cap U^{\prime}$ are lines of $P G(4, q)$ that meet the line p of the spread \mathcal{S}^{\prime}. Choose l_{1} and l_{2} such that $\overline{l_{1}}$ and $\overline{l_{2}}$ meet in a point of p in $P G(4, q)$. By Theorem 2 , there is no O'Nan configuration that contains l_{1} and l_{2}. This violates (ii), thus $U^{\prime} \cap \ell_{\infty}^{\prime}$ is not a G-O axis of U^{\prime}. The same example shows that any other line of U^{\prime} through P cannot be a G-O axis of U^{\prime}.

Let l be a secant line of U^{\prime} that meets ℓ_{∞}^{\prime} in a point not in U^{\prime}. Let Q be a point of U^{\prime} on l and let l_{1} and l_{2} be secants of U^{\prime} through Q that contain a point of $U^{\prime} \cap \ell_{\infty}^{\prime}$. There is no O'Nan configuration of U^{\prime} containing l_{1}, l_{2} and $U^{\prime} \cap \ell_{\infty}^{\prime}$ as U^{\prime} contains no O'Nan configurations with three vertices on ℓ_{∞}^{\prime} (Theorem 2). Therefore, l does not satisfy (ii) and cannot be a G-O axis of U^{\prime}. Hence no line of U^{\prime} is a G-O axis
and so U^{\prime} is not isomorphic to V.

References

[1] J. André. Über nicht-Desarguessche Ebenen mit transitiver Translationgruppe. Math. Z., 60 (1954) 156-186.
[2] S. G. Barwick. Unitals in the Hall plane. To appear, J. Geom.
[3] R. H. Bruck and R. C. Bose. The construction of translation planes from projective spaces. J. Algebra, 1 (1964) 85-102.
[4] F. Buekenhout. Existence of unitals in finite translation planes of order q^{2} with a kernel of order q. Geom. Dedicata, 5 (1976) 189-194.
[5] K. Grüning. A class of unitals of order q which can be embedded in two different translation planes of order q^{2}. J. Geom., 29 (1987) 61-77.
[6] J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Oxford University Press, 1985.
[7] J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford University Press, 1991.
[8] D. R. Hughes and F. C. Piper. Projective planes. Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[9] C. T. Quinn and L. R. A. Casse. Concerning a characterisation of BuekenhoutMetz unitals. J. Geom., 52 (1995) 159-167.

Pure Mathematics Department
University of Adelaide
Adelaide 5005
Australia

[^0]: Received by the editors November 1994
 Communicated by J. Thas
 AMS Mathematics Subject Classification : 51E20.
 Keywords : Unitals, derivation, Hall planes.

