The Ricci Curvature of Totally Real 3-dimensional Submanifolds of the Nearly Kaehler 6-Sphere

Li Haizhong*

Abstract

Let M be a compact 3 -dimensional totally real submanifold of the nearly Kaehler 6 -sphere. If the Ricci curvature of M satisfies $\operatorname{Ric}(M) \geq \frac{53}{64}$, then M is a totally geodesic submanifold (and $\operatorname{Ric}(M) \equiv 2$).

1. Introduction

On a 6 -dimensional unit sphere S^{6}, we can construct a nearly Kaehler structure J by making use of the Cayley number system (see [3] or [7]).

Let M be a compact 3-dimensional Riemannian manifold. M is called a totally real submanifold of S^{6} if $J(T M) \subseteq T^{\perp} M$, where $T M$ and $T^{\perp} M$ are the tangent bundle and the normal bundle of M in S^{6}, respectively. In [2], Ejiri proved that a 3-dimensional totally real submanifold of S^{6} is orientable and minimal. In [1], Dillen-Opozda-Verstraelen-Vrancken proved the following sectional curvature pinching theorem

[^0]Theorem 1([1]). Let M be a compact 3-dimensional totally real submanifold of S^{6}. If the sectional curvature K of M satisfies

$$
\begin{equation*}
\frac{1}{16}<K \leq 1 \tag{1}
\end{equation*}
$$

then M is a totally geodesic submanifold (i.e. $K \equiv 1$ on M).
In this paper, we prove the following Ricci curvature pinching Theorem
Theorem 2. Let M be a compact 3-dimensional totally real submanifold of S^{6}. If the Ricci curvature of M satisfies

$$
\begin{equation*}
\operatorname{Ric}(M) \geq \frac{53}{64} \tag{2}
\end{equation*}
$$

then M is a totally geodesic submanifold (i.e. $\operatorname{Ric}(M) \equiv 2$ on M).

2. Preliminaries

Suppose that M is an n-dimensional submanifold in an $(n+p)$-dimensional unit sphere S^{n+p}. We denote by $U M$ the unit tangent bundle over M and by $U M_{p}$ its fibre at $p \in M$. We denote by $<,>$ the metric of S^{n+p} as well as that induced on M. If h is the second fundamental form of M and A_{ξ} the Weingarten endomorphism associated to a normal vector ξ, we define

$$
L: T_{p} M \longmapsto T_{p} M \quad \text { and } \quad T: T_{p}^{\perp} M \times T_{p}^{\perp} M \longmapsto R
$$

by the expressions

$$
L v=\sum_{i=1}^{n} A_{h\left(v, e_{i}\right)} e_{i} \quad \text { and } \quad T(\xi, \eta)=\operatorname{trace} A_{\xi} A_{\eta},
$$

where $T_{p}^{\perp} M$ is the normal space to M at p and e_{1}, \ldots, e_{n} is an orthonormal basis of $T_{p} M$.

In [5], Montiel-Ros-Urbano proved the following results
Lemma 1([5]). Let M be an n-dimensional compact minimal submanifold in S^{n+p}. We have

$$
\begin{align*}
& 0=\frac{n+4}{3} \int_{U M}|(\nabla h)(v, v, v)|^{2} d v+(n+4) \int_{U M}\left|A_{h(v, v)} v\right|^{2} d v \\
&-4 \int_{U M}<L v, A_{h(v, v)} v>d v-2 \int_{U M} T(h(v, v), h(v, v)) d v \tag{3}\\
&+2 \int_{U M}\left(<L v, v>-|h(v, v)|^{2}\right) d v
\end{align*}
$$

where dv denotes the canonical locally product measure on the unit tangent bundle $U M$ over M.

Lemma 2([5]). Let M be an n-dimensional compact minimal submanifold in S^{n+p}. Then, for any $p \in M$, we have

$$
\begin{gather*}
\int_{U M_{p}}<L v, A_{h(v, v)} v>d v_{p}=\frac{2}{n+2} \int_{U M_{p}}|L v|^{2} d v_{p} \tag{4}\\
\int_{U M_{p}}|h(v, v)|^{2} d v_{p}=\frac{2}{n+2} \int_{U M_{p}}<L v, v>d v_{p} \tag{5}\\
\int_{U M_{p}}<L v, v>d v_{p}=\frac{1}{n} \int_{U M_{p}}|h|^{2} d v_{p} \tag{6}\\
\int_{U M_{p}}\left|A_{h(v, v)} v\right|^{2} d v_{p} \geq \frac{2}{n+2} \int_{U M_{p}}<L v, A_{h(v, v)} v>d v_{p} \tag{7}
\end{gather*}
$$

and the equality in (7) holds if and only if $L v=\frac{n+2}{2} A_{h(v, v)} v$ for any $v \in U M_{p}$.
It is well-known that we can construct a nearly Kaehler structure J on a 6 dimensional unit sphere S^{6} by making use of the Cayley system (see [3], [7] or [1] for details). Let G be the (2,1)-tensor field on S^{6} defined by

$$
\begin{equation*}
G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y \tag{8}
\end{equation*}
$$

where $X, Y \in T\left(S^{6}\right)$ and $\bar{\nabla}$ is the Levi-Civita connection on S^{6}. This tensor field has the following properties (see [1])

$$
\begin{gather*}
G(X, X)=0 \tag{9}\\
G(X, Y)+G(Y, X)=0 \tag{10}\\
G(X, J Y)+J G(X, Y)=0 . \tag{11}
\end{gather*}
$$

3. 3-dimensional totally real submanifolds of S^{6}

Let M be a 3 -dimensional totally real submanifold of S^{6}. In [2], Ejiri proved that M is orientable and minimal, and that $G(X, Y)$ is orthogonal to M, i.e.

$$
\begin{equation*}
G(X, Y) \in T^{\perp} M, \quad \text { for } \quad X, Y \in T M \tag{12}
\end{equation*}
$$

We denote the Levi-Civita connection of M by ∇. The formulas of Gauss and Weingarten are then given by

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{13}\\
\bar{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{14}
\end{gather*}
$$

where X and Y are vector fields on M and ξ is a normal vector field on M. The second fundamental form h is related to A_{ξ} by

$$
\begin{equation*}
<h(X, Y), \xi>=<A_{\xi} X, Y> \tag{15}
\end{equation*}
$$

From (12)-(14), we find

$$
\begin{equation*}
D_{X}(J Y)=G(X, Y)+J \nabla_{X} Y, \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
A_{J X} Y=-J h(X, Y) \tag{17}
\end{equation*}
$$

Since M is a 3-dimensional totally real submanifold of $S^{6}, J T^{\perp} M=T M$ and $J T M=T^{\perp} M$. We can easily verify that (17) is equivalent to

$$
\begin{equation*}
<h(X, Y), J Z>=<h(X, Z), J Y>=<h(Y, Z), J X>. \tag{18}
\end{equation*}
$$

Let S and R be the Ricci tensor and the scalar curvature of M. It follows from the Gauss equation that

$$
\begin{gather*}
S(X, Y)=2<X, Y>-<L X, Y> \tag{19}\\
R=6-|h|^{2}, \tag{20}
\end{gather*}
$$

where $|h|^{2}$ is the length square of h.
In order to prove our Theorem 2, we also need the following lemma which comes from lemma 2 and lemma 6 of [1]

Lemma 3([1]). Let M be a compact 3-dimensional totally real submanifold of S^{6}. Then we have

$$
\begin{equation*}
\int_{U M}|(\nabla h)(v, v, v)|^{2} d v=\frac{9}{4} \int_{U M}<(\nabla h)(v, v, v), J v>^{2} d v+\frac{9}{28} \int_{U M}|h(v, v)|^{2} d v \tag{21}
\end{equation*}
$$

4. Proof of Theorem 2

Let M be a 3-dimensional totally real submanifold of S^{6}. By Ejiri's result [2], we know that M is orientable and minimal. Let $n=3$ in lemma 1 , we get by use of (5) and (6)

$$
\begin{align*}
0= & \frac{7}{3} \int_{U M}|(\nabla h)(v, v, v)|^{2} d v+\frac{2}{5} \int_{U M}|h|^{2} d v-2 \int_{U M} T(h(v, v), h(v, v)) d v \\
& +7 \int_{U M}\left|A_{h(v, v)} v\right|^{2} d v-4 \int_{U M}<L v, A_{h(v, v)} v>d v \tag{22}
\end{align*}
$$

Let Q be the function which assigns to each point of M the infimum of the Ricci curvature of M at that point. Then $\operatorname{Ric}(M) \geq Q$, at $p \in M$. ¿From (19) and (20), we have

$$
\begin{equation*}
0 \leq<L v, v>\leq 2-Q \tag{23}
\end{equation*}
$$

for all $v \in U M$. If e_{1}, e_{2}, e_{3} is an orthonormal basis of $T_{p} M, p \in M$ such that $L e_{i}=\lambda_{i} e_{i}$, we have $\lambda_{i}=<L e_{i}, e_{i}>\geq 0$ and

$$
\begin{equation*}
|L v|^{2}=\sum_{i=1}^{3} \lambda_{i}^{2}<v, e_{i}>^{2} \leq(2-Q) \sum_{i=1}^{3} \lambda_{i}\left\langle v, e_{i}>^{2}=(2-Q)<L v, v\right\rangle \tag{24}
\end{equation*}
$$

where the equality implies that $\lambda_{i}=2-Q$ for all $i=1,2,3$, i.e. the Ricci curvature of M is equal to Q at $p \in M$.

By (7), (4), (24) and (6), we have

$$
\begin{align*}
& 7 \int_{U M_{p}}\left|A_{h(v, v)} v\right|^{2} d v_{p}-4 \int_{U M_{p}}<L v, A_{h(v, v)} v>d v_{p} \\
& \quad \geq-\frac{6}{5} \int_{U M_{p}}<L v, A_{h(v, v)} v>d v_{p} \\
& \quad=-\frac{12}{25} \int_{U M_{p}}|L v|^{2} d v_{p} \tag{25}\\
& \quad \geq-\frac{12}{25}(2-Q) \int_{U M_{p}}<L v, v>d v_{p} \\
& \quad=-\frac{4}{25}(2-Q) \int_{U M_{p}}|h|^{2} d v_{p}
\end{align*}
$$

where the equality implies that M is Einsteinian.
Combining (25) with (22), we get

$$
\begin{align*}
0 \geq & \frac{7}{3} \int_{U M}|(\nabla h)(v, v, v)|^{2} d v+\int_{U M}\left(\frac{2}{5}-\frac{4}{25}(2-Q)\right)|h|^{2} d v \\
& -2 \int_{U M} T(h(v, v), h(v, v)) d v . \tag{26}
\end{align*}
$$

Let $h(v, v)=|h(v, v)| \xi$, for some unit normal vector ξ. From (18) and (23)

$$
\begin{align*}
T(h(v, v), h(v, v)) & =|h(v, v)|^{2} T(\xi, \xi) \\
& =|h(v, v)|^{2}<L(J \xi), J \xi> \tag{27}\\
& \leq(2-Q)|h(v, v)|^{2} .
\end{align*}
$$

Putting (27) and (21) into (26), we obtain by use of (5) and (6)

$$
\begin{align*}
0 & \frac{21}{4} \int_{U M}<(\nabla h)(v, v, v), J v>^{2} d v+\frac{3}{4} \int_{U M}|h(v, v)|^{2} d v \\
& +\int_{U M}\left(\frac{2}{5}-\frac{4}{25}(2-Q)\right)|h|^{2} d v-2 \int_{U M}(2-Q)|h(v, v)|^{2} d v \\
= & \frac{21}{4} \int_{U M}<(\nabla h)(v, v, v), J v>^{2} d v+\int_{U M}\left[\frac{2}{5}-\frac{4}{25}(2-Q)\right]|h|^{2} d v \tag{28}\\
& +\int_{U M}\left(\frac{3}{4}-2(2-Q)\right)|h(v, v)|^{2} d v \\
= & \frac{21}{4} \int_{U M}<(\nabla h)(v, v, v), J v>^{2} d v+\frac{1}{150} \int_{U M}(64 Q-53)|h|^{2} d v
\end{align*}
$$

Thus, under the hypothesis (2), (28) must be an equality, which implies that (24) and (25) are equalities. Hence, M is Einsteinian. It follows from (28) that either $|h|^{2}=0$, i.e. M is totally geodesic, in this case, $\operatorname{Ric}(M) \equiv 2$; or

$$
\operatorname{Ric}(M) \equiv \frac{53}{64}
$$

on M. In the latter case, since M is a 3 -dimensional Einsteinian manifold, we know that the sectional curvature of M is

$$
K \equiv \frac{53}{128}
$$

on M, but by Theorem 1 of [1] or a result of Ejiri [2], this case can not happen. We conclude that M is totally geodesic. We complete the proof of Theorem 2.

Remark 1. By Myers' Theorem, we can assume "complete" instead of "compact" in Theorem 2.

Remark 2. For a compact minimal 3 -dimensional submanifold M of $(3+p)$ dimensional unit sphere S^{3+p}, if the Ricci curvature of M satisfies $\operatorname{Ric}(M) \geq 1$, the author [4] obtained a classification theorem.

Remark 3. F.Dillen, L.Verstraelen and L.Vrancken obtained a sharper result than Theorem 1 in their paper "Classification of totally real 3-dimensional submanifolds of S^{6} with $K \geq 1 / 16^{\prime \prime}$, J. Math. Soc. Japan, 42(1990), 565-584.

Acknowlegement. I would like to thank referee for his useful suggestions and comments.

References

[1] F.Dillen, B.Opozda, L.Verstraelen and L.Vrancken, On totally real 3dimensional submanifolds of the nearly Kaehler 6 -sphere, Proc. Amer. Math. Soc., 99(1987), 741-749.
[2] N.Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc., 83(1981), 759-763.
[3] A.Gray, Minimal varieties and almost Hermitian submanifolds, Michigan Math. J., 12(1965), 273-287.
[4] H.Li, Curvature pinching for odd-dimensional minimal submanifolds in a sphere, Publications de L’institut Mathematique, Beograd, Tome 53(67), 1993, 122-132.
[5] S.Montiel, A.Ros and F.Urbano, Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z., 191(1986), 537-548.
[6] A.Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Ann. of Math., 121(1985), 377-382.
[7] K.Sekigawa, Almost complex submanifolds of a 6 -dimensional sphere, Kodai Math. J., 6(1983), 174-185.

Department of Applied Mathematics, Qinghua University,
Beijing, 100084
People's Republic of China

[^0]: *This work is supported by Postdoctoral Foundation of China
 Received by the editors June 1994.
 Communicated by M. De Wilde.
 1991 Mathematics Subject Classification : 53C42.

